Search results for: block foundation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2293

Search results for: block foundation

1813 3D Numerical Simulation of Undoweled and Uncracked Joints in Short Paneled Concrete Pavements

Authors: K. Sridhar Reddy, M. Amaranatha Reddy, Nilanjan Mitra

Abstract:

Short paneled concrete pavement (SPCP) with shorter panel size can be an alternative to the conventional jointed plain concrete pavements (JPCP) at the same cost as the asphalt pavements with all the advantages of concrete pavement with reduced thickness, less chance of mid-slab cracking and or dowel bar locking so common in JPCP. Cast-in-situ short concrete panels (short slabs) laid on a strong foundation consisting of a dry lean concrete base (DLC), and cement treated subbase (CTSB) will reduce the thickness of the concrete slab to the order of 180 mm to 220 mm, whereas JPCP was with 280 mm for the same traffic. During the construction of SPCP test sections on two Indian National Highways (NH), it was observed that the joints remain uncracked after a year of traffic. The undoweled and uncracked joints load transfer variability and joint behavior are of interest with anticipation on its long-term performance of the SPCP. To investigate the effects of undoweled and uncracked joints on short slabs, the present study was conducted. A multilayer linear elastic analysis using 3D finite element package for different panel sizes with different thicknesses resting on different types of solid elastic foundation with and without temperature gradient was developed. Surface deflections were obtained from 3D FE model and validated with measured field deflections from falling weight deflectometer (FWD) test. Stress analysis indicates that flexural stresses in short slabs are decreased with a decrease in panel size and increase in thickness. Detailed evaluation of stress analysis with the effects of curling behavior, the stiffness of the base layer and a variable degree of load transfer, is underway.

Keywords: joint behavior, short slabs, uncracked joints, undoweled joints, 3D numerical simulation

Procedia PDF Downloads 158
1812 Efficiency Validation of Hybrid Geothermal and Radiant Cooling System Implementation in Hot and Humid Climate Houses of Saudi Arabia

Authors: Jamil Hijazi, Stirling Howieson

Abstract:

Over one-quarter of the Kingdom of Saudi Arabia’s total oil production (2.8 million barrels a day) is used for electricity generation. The built environment is estimated to consume 77% of the total energy production. Of this amount, air conditioning systems consume about 80%. Apart from considerations surrounding global warming and CO2 production it has to be recognised that oil is a finite resource and the KSA like many other oil rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground cooling pipes in combination with black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing carbon emissions while providing all year round thermal comfort in a typical Saudi Arabian urban housing block. At the outset air and soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (Design Builder) that utilised the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/ stack ventilation and radiant cooling pipes embed in floor).Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.

Keywords: energy efficiency, ground pipe, hybrid cooling, radiative cooling, thermal comfort

Procedia PDF Downloads 241
1811 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.

Keywords: slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity

Procedia PDF Downloads 317
1810 Effect of Size and Soil Characteristic on Contribution of Side and Tip Resistance of the Drilled Shafts Axial Load Carrying Capacity

Authors: Mehrak Zargaryaeghoubi, Masood Hajali

Abstract:

Drilled shafts are the most popular of deep foundations, because they have the capability that one single shaft can easily carry the entire load of a large column from a bridge or tall building. Drilled shaft may be an economical alternative to pile foundations because a pile cap is not needed, which not only reduces that expense, but also provides a rough surface in the border of soil and concrete to carry a more axial load. Due to the larger construction sizes of drilled shafts, they have an excellent axial load carrying capacity. Part of the axial load carrying capacity of the drilled shaft is resisted by the soil below the tip of the shaft which is tip resistance and the other part is resisted by the friction developed around the drilled shaft which is side resistance. The condition at the bottom of the excavation can affect the end bearing capacity of the drilled shaft. Also, type of the soil and size of the drilled shaft can affect the frictional resistance. The main loads applied on the drilled shafts are axial compressive loads. It is important to know how many percent of the maximum applied load will be shed inside friction and how much will be transferred to the base. The axial capacity of the drilled shaft foundation is influenced by the size of the drilled shaft, and soil characteristics. In this study, the effect of the size and soil characteristic will be investigated on the contribution of side resistance and end-bearing capacity. Also, the study presents a three-dimensional finite element modeling of a drilled shaft subjected to axial load using ANSYS. The top displacement and settlement of the drilled shaft are verified with analytical results. The soil profile is considered as Table 1 and for a drilled shaft with 7 ft diameter and 95 ft length the stresses in z-direction are calculated through the length of the shaft. From the stresses in z-direction through the length of the shaft the side resistance can be calculated and with the z-direction stress at the tip, the tip resistance can be calculated. The result of the side and tip resistance for this drilled shaft are compared with the analytical results.

Keywords: Drilled Shaft Foundation, size and soil characteristic, axial load capacity, Finite Element

Procedia PDF Downloads 365
1809 A Review on Bearing Capacity Factor Nγ of Foundations with Different Shapes

Authors: R. Ziaie Moayed, S. Taghvamanesh

Abstract:

So far several methods by different researchers have been developed in order to calculate the bearing capacity factors of foundations and retaining walls. In this paper, the bearing capacity factor Ny (shape factor) for different types of foundation have been investigated. The formula for bearing capacity on c–φ–γ soil can still be expressed by Terzaghi’s equation except that the bearing capacity factor Ny depends on the surcharge ratio, and friction angle φ. Many empirical definitions have been used for measurement of the bearing capacity factors N

Keywords: bearing capacity, bearing capacity factor Nγ, irregular foundations, shape factor

Procedia PDF Downloads 128
1808 Critique of the City-Machine: Dismantling the Scientific Socialist Utopia of Soviet Territorialization

Authors: Rachel P. Vasconcellos

Abstract:

The Russian constructivism is usually enshrined in history as another ''modernist ism'', that is, as an artistic phenomenon related to the early twentieth century‘s zeitgeist. What we aim in this essay is to analyze the constructivist movement not over the Art History field neither through the aesthetic debate, but through a geographical critical theory, taking the main idea of construction in the concrete sense of production of space. Seen from the perspective of the critique of space, the constructivist production is presented as a plan of totality, designed as socialist society‘s spatiality, contemplating and articulating all its scalar levels: the objects of everyday life, the building, the city and the territory. The constructivist avant-garde manifests a geographical ideology, launching the foundation‘s basis of modern planning ideology. Taken in its political sense, the artistic avant-garde of the Russian Revolution intended to anticipate the forms of a social future already put in progress: their plastic research pointed to new formal expressions to revolutionary contents. With the foundation of new institutions under a new State, it was given to the specialized labor of artists, architects, and planners the task of designing the socialist society, based on the thesis of scientific socialism. Their projects were developed under the politico-economics imperatives to the Soviet modernization – that is: the structural needs of industrialization and inclusion of all people in the productive work universe. This context shapes the creative atmosphere of the constructivist avant-garde, which uses the methods of engineering to the transform everyday life. Architecture, urban planning, and state planning integrated must then operate as spatial arrangement morphologically able to produce socialist life. But due to the intrinsic contradictions of the process, the rational and geometric aesthetic of the City-Machine appears, finally, as an image of a scientific socialist utopia.

Keywords: city-machine, critique of space, production of space, soviet territorialization

Procedia PDF Downloads 256
1807 A Levinasian Perspective on the Field of Applied Ethics

Authors: Payman Tajalli, Steven Segal

Abstract:

Applied ethics is an area of ethics which is looked upon most favorably as the most appropriate and useful for educational purposes; after all if ethics finds no application would any investment of time, effort and finance by the educational institutions be warranted? The current approaches to ethics in business and management often entail appealing to various types of moral theories and to this end almost every major philosophical approach has been enlisted. In this paper, we look at ethics through the philosophy of Emmanuel Levinas to argue that since ethics is ‘first philosophy’ it can neither be rule-based nor rule-governed, not something that can be worked out first and then applied to a given situation, hence the overwhelming emphasis on ‘applied ethics’ as a field of study in business and management education is unjustified. True ethics is not applied ethics. This assertion does not mean that teaching ethical theories and philosophies need to be abandoned rather it is the acceptance of the fact that an increase in cognitive awareness of such theories and ethical models and frameworks, or the mastering of techniques and procedures for ethical decision making, will not affect the desired ethical transformation in our students. Levinas himself argued for an ethics without a foundation, not one that required us to go ‘beyond good and evil’ as Nietzsche contended, rather an ethics which necessitates going ‘before good and evil'. Such an ethics does not provide us with a set of methods or techniques or a decision tree that enable us determine the rightness of an action and what we ought to do, rather it is about a way of being, an ethical posture or approach one takes in the inter-subjective relationship with the other that holds the promise of ethical conduct. Ethics in this Levinasian sense then is one of infinite and unconditional responsibility for the other person in relationship, an ethics which is not subject to negotiation, calculation or reciprocity, and as such it could neither be applied nor taught through conventional pedagogy with its focus on knowledge transfer from the teacher to student, and to this end Levinas offers a non-maieutic, non-conventional approach to pedagogy. The paper concludes that from a Levinasian perspective on ethics and education, we may need to guide our students to move away from the clear and objective professionalism of the management and applied ethics towards the murky individual spiritualism. For Levinas, this is ‘the Copernican revolution’ in ethics.

Keywords: business ethics, ethics education, Levinas, maieutic teaching, ethics without foundation

Procedia PDF Downloads 300
1806 Potential of Dredged Material for CSEB in Building Structure

Authors: BoSheng Liu

Abstract:

The research goal is to re-image a locally-sourced waste product as abuilding material. The author aims to contribute to the compressed stabilized earth block (CSEB) by investigating the promising role of dredged material as an alternative building ingredient in the production of bricks and tiles. Dredged material comes from the sediment deposited near the shore or downstream, where the water current velocity decreases. This sediment needs to be dredged to provide water transportation; thus, there are mounds of the dredged material stored at bay. It is the interest of this research to reduce the filtered un-organic soil in the production of CSEB and replace it with locally dredged material from the Atchafalaya River in Morgan City, Louisiana. Technology and mechanical innovations have evolved the traditional adobe production method, which mixes the soil and natural fiber into molded bricks, into chemically stabilized CSEB made by compressing the clay mixture and stabilizer in a compression chamber with particular loads. In the case of dredged material CSEB (DM-CSEB), cement plays an essential role as the bending agent contributing to the unit strength while sustaining the filtered un-organic soil. Each DM-CSEB unit is made in a compression chamber with 580 PSI (i.e., 4 MPa) force. The research studied the cement content from 5% to 10% along with the range of dredged material mixtures, which differed from 20% to 80%. The material mixture content affected the DM-CSEB's strength and workability during and after its compression. Results indicated two optimal workabilities of the mixture: 27% fine clay content and 63% dredged material with 10% cement, or 28% fine clay content, and 67% dredged material with 5% cement. The final product of DM-CSEB emitted between 10 to 13 times fewer carbon emissions compared to the conventional fired masonry structure. DM-CSEB satisfied the strength requirement given by the ASTM C62 and ASTM C34 standards for construction material. One of the final evaluations tested and validated the material performance by designing and constructing an architectural, conical tile-vault prototype that was 28" by 40" by 24." The vault utilized a computational form-finding approach to generate the form's geometry, which optimized the correlation between the vault geometry and structural load distribution. A series of scaffolding was deployed to create the framework for the tile-vault construction. The final tile-vault structure was made from 2 layers of DM-CSEB tiles jointed by mortar, and the construction of the structure used over 110 tiles. The tile-vault prototype was capable of carrying over 400 lbs of live loads, which further demonstrated the dredged material feasibility as a construction material. The presented case study of Dredged Material Compressed Stabilized Earth Block (DM-CSEB) provides the first impression of dredged material in the clayey mixture process, structural performance, and construction practice. Overall, the approach of integrating dredged material in building material can be feasible, regionally sourced, cost-effective, and environment-friendly.

Keywords: dredged material, compressed stabilized earth block, tile-vault, regionally sourced, environment-friendly

Procedia PDF Downloads 95
1805 Increasing Sulfur Handling Cost Efficiency Using the Eco Sulfur Paving Block Method at PT Pertamina EP Field Cepu

Authors: Adha Bayu Wijaya, A. Zainal Abidin, Naufal Baihaqi, Joko Suprayitno, Astika Titistiti, Muslim Adi Wijaya, Endah Tri Lestari, Agung Wibowo

Abstract:

Sulfur is a non-metallic chemical element in the form of a yellow crystalline solid with the chemical formula, and is formed from several types of natural and artificial chemical reactions. Commercial applications of sulfur processed products can be found in various aspects of life, for example in the use of processed sulfur as paving blocks. The Gundih Central Processing Plant (CPP) is capable of producing 14 tons/day of sulfur pellets. This amount comes from the high H2S content of the wells with a total concentration of 20,000 ppm and a volume accumulation of 14 MMSCFD acid gas. H2S is converted to sulfur using the thiobacillus microbe in the Biological Sulfur Recovery Unit (BSRU) with a sulfur product purity level greater than 95%. In 2018 sulfur production at Gundih CPP was recorded at 4044 tons which could potentially trigger serious problems from an environmental aspect. The use of sulfur as material for making paving blocks is an alternative solution in addressing the potential impact on the environment, as regulated by Government Regulation No.22 of Year 2021 concerning the Waste Management of Non-Hazardous and Toxic Substances (B3), and the high cost of handling sulfur by third parties. The design mix of ratio sulfur paving blocks is 22% cements, rock ash 67%, and 11% of sulfur pellets. The sulfur used in making the paving mixture is pure sulfur, namely the side product category without any contaminants, thereby eliminating the potential for environmental pollution when implementing sulfur paving. Strength tests of sulfur paving materials have also been confirmed by external laboratories. The standard used in making sulfur paving blocks refers to the SNI 03-0691-1996 standard. With the results of sulfur paving blocks made according to quality B. Currently, sulfur paving blocks are used in building access to wells locations and in public roads in the Cepu Field area as a contribution from Corporate Social Responsibility (CSR).

Keywords: sulphur, innovation, paving block, CSR, sulphur paving

Procedia PDF Downloads 46
1804 The Effect of Increased Tip Area of Suction Caissons on the Penetration Resistance Coefficients

Authors: Ghaem Zamani, Farveh Aghaye Nezhad, Amin Barari

Abstract:

The installation process of caissons has usually been a challenging step in the design phase, especially in the case of suction-assisted installation. The engineering practice for estimating the caisson penetration resistance is primarily controlled by the resistance governed by inner and outer skirt friction and the tip resistance. Different methods have been proposed in the literature to evaluate the above components, while the CPT-based methodology has attained notable popularity among others. In this method, two empirical coefficients are suggested, k𝒻 and kp, which relate the frictional resistance and tip resistance to the cone penetration resistance (q𝒸), respectively. A series of jacking installation and uninstallation experiments for different soil densities were carried out in the offshore geotechnical laboratory of Aalborg University, Denmark. The main goal of these tests was to find appropriate values for empirical coefficients of the CPT-based method for the buckets with large embedment ratio (i.e., d/D=1, where d is the skirt length and D is the diameter) and increased tip area penetrated into dense sand deposits. The friction resistance effects were isolated during the pullout experiments; hence, the k𝒻 was back-measured from the tests in the absence of tip resistance. The actuator force during jacking installation equals the sum of frictional resistance and tip resistance. Therefore, the tip resistance of the bucket is calculated by subtracting the back-measured frictional resistance from penetration resistance; hence the relevant coefficient kp would be achieved. The cone penetration test was operated at different points before and after each installation attempt to measure the cone penetration resistance (q𝒸), and the average value of q𝒸 is used for calculations. The experimental results of the jacking installation tests indicated that a larger friction area considerably increased the penetration resistance; however, this effect was completely diminished when foundation suction-assisted penetration was used. Finally, the values measured for the empirical coefficient of the CPT-based method are compared with the highest expected and most probable values suggested by DNV(1992) for uniform thickness buckets.

Keywords: suction caisson, offshore geotechnics, cone penetration test, wind turbine foundation

Procedia PDF Downloads 62
1803 Programmable Shields in Space

Authors: Tapas Kumar Sinha, Joseph Mathew

Abstract:

At the moment earth is in grave danger due to threats of global warming. The temperature of the earth has risen by almost 20C. Glaciers in the Arctic have started to melt. It would be foolhardy to think that this is a small effect and in time it would go away. Global warming is caused by a number of factors. However, one sure and simple way to totally eliminate this problem is to put programmable shields in space. Just as an umbrella blocks sunlight, a programmable shield in space will block sun rays from reaching the earth as in a solar eclipse and cause cooling in the penumbral region just as it happens during an eclipse.

Keywords: glaciers, green house, global warming space, satellites

Procedia PDF Downloads 569
1802 Investigating Constructions and Operation of Internal Combustion Engine Water Pumps

Authors: Michał Gęca, Konrad Pietrykowski, Grzegorz Barański

Abstract:

The water pump in the compression-ignition internal combustion engine transports a hot coolant along a system of ducts from the engine block to the radiator where coolant temperature is lowered. This part needs to maintain a constant volumetric flow rate. Its power should be regulated to avoid a significant drop in pressure if a coolant flow decreases. The internal combustion engine cooling system uses centrifugal pumps for suction. The paper investigates 4 constructions of engine pumps. The pumps are from diesel engine of a maximum power of 75 kW. Each of them has a different rotor shape, diameter and width. The test stand was created and the geometry inside the all 4 engine blocks was mapped. For a given pump speed on the inverter of the electric engine motor, the valve position was changed and volumetric flow rate, pressure, and power were recorded. Pump speed was regulated from 1200 RPM to 7000 RPM every 300 RPM. The volumetric flow rates and pressure drops for the pump speeds and efficiencies were specified. Accordingly, the operations of each pump were mapped. Our research was to select a pump for the aircraft compression-ignition engine. There was calculated a pressure drop at a given flow on the block and radiator of the designed aircraft engine. The water pump should be lightweight and have a low power demand. This fact shall affect the shape of a rotor and bearings. The pump volumetric flow rate was assumed as 3 kg/s (previous AVL BOOST research model) where the temperature difference was 5°C between the inlet (90°C) and outlet (95°C). Increasing pump speed above the boundary flow power defined by pressure and volumetric flow rate does not increase it but pump efficiency decreases. The maximum total pump efficiency (PCC) is 45-50%. When the pump is driven by low speeds with a 90% closed valve, its overall efficiency drops to 15-20%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft engine, diesel engine, flow, water pump

Procedia PDF Downloads 224
1801 The Effect of Post Spinal Hypotension on Cerebral Oxygenation Using Near-Infrared Spectroscopy and Neonatal Outcomes in Full Term Parturient Undergoing Lower Segment Caesarean Section: A Prospective Observational Study

Authors: Shailendra Kumar, Lokesh Kashyap, Puneet Khanna, Nishant Patel, Rakesh Kumar, Arshad Ayub, Kelika Prakash, Yudhyavir Singh, Krithikabrindha V.

Abstract:

Introduction: Spinal anesthesia is considered a standard anesthesia technique for caesarean delivery. The incidence of spinal hypotension during caesarean delivery is 70 -80%. Spinal hypotension may cause cerebral hypoperfusion in the mother, but physiologically cerebral autoregulatory mechanisms accordingly prevent cerebral hypoxia. Cerebral blood flow remains constant in the 50-150 mmHg of Cerebral Perfusion Pressure (CPP) range. Near-infrared spectroscopy (NIRS) is a non-invasive technology that is used to detect Cerebral Desaturation Events (CDEs) immediately compared to other conventional intraoperative monitoring techniques. Objective: The primary aim of the study is to correlate the change in cerebral oxygen saturation using NIRS with respect to a fall in mean blood pressure after spinal anaesthesia and to find out the effects of spinal hypotension on neonatal APGAR score, neonatal acid-base variations, and presence of Postoperative Delirium (POD). Methodology: NIRS sensors were attached to the forehead of all the patients, and their baseline readings of cerebral oxygenation on the right and left frontal regions and mean blood pressure were noted. Subarachnoid block was given with hyperbaric 0.5% bupivacaine plus fentanyl, the dose being determined by the individual anaesthesiologist. Co-loading of IV crystalloid solutions was given to the patient. Blood pressure reading and cerebral saturation were recorded every 1 minute till 30min. Hypotension was a fall in MAP less than 20% of the baseline values. Patients going for hypotension were treated with an IV Bolus of phenylephrine/ephedrine. Umbilical cord blood samples were taken for blood gas analysis, and neonatal APGAR was noted by a neonatologist. Study design: A prospective observational study conducted in a population of Thirty ASA 2 and 3 parturients scheduled for lower segment caesarean section (LSCS). Results: Mean fall in regional cerebral saturation is 28.48 ± 14.7% with respect to the mean fall in blood pressure 38.92 ± 8.44 mm Hg. The correlation coefficient between fall in saturation and fall in mean blood pressure is 0.057, and p-value {0.7} after subarachnoid block. A fall in regional cerebral saturation occurred 2±1 min before a fall in mean blood pressure. Twenty-nine out of thirty patients required vasopressors during hypotension. The first dose of vasopressor requirement is needed at 6.02±2 min after the block. The mean APGAR score was 7.86 and 9.74 at 1 and 5 min of birth, respectively, and the mean umbilical arterial pH of 7.3±0.1. According to DRS-98 (Delirium Rating Scale), the mean delirium rating score on postoperative day 1 and day 2 were 0.1 and 0.7, respectively. Discussion: There was a fall in regional cerebral oxygen saturation, which started before with respect to a significant fall in mean blood pressure readings but was statistically not significant. Maximal fall in blood pressure requiring vasopressors occurs within 10 min of SAB. Neonatal APGAR scores and acid-base variations were in the normal range with maternal hypotension, and there was no incidence of postoperative delirium in patients with post-spinal hypotension.

Keywords: cerebral oxygenation, LSCS, NIRS, spinal hypotension

Procedia PDF Downloads 48
1800 Parameter Estimation of Gumbel Distribution with Maximum-Likelihood Based on Broyden Fletcher Goldfarb Shanno Quasi-Newton

Authors: Dewi Retno Sari Saputro, Purnami Widyaningsih, Hendrika Handayani

Abstract:

Extreme data on an observation can occur due to unusual circumstances in the observation. The data can provide important information that can’t be provided by other data so that its existence needs to be further investigated. The method for obtaining extreme data is one of them using maxima block method. The distribution of extreme data sets taken with the maxima block method is called the distribution of extreme values. Distribution of extreme values is Gumbel distribution with two parameters. The parameter estimation of Gumbel distribution with maximum likelihood method (ML) is difficult to determine its exact value so that it is necessary to solve the approach. The purpose of this study was to determine the parameter estimation of Gumbel distribution with quasi-Newton BFGS method. The quasi-Newton BFGS method is a numerical method used for nonlinear function optimization without constraint so that the method can be used for parameter estimation from Gumbel distribution whose distribution function is in the form of exponential doubel function. The quasi-New BFGS method is a development of the Newton method. The Newton method uses the second derivative to calculate the parameter value changes on each iteration. Newton's method is then modified with the addition of a step length to provide a guarantee of convergence when the second derivative requires complex calculations. In the quasi-Newton BFGS method, Newton's method is modified by updating both derivatives on each iteration. The parameter estimation of the Gumbel distribution by a numerical approach using the quasi-Newton BFGS method is done by calculating the parameter values that make the distribution function maximum. In this method, we need gradient vector and hessian matrix. This research is a theory research and application by studying several journals and textbooks. The results of this study obtained the quasi-Newton BFGS algorithm and estimation of Gumbel distribution parameters. The estimation method is then applied to daily rainfall data in Purworejo District to estimate the distribution parameters. This indicates that the high rainfall that occurred in Purworejo District decreased its intensity and the range of rainfall that occurred decreased.

Keywords: parameter estimation, Gumbel distribution, maximum likelihood, broyden fletcher goldfarb shanno (BFGS)quasi newton

Procedia PDF Downloads 301
1799 Cost and Benefits of Collocation in the Use of Biogas to Reduce Vulnerabilities and Risks

Authors: Janaina Camile Pasqual Lofhagen, David Savarese, Veronika Vazhnik

Abstract:

The urgency of the climate crisis requires both innovation and practicality. The energy transition framework allows industry to deliver resilient cities, enhance adaptability to change, pursue energy objectives such as growth or efficiencies, and increase renewable energy. This paper investigates a real-world application perspective for the use of biogas in Brazil and the U.S.. It will examine interventions to provide a foundation of infrastructure, as well as the tangible benefits for policy-makers crafting law and providing incentives.

Keywords: resilience, vulnerability, risks, biogas, sustainability.

Procedia PDF Downloads 80
1798 Polymer Mediated Interaction between Grafted Nanosheets

Authors: Supriya Gupta, Paresh Chokshi

Abstract:

Polymer-particle interactions can be effectively utilized to produce composites that possess physicochemical properties superior to that of neat polymer. The incorporation of fillers with dimensions comparable to polymer chain size produces composites with extra-ordinary properties owing to very high surface to volume ratio. The dispersion of nanoparticles is achieved by inducing steric repulsion realized by grafting particles with polymeric chains. A comprehensive understanding of the interparticle interaction between these functionalized nanoparticles plays an important role in the synthesis of a stable polymer nanocomposite. With the focus on incorporation of clay sheets in a polymer matrix, we theoretically construct the polymer mediated interparticle potential for two nanosheets grafted with polymeric chains. The self-consistent field theory (SCFT) is employed to obtain the inhomogeneous composition field under equilibrium. Unlike the continuum models, SCFT is built from the microscopic description taking in to account the molecular interactions contributed by both intra- and inter-chain potentials. We present the results of SCFT calculations of the interaction potential curve for two grafted nanosheets immersed in the matrix of polymeric chains of dissimilar chemistry to that of the grafted chains. The interaction potential is repulsive at short separation and shows depletion attraction for moderate separations induced by high grafting density. It is found that the strength of attraction well can be tuned by altering the compatibility between the grafted and the mobile chains. Further, we construct the interaction potential between two nanosheets grafted with diblock copolymers with one of the blocks being chemically identical to the free polymeric chains. The interplay between the enthalpic interaction between the dissimilar species and the entropy of the free chains gives rise to a rich behavior in interaction potential curve obtained for two separate cases of free chains being chemically similar to either the grafted block or the free block of the grafted diblock chains.

Keywords: clay nanosheets, polymer brush, polymer nanocomposites, self-consistent field theory

Procedia PDF Downloads 233
1797 Effect of Dynamic Loading by Cyclic Triaxial Tests on Sand Stabilized with Cement

Authors: Priyanka Devi, Mohammad Muzzaffar Khan, G. Kalyan Kumar

Abstract:

Liquefaction of saturated soils due to dynamic loading is an important and interesting area in the field of geotechnical earthquake engineering. When the soil liquefies, the structures built on it develops uneven settlements thereby producing cracks in the structure and weakening the foundation. The 1964 Alaskan Good Friday earthquake, the 1989 San Francisco earthquake and 2011 Tōhoku earthquake are some of the examples of liquefaction occurred due to an earthquake. To mitigate the effect of liquefaction, several methods such use of stone columns, increasing the vertical stress, compaction and removal of liquefiable soil are practiced. Grouting is one of those methods used to increase the strength of the foundation and develop resistance to liquefaction of soil without affecting the superstructure. In the present study, an attempt has been made to investigate the undrained cyclic behavior of locally available soil, stabilized by cement to mitigate the seismically induced soil liquefaction. The specimens of 75mm diameter and 150mm height were reconstituted in the laboratory using water sedimentation technique. A series of strain-controlled cyclic triaxial tests were performed on saturated soil samples followed by consolidation. The effects of amplitude, confining pressure and relative density on the dynamic behavior of sand was studied for soil samples with varying cement content. The results obtained from the present study on loose specimens and medium dense specimens indicate that (i) the higher the relative density, the more will be the liquefaction resistance, (ii) with increase of effective confining pressure, a decrease in developing of excess pore water pressure during cyclic loading was observed and (iii) sand specimens treated with cement showed reduced excess pore pressures and increased liquefaction resistance suggesting it as one of the mitigation methods.

Keywords: cyclic triaxial test, liquefaction, soil-cement stabilization, pore pressure ratio

Procedia PDF Downloads 277
1796 Post-Application Effects of Selected Management Strategies to the Citrus Nematode (Tylenchulus semipenetrans) Population Densities

Authors: Phatu William Mashela, Pontsho Edmund Tseke, Kgabo Martha Pofu

Abstract:

‘Inconsistent results’ in nematode suppression post-application of botanical-based products created credibility concerns. Relative to untreated control, sampling for nematodes post-application of botanical-based products suggested significant increases in nematode population densities. ‘Inconsistent results’ were confirmed in Tylenchulus semipenetrans on Citrus jambhiri seedlings when sampling was carried out at 120 days post-application of a granular Nemarioc-AG phytonematicide. The objective of this study was to determine post-application effects of untreated control, Nemarioc-AG phytonematicide and aldicarb to T. semipenetrans population densities on C. jambhiri seedlings. Two hundred and ten seedlings were each inoculated with 10000 T. semipenetrans eggs and second-stage juveniles (J2) in plastic pots containing 2700 ml growing mixture. A week after inoculation, seedlings were equally split and subjected to once-off treatment of 2 g aldicarb, 2 g Nemarioc-AG phytonematicide and untreated control. Five seedlings from each group were randomly placed on greenhouse benches to serve as a sampling block, with a total of 14 blocks. The entire block was sampled weekly and assessed for final nematode population density (Pf). After the final assessment, post-regression of untreated Pf to increasing sampling intervals exhibited positive quadratic relations, with the model explaining 90% associations, with optimum Pf of 13804 eggs and J2 at six weeks post-application. In contrast, treated Pf and increasing sampling interval exhibited negative quadratic relations, with the model explaining 95% and 92% associations in phytonematicide and aldicarb, respectively. In the phytonematicide, Pf was 974 eggs and J2, whereas that in aldicarb was 2205 eggs and J2 at six weeks. In conclusion, temporal cyclic nematode population growth provided an empirically-based explanation of ‘inconsistent results’ in nematode suppression post-application of the two nematode management strategies.

Keywords: nematode management, residual effect, slow decline of citrus, the citrus nematode

Procedia PDF Downloads 224
1795 A Case Study of Latinx Parents’ Perceptions of Gifted Education

Authors: Yelba Maria Carrillo

Abstract:

The focus of this research study was to explore barriers, if any, faced by parents or legal guardians who are of Latinx background and speak Spanish as a primary language or are bilingual speakers of Spanish and English; barriers that limit their understanding of and involvement in their gifted child’s academic life. This study was guided by a qualitative case study design. The primary investigator hosted focus group interviews at a Magnet Middle School in Southern California. The groups consisted of 25 parents, or legal guardians of bilingual (English/Spanish) or former English learner students enrolled in a school serving 6th-8th grades. The primary investigator interviewed Latinx Spanish-speaking parents or legal guardians of gifted students regarding their perception of their child’s giftedness, parental involvement in schools, and fostering their child’s exceptional abilities. Parents and legal guardians described children as creative, intellectual, and highly intelligent. Key themes such as student performance, language proficiency, socio-emotional, and general intellectual ability were strong indicators of giftedness. Barriers such as language and education inhibited parent and legal guardian ability to understand their child’s giftedness, which resulted in their inability to adequately contribute to the development of their children’s talents and advocate for the appropriate services for their children. However, they recognized the importance of being involved in their child’s academic life and the importance of nurturing their ‘dón’ or ‘gift.’ La Familia is the foundation and core of Latinx culture; and, without a strong foundation, children lack guidance, confidence, and awareness to tap into their gifted abilities. Providing Latinx parents with the proper tools and resources to appropriately identify gifted characteristics and traits could lead to early identification and intervention for students in schools and at home.

Keywords: gifted education, gifted Latino students, Latino parent involvement, high ability students

Procedia PDF Downloads 120
1794 The Spatial Pattern of Economic Rents of an Airport Development Area: Lessons Learned from the Suvarnabhumi International Airport, Thailand

Authors: C. Bejrananda, Y. Lee, T. Khamkaew

Abstract:

With the rise of the importance of air transportation in the 21st century, the role of economics in airport planning and decision-making has become more important to the urban structure and land value around it. Therefore, this research aims to examine the relationship between an airport and its impacts on the distribution of urban land uses and land values by applying the Alonso’s bid rent model. The New Bangkok International Airport (Suvarnabhumi International Airport) was taken as a case study. The analysis was made over three different time periods of airport development (after the airport site was proposed, during airport construction, and after the opening of the airport). The statistical results confirm that Alonso’s model can be used to explain the impacts of the new airport only for the northeast quadrant of the airport, while proximity to the airport showed the inverse relationship with the land value of all six types of land use activities through three periods of time. It indicates that the land value for commercial land use is the most sensitive to the location of the airport or has the strongest requirement for accessibility to the airport compared to the residential and manufacturing land use. Also, the bid-rent gradients of the six types of land use activities have declined dramatically through the three time periods because of the Asian Financial Crisis in 1997. Therefore, the lesson learned from this research concerns about the reliability of the data used. The major concern involves the use of different areal units for assessing land value for different time periods between zone block (1995) and grid block (2002, 2009). As a result, this affect the investigation of the overall trends of land value assessment, which are not readily apparent. In addition, the next concern is the availability of the historical data. With the lack of collecting historical data for land value assessment by the government, some of data of land values and aerial photos are not available to cover the entire study area. Finally, the different formats of using aerial photos between hard-copy (1995) and digital photo (2002, 2009) made difficult for measuring distances. Therefore, these problems also affect the accuracy of the results of the statistical analyses.

Keywords: airport development area, economic rents, spatial pattern, suvarnabhumi international airport

Procedia PDF Downloads 261
1793 Effects of Robot-Assisted Hand Training on Upper Extremity Performance in Patients with Stroke: A Randomized Crossover Controlled, Assessor-Blinded Study

Authors: Hsin-Chieh Lee, Fen-Ling Kuo, Jui-Chi Lin

Abstract:

Background: Upper extremity functional impairment that occurs after stroke includes hemiplegia, synergy movement, muscle hypertonicity, and somatosensory impairment, which result in inefficient and inaccurate movement. Robot-assisted rehabilitation is an intensive training approach that is effective in sensorimotor and hand function recovery. However, these systems mostly focused on the proximal part of the upper limb rather than the distal part. The device used in our study was Gloreha Sinfonia, which focuses on the distal part of the upper limb and uses a dynamic support system to facilitate the whole limb function. The objective of this study was to investigate the effects of robot-assisted therapy (RT) with Gloreha device on sensorimotor, and ADLs in patients with stroke. Method: Patients with stroke (N=25) participated AB or BA (A = 12 RT sessions and B = 12 conventional therapy (CT) sessions) for 6 weeks (60 min at each session, twice a week), with 1-month break for washout period. The performance of the patients was assessed by a blinded assessor at 4 time points (pretest 1, posttest 1, pretest 2, posttest 2) which including the Fugl–Meyer Assessment-upper extremity (FMA-UE), box and block test, electromyography of the extensor digitorum communis (EDC) and brachioradialis, a grip dynamometer for motor evaluation; Semmes–Weinstein hand monofilament and Revision of the Nottingham Sensory Assessment for sensory evaluation; and the Modified Barthel Index (MBI) for assessing the ADL ability. Result: RT group significantly improved FMA-UE proximal scores (p = 0.038), FMA-UE total scores (p = 0.046), and MBI (p = 0.030). The EDC exhibited higher efficiency during the small block grasping task in the RT group than in the CT group (p = 0.050). Conclusions: RT with the Gloreha device might lead to beneficial effects on arm motor function, ADL ability, and EDC muscle recruitment efficacy in patients with subacute to chronic stroke.

Keywords: activities of daily living, hand function, robotic rehabilitation, stroke

Procedia PDF Downloads 96
1792 Effect of Discharge Pressure Conditions on Flow Characteristics in Axial Piston Pump

Authors: Jonghyuk Yoon, Jongil Yoon, Seong-Gyo Chung

Abstract:

In many kinds of industries which usually need a large amount of power, an axial piston pump has been widely used as a main power source of a hydraulic system. The axial piston pump is a type of positive displacement pump that has several pistons in a circular array within a cylinder block. As the cylinder block and pistons start to rotate, since the exposed ends of the pistons are constrained to follow the surface of the swashed plate, the pistons are driven to reciprocate axially and then a hydraulic power is produced. In the present study, a numerical simulation which has three dimensional full model of the axial piston pump was carried out using a commercial CFD code (Ansys CFX 14.5). In order to take into consideration motion of compression and extension by the reciprocating pistons, the moving boundary conditions were applied as a function of the rotation angle to that region. In addition, this pump using hydraulic oil as working fluid is intentionally designed as a small amount of oil leaks out in order to lubricate moving parts. Since leakage could directly affect the pump efficiency, evaluation of effect of oil-leakage is very important. In order to predict the effect of the oil leakage on the pump efficiency, we considered the leakage between piston-shoe and swash-plate by modeling cylindrical shaped-feature at the end of the cylinder. In order to validate the numerical method used in this study, the numerical results of the flow rate at the discharge port are compared with the experimental data, and good agreement between them was shown. Using the validated numerical method, the effect of the discharge pressure was also investigated. The result of the present study can be useful information of small axial piston pump used in many different manufacturing industries. Acknowledgement: This research was financially supported by the “Next-generation construction machinery component specialization complex development program” through the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT).

Keywords: axial piston pump, CFD, discharge pressure, hydraulic system, moving boundary condition, oil leaks

Procedia PDF Downloads 230
1791 Simulation of Scaled Model of Tall Multistory Structure: Raft Foundation for Experimental and Numerical Dynamic Studies

Authors: Omar Qaftan

Abstract:

Earthquakes can cause tremendous loss of human life and can result in severe damage to a several of civil engineering structures especially the tall buildings. The response of a multistory structure subjected to earthquake loading is a complex task, and it requires to be studied by physical and numerical modelling. For many circumstances, the scale models on shaking table may be a more economical option than the similar full-scale tests. A shaking table apparatus is a powerful tool that offers a possibility of understanding the actual behaviour of structural systems under earthquake loading. It is required to use a set of scaling relations to predict the behaviour of the full-scale structure. Selecting the scale factors is the most important steps in the simulation of the prototype into the scaled model. In this paper, the principles of scaling modelling procedure are explained in details, and the simulation of scaled multi-storey concrete structure for dynamic studies is investigated. A procedure for a complete dynamic simulation analysis is investigated experimentally and numerically with a scale factor of 1/50. The frequency domain accounting and lateral displacement for both numerical and experimental scaled models are determined. The procedure allows accounting for the actual dynamic behave of actual size porotype structure and scaled model. The procedure is adapted to determine the effects of the tall multi-storey structure on a raft foundation. Four generated accelerograms were used as inputs for the time history motions which are in complying with EC8. The output results of experimental works expressed regarding displacements and accelerations are compared with those obtained from a conventional fixed-base numerical model. Four-time history was applied in both experimental and numerical models, and they concluded that the experimental has an acceptable output accuracy in compare with the numerical model output. Therefore this modelling methodology is valid and qualified for different shaking table experiments tests.

Keywords: structure, raft, soil, interaction

Procedia PDF Downloads 113
1790 White-Rot Hymenomycetes as Oil Palm Log Treatments: Accelerating Biodegradation of Basal Stem Rot-Affected Oil Palm Stumps

Authors: Yuvarani Naidu, Yasmeen Siddiqui, Mohd Yusof Rafii , Abu Seman Idris

Abstract:

Sustainability of oil palm production in Southeast Asia, especially in Indonesia and Malaysia, is jeopardized by Ganoderma boninense, the fungus which causes basal stem rot (BSR) in oil palm. The root contact with unattended infected debris left in the plantations during replanting is known to be the primary source of inoculum. Abiding by the law, potentially effective technique of managing Ganoderma infected oil palm debris is deemed necessary because of the zero-burning policy in Malaysian oil palm plantations. White-rot hymenomycetes antagonistic to Ganoderma sp were selected to test their efficacy as log treatments in degrading Ganoderma infected oil palm logs and to minimize the survival of Ganoderma inoculum. Decay rate in terms of mass loss was significantly higher after the application of solid-state cultivation (SSC) of Trametes lactinea FBW (64% ±1.2), followed by Pycnoporus sanguineus FBR (55% ±1.7) in infected log block tissues, after 10 months of treatments. The degradation pattern was clearly distinguished between the treated and non-treated log blocks with the developed SSC formulations. The control infected log blocks showed the highest, whereas infected log blocks treated with either P. sanguineus FBR or T. lactinea FBW SSC formulations exhibited statistically lowest number of Ganoderma spp. recovery on Ganoderma Selective Medium (GSM), after 8 months of treatment. Out of that, the lowest recovery of Ganoderma spp. was reported in infected log blocks inoculated with the strain T. lactinea FBW (21% ± 0.9) followed by P. sanguineus FBR (33% ± 2.2), after 8 months, Further, no recovery of Ganoderma was noticeable, 10 months after treatment applications in log blocks treated with both of the formulations. This is the first nursery-base study to substantiate the initial colonization of white-rot hymenomycetes on oil palm log blocks previously infected with BSR pathogen, G. boninense. The present study has indicated that log blocks treatment with white-rot hymenomycetes significantly affected the mass loss of diseased and healthy log block tissues. This study provides a basis of biotechnological approaches inefficient degradation of oil palm-generated crop debris, under natural conditions with an ultimate aim of reducing the Ganoderma inoculum under heavy BSR infection pressure in eco-friendly manner.

Keywords: basal stem rot disease, ganoderma boninense, oil palm, white-rot fungi

Procedia PDF Downloads 183
1789 Development of Novel Amphiphilic Block Copolymer of Renewable ε-Decalactone for Drug Delivery Application

Authors: Deepak Kakde, Steve Howdle, Derek Irvine, Cameron Alexander

Abstract:

The poor aqueous solubility is one of the major obstacles in the formulation development of many drugs. Around 70% of drugs are poorly soluble in aqueous media. In the last few decades, micelles have emerged as one of the major tools for solubilization of hydrophobic drugs. Micelles are nanosized structures (10-100nm) obtained by self-assembly of amphiphilic molecules into the water. The hydrophobic part of the micelle forms core which is surrounded by a hydrophilic outer shell called corona. These core-shell structures have been used as a drug delivery vehicle for many years. Although, the utility of micelles have been reduced due to the lack of sustainable materials. In the present study, a novel methoxy poly(ethylene glycol)-b-poly(ε-decalactone) (mPEG-b-PεDL) copolymer was synthesized by ring opening polymerization (ROP) of renewable ε-decalactone (ε-DL) monomers on methoxy poly(ethylene glycol) (mPEG) initiator using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a organocatalyst. All the reactions were conducted in bulk to avoid the use of toxic organic solvents. The copolymer was characterized by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).The mPEG-b-PεDL block copolymeric micelles containing indomethacin (IND) were prepared by nanoprecipitation method and evaluated as drug delivery vehicle. The size of the micelles was less than 40nm with narrow polydispersity pattern. TEM image showed uniform distribution of spherical micelles defined by clear surface boundary. The indomethacin loading was 7.4% for copolymer with molecular weight of 13000 and drug/polymer weight ratio of 4/50. The higher drug/polymer ratio decreased the drug loading. The drug release study in PBS (pH7.4) showed a sustained release of drug over a period of 24hr. In conclusion, we have developed a new sustainable polymeric material for IND delivery by combining the green synthetic approach with the use of renewable monomer for sustainable development of polymeric nanomedicine.

Keywords: dopolymer, ε-decalactone, indomethacin, micelles

Procedia PDF Downloads 273
1788 Education, Learning and Management: Empowering Individuals for the Future

Authors: Ngong Eugene Ekia

Abstract:

Education is the foundation for the success of any society as its impact transcends across all sectors, including economics, politics, and social welfare. It is through education that individuals acquire the necessary knowledge and skills to succeed in life and contribute meaningfully to society. However, the world is changing rapidly, and it is vital for education systems to adapt to these changes to remain relevant. In this paper, we will discuss the current trends and challenges in education and management and propose solutions that can enable individuals to thrive in an ever-evolving world.

Keywords: access to education, effective teaching and learning, strong management practices, and empowering and personal development

Procedia PDF Downloads 113
1787 Mortar Positioning Effects on Uniaxial Compression Behavior in Hollow Concrete Block Masonry

Authors: José Álvarez Pérez, Ramón García Cedeño, Gerardo Fajardo-San Miguel, Jorge H. Chávez Gómez, Franco A. Carpio Santamaría, Milena Mesa Lavista

Abstract:

The uniaxial compressive strength and modulus of elasticity in hollow concrete block masonry (HCBM) represent key mechanical properties for structural design considerations. These properties are obtained through experimental tests conducted on prisms or wallettes and depend on various factors, with the HCB contributing significantly to overall strength. One influential factor in the compressive behaviour of masonry is the thickness and method of mortar placement. Mexican regulations stipulate mortar placement over the entire net area (full-shell) for strength computation based on the gross area. However, in professional practice, there's a growing trend to place mortar solely on the lateral faces. Conversely, the United States of America standard dictates mortar placement and computation over the net area of HCB. The Canadian standard specifies mortar placement solely on the lateral face (Face-Shell-Bedding), where computation necessitates the use of the effective load area, corresponding to the mortar's placement area. This research aims to evaluate the influence of different mortar placement methods on the axial compression behaviour of HCBM. To achieve this, an experimental campaign was conducted, including: (1) 10 HCB specimens with mortar on the entire net area, (2) 10 HCB specimens with mortar placed on the lateral faces, (3) 10 prisms of 2-course HCB under axial compression with mortar in full-shell, (4) 10 prisms of 2-course HCB under axial compression with mortar in face-shell-bedding, (5) 10 prisms of 3-course HCB under axial compression with mortar in full-shell, (6) 10 prisms of 3-course HCB under axial compression with mortar in face-shell-bedding, (7) 10 prisms of 4-course HCB under axial compression with mortar in full-shell, and, (8) 10 prisms of 4-course HCB under axial compression with mortar in face-shell-bedding. A combination of sulphur and fly ash in a 2:1 ratio was used for the capping material, meeting the average compressive strength requirement of over 35 MPa as per NMX-C-036 standards. Additionally, a mortar with a strength of over 17 MPa was utilized for the prisms. The results indicate that prisms with mortar placed over the full-shell exhibit higher strength compared to those with mortar over the face-shell-bedding. However, the elastic modulus was lower for prisms with mortar placement over the full-shell compared to face-shell bedding.

Keywords: masonry, hollow concrete blocks, mortar placement, prisms tests

Procedia PDF Downloads 40
1786 Influence Zone of Strip Footing on Untreated and Cement Treated Sand Mat Underlain by Soft Clay (2nd reviewed)

Authors: Sharifullah Ahmed

Abstract:

Shallow foundation on soft soils without ground improvement can represent a high level of settlement. In such a case, an alternative to pile foundations may be shallow strip footings placed on a soil system in which the upper layer is untreated or cement-treated compacted sand to limit the settlement within a permissible level. This research work deals with a rigid plane-strain strip footing of 2.5m width placed on a soil consisting of untreated or cement treated sand layer underlain by homogeneous soft clay. Both the thin and thick compared the footing width was considered. The soft inorganic cohesive NC clay layer is considered undrained for plastic loading stages and drained in consolidation stages, and the sand layer is drained in all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0 with a model consisting of clay deposits of 15m thickness and 18m width. The soft clay layer was modeled using the Hardening Soil Model, Soft Soil Model, Soft Soil Creep model, and the upper improvement layer was modeled using only the Hardening Soil Model. The system is considered fully saturated. The value of natural void ratio 1.2 is used. Total displacement fields of strip footing and subsoil layers in the case of Untreated and Cement treated Sand as Upper layer are presented. For Hi/B =0.6 or above, the distribution of major deformation within an upper layer and the influence zone of footing is limited in an upper layer which indicates the complete effectiveness of the upper layer in bearing the foundation effectively in case of the untreated upper layer. For Hi/B =0.3 or above, the distribution of major deformation occurred within an upper layer, and the function of footing is limited in the upper layer. This indicates the complete effectiveness of the cement-treated upper layer. Brittle behavior of cemented sand and fracture or cracks is not considered in this analysis.

Keywords: displacement, ground improvement, influence depth, PLAXIS 2D, primary and secondary settlement, sand mat, soft clay

Procedia PDF Downloads 74
1785 Improving Productivity in a Glass Production Line through Applying Principles of Total Productive Maintenance (TPM)

Authors: Omar Bataineh

Abstract:

Total productive maintenance (TPM) is a principle-based method that aims to get a high-level production with no breakdowns, no slow running and no defects. Key principles of TPM were applied in this work to improve the performance of the glass production line at United Beverage Company in Kuwait, which is producing bottles of soft drinks. Principles such as 5S as a foundation for TPM implementation, developing a program for equipment management, Cause and Effect Analysis (CEA), quality improvement, training and education of employees were employed. After the completion of TPM implementation, it was possible to increase the Overall Equipment Effectiveness (OEE) from 23% to 40%.

Keywords: OEE, TPM, FMEA, CEA

Procedia PDF Downloads 313
1784 Recognition of Tifinagh Characters with Missing Parts Using Neural Network

Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui

Abstract:

In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.

Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN

Procedia PDF Downloads 311