Search results for: feature extraction method for tremor classification
21892 Assisted Supercritical Carbon Dioxide Extraction of Tocotrienols from Palm Fatty Acid Distillate
Authors: Najwa Othman, Norhidayah Suleiman, Gun Hean Chong
Abstract:
Palm fatty acid distillate (PFAD) is a by-product of palm oil refineries which contains valuable compounds such as phytosterols, squalene, polycosanol, co-enzyme Q10 and vitamin E (tocopherols and tocotrienols). Approximately 0.7-1.0% of vitamin E accumulates in PFAD, and it functions as antioxidants and anti-inflammatory. The objective of this research is to evaluate the effect of manipulated variables in supercritical carbon dioxide towards the recovery of tocotrienols in PFAD. The vitamin E concentrate isolated varies depending on the pre-treatment of sample and extraction techniques. In this research, tocotrienols in PFAD was concentrated by removing the extraneous matters, especially free fatty acid (FFA) and acylglycerols. Pre-treatment method such as enzymatic hydrolysis by using lipase from Candida rugosa as an enzyme was used to remove FFA and improve recovery of vitamin E. After that, treated PFAD was extracted by using supercritical fluid extraction in co-current glass beads packed column (22 cm x 75 cm i.d) at different temperatures (40-60°C) and pressures (100-300 bar) for 5 hours. After the extraction, the sample was analyzed by using high-pressure liquid chromatography (HPLC) system to quantify the tocotrienols. The results indicated that a combined pressure (200 bar) and temperature (60°C) was predicted to provide highest tocotrienols yield and the extraction yield obtained was 106.45%.Keywords: enzymatic hydrolysis, palm fatty acid distillate, supercritical fluid extraction, tocotrienols
Procedia PDF Downloads 13521891 Fractionation of Biosynthetic Mixture of Gentamicins by Reactive Extraction
Authors: L. Kloetzer, M. Poştaru, A. I. Galaction, D. Caşcaval
Abstract:
Gentamicin is an aminoglycoside antibiotic industrially obtained by biosynthesis of Micromonospora purpurea or echinospora, the product being a complex mixture of components with very similar structures. Among them, three exhibit the most important biological activity: gentamicins C1, C1a, C2, and C2a. The separation of gentamicin from the fermentation broths at industrial scale is rather difficult and it does not allow the fractionation of the complex mixture of gentamicins in order to increase the therapeutic activity of the product. The aim of our experiments is to analyze the possibility to selectively separate the less active gentamicin, namely gentamicin C1, from the biosynthetic mixture by reactive extraction with di-(2-ethylhexyl) phosphoric acid (D2EHPA) dissolved in dichloromethane, followed selective re-extraction of the most active gentamicins C1a, C2, and C2a. The experiments on the reactive extraction of gentamicins indicated the possibility to separate selectively the gentamicin C1 from the mixture obtained by biosynthesis. The extraction selectivity is positively influenced by increasing the pH-value of an aqueous solution and by using a D2EHPA concentration in organic phase closer to the value needed for an equimolecular ratio between the extractant and this gentamicin. For quantifying the selectivity of separation, the selectivity factor, calculated as the ratio between the degree of reactive extraction of gentamicin C1 and the overall extraction degree of gentamicins were used. The possibility to remove the gentamicin C1 at an extractant concentration of 10 g l-1 and pH = 8 is presented. In these conditions, it was obtained the maximum value of the selectivity factor of 2.14, which corresponds to the modification of the gentamicin C1 concentration from 31.92% in the biosynthetic mixture to 72% in the extract. The re-extraction of gentamicins C1, C1a, C2, and C2a with sulfuric acid from the extract previously obtained by reactive extraction (mixture A – extract obtained by non-selective reactive extraction; mixture B – extract obtained by selective reactive extraction) allows for separating selectively the most active gentamicins C1a, C2, and C2a. For recovering only the active gentamicins C1a, C2, and C2a, the re-extraction must be carried out at very low acid concentrations, far below those corresponding to the stoichiometry of its chemical reactions with these gentamicins. Therefore, the mixture resulted by re-extraction contained 92.6% gentamicins C1a, C2, and C2a. By bringing together the aqueous solutions obtained by reactive extraction and re-extraction, the overall content of the active gentamicins in the final product becomes 89%, their loss reaching 0.3% related to the initial biosynthetic product.Keywords: di-(2-ethylhexyl) phosphoric acid, gentamicin, reactive extraction, selectivity factor
Procedia PDF Downloads 32421890 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron
Authors: Filippo Portera
Abstract:
Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.Keywords: loss, binary-classification, MLP, weights, regression
Procedia PDF Downloads 9521889 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis
Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel
Abstract:
Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function
Procedia PDF Downloads 43521888 Spatio-Temporal Assessment of Urban Growth and Land Use Change in Islamabad Using Object-Based Classification Method
Authors: Rabia Shabbir, Sheikh Saeed Ahmad, Amna Butt
Abstract:
Rapid land use changes have taken place in Islamabad, the capital city of Pakistan, over the past decades due to accelerated urbanization and industrialization. In this study, land use changes in the metropolitan area of Islamabad was observed by the combined use of GIS and satellite remote sensing for a time period of 15 years. High-resolution Google Earth images were downloaded from 2000-2015, and object-based classification method was used for accurate classification using eCognition software. The information regarding urban settlements, industrial area, barren land, agricultural area, vegetation, water, and transportation infrastructure was extracted. The results showed that the city experienced a spatial expansion, rapid urban growth, land use change and expanding transportation infrastructure. The study concluded the integration of GIS and remote sensing as an effective approach for analyzing the spatial pattern of urban growth and land use change.Keywords: land use change, urban growth, Islamabad, object-based classification, Google Earth, remote sensing, GIS
Procedia PDF Downloads 15121887 USE-Net: SE-Block Enhanced U-Net Architecture for Robust Speaker Identification
Authors: Kilari Nikhil, Ankur Tibrewal, Srinivas Kruthiventi S. S.
Abstract:
Conventional speaker identification systems often fall short of capturing the diverse variations present in speech data due to fixed-scale architectures. In this research, we propose a CNN-based architecture, USENet, designed to overcome these limitations. Leveraging two key techniques, our approach achieves superior performance on the VoxCeleb 1 Dataset without any pre-training. Firstly, we adopt a U-net-inspired design to extract features at multiple scales, empowering our model to capture speech characteristics effectively. Secondly, we introduce the squeeze and excitation block to enhance spatial feature learning. The proposed architecture showcases significant advancements in speaker identification, outperforming existing methods, and holds promise for future research in this domain.Keywords: multi-scale feature extraction, squeeze and excitation, VoxCeleb1 speaker identification, mel-spectrograms, USENet
Procedia PDF Downloads 7421886 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 7821885 Waters Colloidal Phase Extraction and Preconcentration: Method Comparison
Authors: Emmanuelle Maria, Pierre Crançon, Gaëtane Lespes
Abstract:
Colloids are ubiquitous in the environment and are known to play a major role in enhancing the transport of trace elements, thus being an important vector for contaminants dispersion. Colloids study and characterization are necessary to improve our understanding of the fate of pollutants in the environment. However, in stream water and groundwater, colloids are often very poorly concentrated. It is therefore necessary to pre-concentrate colloids in order to get enough material for analysis, while preserving their initial structure. Many techniques are used to extract and/or pre-concentrate the colloidal phase from bulk aqueous phase, but yet there is neither reference method nor estimation of the impact of these different techniques on the colloids structure, as well as the bias introduced by the separation method. In the present work, we have tested and compared several methods of colloidal phase extraction/pre-concentration, and their impact on colloids properties, particularly their size distribution and their elementary composition. Ultrafiltration methods (frontal, tangential and centrifugal) have been considered since they are widely used for the extraction of colloids in natural waters. To compare these methods, a ‘synthetic groundwater’ was used as a reference. The size distribution (obtained by Field-Flow Fractionation (FFF)) and the chemical composition of the colloidal phase (obtained by Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Total Organic Carbon analysis (TOC)) were chosen as comparison factors. In this way, it is possible to estimate the pre-concentration impact on the colloidal phase preservation. It appears that some of these methods preserve in a more efficient manner the colloidal phase composition while others are easier/faster to use. The choice of the extraction/pre-concentration method is therefore a compromise between efficiency (including speed and ease of use) and impact on the structural and chemical composition of the colloidal phase. In perspective, the use of these methods should enhance the consideration of colloidal phase in the transport of pollutants in environmental assessment studies and forensics.Keywords: chemical composition, colloids, extraction, preconcentration methods, size distribution
Procedia PDF Downloads 21621884 Words Spotting in the Images Handwritten Historical Documents
Authors: Issam Ben Jami
Abstract:
Information retrieval in digital libraries is very important because most famous historical documents occupy a significant value. The word spotting in historical documents is a very difficult notion, because automatic recognition of such documents is naturally cursive, it represents a wide variability in the level scale and translation words in the same documents. We first present a system for the automatic recognition, based on the extraction of interest points words from the image model. The extraction phase of the key points is chosen from the representation of the image as a synthetic description of the shape recognition in a multidimensional space. As a result, we use advanced methods that can find and describe interesting points invariant to scale, rotation and lighting which are linked to local configurations of pixels. We test this approach on documents of the 15th century. Our experiments give important results.Keywords: feature matching, historical documents, pattern recognition, word spotting
Procedia PDF Downloads 27421883 Scale-Up Process for Phyllanthus niruri Enriched Extract by Supercritical Fluid Extraction
Authors: Norsyamimi Hassim, Masturah Markom
Abstract:
Supercritical fluid extraction (SFE) has been known as a sustainable and safe extraction technique for plant extraction due to the minimal usage of organic solvent. In this study, a scale-up process for the selected herbal plant (Phyllanthus niruri) was investigated by using supercritical carbon dioxide (SC-CO2) with food-grade (ethanol-water) cosolvent. The quantification of excess ethanol content in the final dry extracts was conducted to determine the safety of enriched extracts. The extraction yields obtained by scale-up SFE unit were not much different compared to the predicted extraction yields with an error of 2.92%. For component contents, the scale-up extracts showed comparable quality with laboratory-scale experiments. The final dry extract showed that the excess ethanol content was 1.56% g/g extract. The fish embryo toxicity test (FETT) on the zebrafish embryos showed no toxicity effects by the extract, where the LD50 value was found to be 505.71 µg/mL. Thus, it has been proven that SFE with food-grade cosolvent is a safe extraction technique for the production of bioactive compounds from P. niruri.Keywords: scale-up, supercritical fluid extraction, enriched extract, toxicity, ethanol content
Procedia PDF Downloads 13321882 Change Detection Method Based on Scale-Invariant Feature Transformation Keypoints and Segmentation for Synthetic Aperture Radar Image
Authors: Lan Du, Yan Wang, Hui Dai
Abstract:
Synthetic aperture radar (SAR) image change detection has recently become a challenging problem owing to the existence of speckle noises. In this paper, an unsupervised distribution-free change detection for SAR image based on scale-invariant feature transform (SIFT) keypoints and segmentation is proposed. Firstly, the noise-robust SIFT keypoints which reveal the blob-like structures in an image are extracted in the log-ratio image to reduce the detection range. Then, different from the traditional change detection which directly obtains the change-detection map from the difference image, segmentation is made around the extracted keypoints in the two original multitemporal SAR images to obtain accurate changed region. At last, the change-detection map is generated by comparing the two segmentations. Experimental results on the real SAR image dataset demonstrate the effectiveness of the proposed method.Keywords: change detection, Synthetic Aperture Radar (SAR), Scale-Invariant Feature Transformation (SIFT), segmentation
Procedia PDF Downloads 38621881 Selective Solvent Extraction of Calcium and Magnesium from Concentrate Nickel Solutions Using Mixtures of Cyanex 272 and D2EHPA
Authors: Alexandre S. Guimarães, Marcelo B. Mansur
Abstract:
The performance of organophosphorus extractants Cyanex 272 and D2EHPA on the purification of concentrate nickel sulfate solutions was evaluated. Batch scale tests were carried out at pH range of 2 to 7 using a laboratory solution simulating concentrate nickel liquors as those typically obtained when sulfate intermediates from nickel laterite are re-leached and treated for the selective removal of cobalt, zinc, manganese and copper with Cyanex 272 ([Ca] = 0.57 g/L, [Mg] = 3.2 g/L, and [Ni] = 88 g/L). The increase on the concentration of D2EHPA favored the calcium extraction. The extraction of magnesium is dependent on the pH and of ratio of extractants D2EHPA and Cyanex 272 in the organic phase. The composition of the investigated organic phase did not affect nickel extraction. The number of stages is dependent on the magnesium extraction. The most favorable operating condition to selectively remove calcium and magnesium was determined.Keywords: solvent extraction, organophosphorus extractants, alkaline earth metals, nickel
Procedia PDF Downloads 52421880 Classification of High Order Thinking Skills (HOTS)
Authors: Mohammed Alkiyumi
Abstract:
Educational systems are currently paying special attention to developing learners' higher thinking skills to develop the capabilities of human resources to deal with contemporary challenges. Although psychologists disagree about the concept of higher-order thinking skills and the skills they include, there is unlimited effort in designing them and building strategies for their implementation. The most important factor helping to develop these skills is their classification according to specific criteria, and the most important of these classifications is Bloom's classification, which is dominant in most educational systems at all levels. Previous classifications have many limitations, including the comprehensiveness of the skills they contain, the logical structure of their hierarchy, and classification criteria. Therefore, this article puts another step in this area by providing a new classification of higher-order thinking skills that includes five categories: the first response stage, transformative stage, application, reasoning stage, and the production stage with a logical justification for this classification, with some techniques to developing it among learners.Keywords: high-order thinking skills, classification, teaching, education
Procedia PDF Downloads 4421879 Optimization of Soybean Oil by Modified Supercritical Carbon Dioxide
Authors: N. R. Putra, A. H. Abdul Aziz, A. S. Zaini, Z. Idham, F. Idrus, M. Z. Bin Zullyadini, M. A. Che Yunus
Abstract:
The content of omega-3 in soybean oil is important in the development of infants and is an alternative for the omega-3 in fish oils. The investigation of extraction of soybean oil is needed to obtain the bioactive compound in the extract. Supercritical carbon dioxide extraction is modern and green technology to extract herbs and plants to obtain high quality extract due to high diffusivity and solubility of the solvent. The aim of this study was to obtain the optimum condition of soybean oil extraction by modified supercritical carbon dioxide. The soybean oil was extracted by using modified supercritical carbon dioxide (SC-CO2) under the temperatures of 40, 60, 80 °C, pressures of 150, 250, 350 Bar, and constant flow-rate of 10 g/min as the parameters of extraction processes. An experimental design was performed in order to optimize three important parameters of SC-CO2 extraction which are pressure (X1), temperature (X2) to achieve optimum yields of soybean oil. Box Behnken Design was applied for experimental design. From the optimization process, the optimum condition of extraction of soybean oil was obtained at pressure 338 Bar and temperature 80 °C with oil yield of 2.713 g. Effect of pressure is significant on the extraction of soybean oil by modified supercritical carbon dioxide. Increasing of pressure will increase the oil yield of soybean oil.Keywords: soybean oil, SC-CO₂ extraction, yield, optimization
Procedia PDF Downloads 25521878 Cadmium and Lead Extraction from Environmental Samples with Complexes Matrix by Nanomagnetite Solid-Phase and Determine Their Trace Amounts
Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad
Abstract:
In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) with sodium dodecyl sulfate- 1-(2-pyridylazo)-2-naphthol (SDS-PAN) as a new sorbent solid phase extraction (SPE) has been successfully synthesized and applied for preconcentration and separation of Cd and Pb in environmental samples. Compared with conventional SPE methods, the advantages of this new magnetic Mixed Hemimicelles Solid-Phase Extraction Procedure (MMHSPE) still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of Cd and Pb compounds from large volume water samples. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS-PAN, satisfactory concentration factor and extraction recoveries can be produced with only 0.05 g Fe3O4/Al2O3 NPs. The metals were eluted with 3mL HNO3 2 mol L-1 directly and detected with the detection system Flame Atomic Absorption Spectrometry (FAAS). Various influencing parameters on the separation and preconcentration of trace metals, such as the amount of PAN, pH value, sample volume, standing time, desorption solvent and maximal extraction volume, amount of sorbent and concentration of eluent, were studied. The detection limits of this method for Cd and Pb were 0.3 and 0.7 ng mL−1 and the R.S.D.s were 3.4 and 2.8% (C = 28.00 ng mL-1, n = 6), respectively. The preconcentration factor of the modified nanoparticles was 166.6. The proposed method has been applied to the determination of these metal ions at trace levels in soil, river, tap, mineral, spring and wastewater samples with satisfactory results.Keywords: Alumina-coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Cd and Pb, soil sample
Procedia PDF Downloads 31621877 A Robust Digital Image Watermarking Against Geometrical Attack Based on Hybrid Scheme
Authors: M. Samadzadeh Mahabadi, J. Shanbehzadeh
Abstract:
This paper presents a hybrid digital image-watermarking scheme, which is robust against varieties of attacks and geometric distortions. The image content is represented by important feature points obtained by an image-texture-based adaptive Harris corner detector. These feature points are extracted from LL2 of 2-D discrete wavelet transform which are obtained by using the Harris-Laplacian detector. We calculate the Fourier transform of circular regions around these points. The amplitude of this transform is rotation invariant. The experimental results demonstrate the robustness of the proposed method against the geometric distortions and various common image processing operations such as JPEG compression, colour reduction, Gaussian filtering, median filtering, and rotation.Keywords: digital watermarking, geometric distortions, geometrical attack, Harris Laplace, important feature points, rotation, scale invariant feature
Procedia PDF Downloads 50121876 Evaluation of Lemongrass (Cymbopogon citratus) as Mosquito Repellent Extracted by Supercritical Carbon Dioxide Assisted Process
Authors: Chia-Yu Lin, Chun-Ying Lee, Chih-Jer Lin
Abstract:
Lemongrass (Cymbopogon citratus), grown in tropical and subtropical regions over the world, has many potential uses in pharmaceutical, cosmetics, food and flavor, and agriculture industries. In this study, because of its affinity to human body and friendliness to the environment, lemongrass extract was prepared from different processes to evaluate its effectiveness as mosquito repellent. Moreover, the supercritical fluid extraction method has been widely used as an effective and environmental friendly process in the preparation of a variety of compounds. Thus, both the extracts from lemongrass by the conventional hydrodistillation method and the supercritical CO₂ assisted method were compared. The effects of pressure, temperature and time duration on the supercritical CO₂ extraction were also investigated. The compositions of different extracts were examined using mass spectrometer. As for the experiment of mosquito repellence, the extract was placed inside a mosquito trap along with syrup. The mosquito counts in each trap with extracts prepared from different processes were employed in the quantitative evaluation. It was found that the extract from the supercritical CO₂ assisted process contained higher citronellol content than the conventional hydrodistillation method. The extract with higher citronellol content also demonstrated more effective as a mosquito repellent.Keywords: lemongrass (Cymbopogon citratus), hydrodistillation, supercritical fluid extraction, mosquito repellent
Procedia PDF Downloads 17421875 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms
Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao
Abstract:
Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50
Procedia PDF Downloads 14021874 An Integrated Lightweight Naïve Bayes Based Webpage Classification Service for Smartphone Browsers
Authors: Mayank Gupta, Siba Prasad Samal, Vasu Kakkirala
Abstract:
The internet world and its priorities have changed considerably in the last decade. Browsing on smart phones has increased manifold and is set to explode much more. Users spent considerable time browsing different websites, that gives a great deal of insight into user’s preferences. Instead of plain information classifying different aspects of browsing like Bookmarks, History, and Download Manager into useful categories would improve and enhance the user’s experience. Most of the classification solutions are server side that involves maintaining server and other heavy resources. It has security constraints and maybe misses on contextual data during classification. On device, classification solves many such problems, but the challenge is to achieve accuracy on classification with resource constraints. This on device classification can be much more useful in personalization, reducing dependency on cloud connectivity and better privacy/security. This approach provides more relevant results as compared to current standalone solutions because it uses content rendered by browser which is customized by the content provider based on user’s profile. This paper proposes a Naive Bayes based lightweight classification engine targeted for a resource constraint devices. Our solution integrates with Web Browser that in turn triggers classification algorithm. Whenever a user browses a webpage, this solution extracts DOM Tree data from the browser’s rendering engine. This DOM data is a dynamic, contextual and secure data that can’t be replicated. This proposal extracts different features of the webpage that runs on an algorithm to classify into multiple categories. Naive Bayes based engine is chosen in this solution for its inherent advantages in using limited resources compared to other classification algorithms like Support Vector Machine, Neural Networks, etc. Naive Bayes classification requires small memory footprint and less computation suitable for smartphone environment. This solution has a feature to partition the model into multiple chunks that in turn will facilitate less usage of memory instead of loading a complete model. Classification of the webpages done through integrated engine is faster, more relevant and energy efficient than other standalone on device solution. This classification engine has been tested on Samsung Z3 Tizen hardware. The Engine is integrated into Tizen Browser that uses Chromium Rendering Engine. For this solution, extensive dataset is sourced from dmoztools.net and cleaned. This cleaned dataset has 227.5K webpages which are divided into 8 generic categories ('education', 'games', 'health', 'entertainment', 'news', 'shopping', 'sports', 'travel'). Our browser integrated solution has resulted in 15% less memory usage (due to partition method) and 24% less power consumption in comparison with standalone solution. This solution considered 70% of the dataset for training the data model and the rest 30% dataset for testing. An average accuracy of ~96.3% is achieved across the above mentioned 8 categories. This engine can be further extended for suggesting Dynamic tags and using the classification for differential uses cases to enhance browsing experience.Keywords: chromium, lightweight engine, mobile computing, Naive Bayes, Tizen, web browser, webpage classification
Procedia PDF Downloads 16321873 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices
Authors: Sunita Singh, Rajani Srivastava
Abstract:
For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices
Procedia PDF Downloads 36221872 Optimization of Synergism Extraction of Toxic Metals (Lead, Copper) from Chlorides Solutions with Mixture of Cationic and Solvating Extractants
Authors: F. Hassaine-Sadi, S. Chelouaou
Abstract:
In recent years, environmental contamination by toxic metals such as Pb, Cu, Ni, Zn ... has become a worldwide crucial problem, particularly in some areas where the population depends on groundwater for drinking daily consumption. Thus, the sources of metal ions come from the metal manufacturing industry, fertilizers, batteries, paints, pigments and so on. Solvent extraction of metal ions has given an important role in the development of metal purification processes such as the synergistic extraction of some divalent cations metals ( M²⁺), the ions metals from various sources. This work consists of a water purification technique that involves the lead and copper systems: Pb²⁺, H₃O+, Cl⁻ and Cu²⁺, H₃O⁺, Cl⁻ for diluted solutions by a mixture of tri-n-octylphosphine oxide (TOPO) or Tri-n-butylphosphate(TBP) and di (2-ethyl hexyl) phosphoric acid (HDEHP) dissolved in kerosene. The study of the fundamental parameters influencing the extraction synergism: cation exchange/extraction solvent have been examined.Keywords: synergistic extraction, lead, copper, environment
Procedia PDF Downloads 44521871 Hydrometallurgical Treatment of Abu Ghalaga Ilmenite Ore
Authors: I. A. Ibrahim, T. A. Elbarbary, N. Abdelaty, A. T. Kandil, H. K. Farhan
Abstract:
The present work aims to study the leaching of Abu Ghalaga ilmenite ore by hydrochloric acid and simultaneous reduction by iron powder method to dissolve its titanium and iron contents. Iron content in the produced liquor is separated by solvent extraction using TBP as a solvent. All parameters affecting the efficiency of the dissolution process were separately studied including the acid concentration, solid/liquid ratio which controls the ilmenite/acid molar ratio, temperature, time and grain size. The optimum conditions at which maximum leaching occur are 30% HCl acid with a solid/liquid ratio of 1/30 at 80 °C for 4 h using ore ground to -350 mesh size. At the same time, all parameters affecting on solvent extraction and stripping of iron content from the produced liquor were studied. Results show that the best extraction is at solvent/solution 1/1 by shaking at 240 RPM for 45 minutes at 30 °C whereas best striping of iron at H₂O/solvent 2/1.Keywords: ilmenite ore, leaching, titanium solvent extraction, Abu Ghalaga ilmenite ore
Procedia PDF Downloads 29121870 Comparing the Apparent Error Rate of Gender Specifying from Human Skeletal Remains by Using Classification and Cluster Methods
Authors: Jularat Chumnaul
Abstract:
In forensic science, corpses from various homicides are different; there are both complete and incomplete, depending on causes of death or forms of homicide. For example, some corpses are cut into pieces, some are camouflaged by dumping into the river, some are buried, some are burned to destroy the evidence, and others. If the corpses are incomplete, it can lead to the difficulty of personally identifying because some tissues and bones are destroyed. To specify gender of the corpses from skeletal remains, the most precise method is DNA identification. However, this method is costly and takes longer so that other identification techniques are used instead. The first technique that is widely used is considering the features of bones. In general, an evidence from the corpses such as some pieces of bones, especially the skull and pelvis can be used to identify their gender. To use this technique, forensic scientists are required observation skills in order to classify the difference between male and female bones. Although this technique is uncomplicated, saving time and cost, and the forensic scientists can fairly accurately determine gender by using this technique (apparently an accuracy rate of 90% or more), the crucial disadvantage is there are only some positions of skeleton that can be used to specify gender such as supraorbital ridge, nuchal crest, temporal lobe, mandible, and chin. Therefore, the skeletal remains that will be used have to be complete. The other technique that is widely used for gender specifying in forensic science and archeology is skeletal measurements. The advantage of this method is it can be used in several positions in one piece of bones, and it can be used even if the bones are not complete. In this study, the classification and cluster analysis are applied to this technique, including the Kth Nearest Neighbor Classification, Classification Tree, Ward Linkage Cluster, K-mean Cluster, and Two Step Cluster. The data contains 507 particular individuals and 9 skeletal measurements (diameter measurements), and the performance of five methods are investigated by considering the apparent error rate (APER). The results from this study indicate that the Two Step Cluster and Kth Nearest Neighbor method seem to be suitable to specify gender from human skeletal remains because both yield small apparent error rate of 0.20% and 4.14%, respectively. On the other hand, the Classification Tree, Ward Linkage Cluster, and K-mean Cluster method are not appropriate since they yield large apparent error rate of 10.65%, 10.65%, and 16.37%, respectively. However, there are other ways to evaluate the performance of classification such as an estimate of the error rate using the holdout procedure or misclassification costs, and the difference methods can make the different conclusions.Keywords: skeletal measurements, classification, cluster, apparent error rate
Procedia PDF Downloads 25221869 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm
Authors: Kamel Belammi, Houria Fatrim
Abstract:
imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes
Procedia PDF Downloads 53221868 Phase Diagrams and Liquid-Liquid Extraction in Aqueous Biphasic Systems Formed by Polyethylene Glycol and Potassium Sodium Tartrate at 303.15 K
Authors: Amanda Cristina de Oliveira, Elias de Souza Monteiro Filho, Roberta Ceriani
Abstract:
Liquid-liquid extraction in aqueous two-phase systems (ATPSs) constitutes a powerful tool for purifying bio-materials, such as cells, organelles, proteins, among others. In this work, the extraction of the bovine serum albumin (BSA) has been studied in systems formed by polyethylene glycol (PEG) (1500, 4000, and 6000 g.mol⁻¹) + potassium sodium tartrate + water at 303.15°K. Phase diagrams were obtained by turbidimetry and Merchuk’s method (1998). The experimental tie-lines were described using the Othmer-Tobias and Bancroft correlations. ATPSs were correlated with the nonrandom two-liquid (NRTL) model. The results were considered excellent according to global root-mean-square deviations found which were between 0,72 and 1,13%. The concentrations of the proteins in each phase were determined by spectrophotometry at 280 nm, finding partition efficiencies greater than 71%.Keywords: aqueous two phases systems, bovine serum albumin , liquid-liquid extraction, polyethylene glycol
Procedia PDF Downloads 15821867 Development and Validation of High-Performance Liquid Chromatography Method for the Determination and Pharmacokinetic Study of Linagliptin in Rat Plasma
Authors: Hoda Mahgoub, Abeer Hanafy
Abstract:
Linagliptin (LNG) belongs to dipeptidyl-peptidase-4 (DPP-4) inhibitor class. DPP-4 inhibitors represent a new therapeutic approach for the treatment of type 2 diabetes in adults. The aim of this work was to develop and validate an accurate and reproducible HPLC method for the determination of LNG with high sensitivity in rat plasma. The method involved separation of both LNG and pindolol (internal standard) at ambient temperature on a Zorbax Eclipse XDB C18 column and a mobile phase composed of 75% methanol: 25% formic acid 0.1% pH 4.1 at a flow rate of 1.0 mL.min-1. UV detection was performed at 254nm. The method was validated in compliance with ICH guidelines and found to be linear in the range of 5–1000ng.mL-1. The limit of quantification (LOQ) was found to be 5ng.mL-1 based on 100µL of plasma. The variations for intra- and inter-assay precision were less than 10%, and the accuracy values were ranged between 93.3% and 102.5%. The extraction recovery (R%) was more than 83%. The method involved a single extraction step of a very small plasma volume (100µL). The assay was successfully applied to an in-vivo pharmacokinetic study of LNG in rats that were administered a single oral dose of 10mg.kg-1 LNG. The maximum concentration (Cmax) was found to be 927.5 ± 23.9ng.mL-1. The area under the plasma concentration-time curve (AUC0-72) was 18285.02 ± 605.76h.ng.mL-1. In conclusion, the good accuracy and low LOQ of the bioanalytical HPLC method were suitable for monitoring the full pharmacokinetic profile of LNG in rats. The main advantages of the method were the sensitivity, small sample volume, single-step extraction procedure and the short time of analysis.Keywords: HPLC, linagliptin, pharmacokinetic study, rat plasma
Procedia PDF Downloads 24121866 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5
Procedia PDF Downloads 54621865 First Approach on Lycopene Extraction Using Limonene
Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat
Abstract:
Lycopene extraction with petroleum derivatives as solvents has caused safety, health, and environmental concerns everywhere. Thus, finding a safe alternative solvent will have a strong and positive impact on environments and general health of the world population. d-limonene from the orange peel was extracted through a steam distillation procedure followed by a deterpenation process and combining this achievement by using it as a solvent for extracting lycopene from tomato fruit as a substitute of dichloromethane. Lycopene content of fresh tomatoes was determined by high-performance liquid chromatography after extraction. Yields obtained for both extractions showed that yields of d-limonene’s extracts were almost equivalent to those obtained using dichloromethane. The proposed approach using a green solvent to perform extraction is useful and can be considered as a nice alternative to conventional petroleum solvent where toxicity for both operator and environment is reduced.Keywords: alternative solvent, d-limonene, extraction, lycopene
Procedia PDF Downloads 41321864 Fake Accounts Detection in Twitter Based on Minimum Weighted Feature Set
Authors: Ahmed ElAzab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny
Abstract:
Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, then the determined factors have been applied using different classification techniques, a comparison of the results for these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent research in the same area, this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts, moreover, the study can be applied on different Social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.Keywords: fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques
Procedia PDF Downloads 41621863 Attribute Index and Classification Method of Earthquake Damage Photographs of Engineering Structure
Authors: Ming Lu, Xiaojun Li, Bodi Lu, Juehui Xing
Abstract:
Earthquake damage phenomenon of each large earthquake gives comprehensive and profound real test to the dynamic performance and failure mechanism of different engineering structures. Cognitive engineering structure characteristics through seismic damage phenomenon are often far superior to expensive shaking table experiments. After the earthquake, people will record a variety of different types of engineering damage photos. However, a large number of earthquake damage photographs lack sufficient information and reduce their using value. To improve the research value and the use efficiency of engineering seismic damage photographs, this paper objects to explore and show seismic damage background information, which includes the earthquake magnitude, earthquake intensity, and the damaged structure characteristics. From the research requirement in earthquake engineering field, the authors use the 2008 China Wenchuan M8.0 earthquake photographs, and provide four kinds of attribute indexes and classification, which are seismic information, structure types, earthquake damage parts and disaster causation factors. The final object is to set up an engineering structural seismic damage database based on these four attribute indicators and classification, and eventually build a website providing seismic damage photographs.Keywords: attribute index, classification method, earthquake damage picture, engineering structure
Procedia PDF Downloads 765