Search results for: axillary lymph node dissection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 617

Search results for: axillary lymph node dissection

137 Leakage Current Analysis of FinFET Based 7T SRAM at 32nm Technology

Authors: Chhavi Saxena

Abstract:

FinFETs can be a replacement for bulk-CMOS transistors in many different designs. Its low leakage/standby power property makes FinFETs a desirable option for memory sub-systems. Memory modules are widely used in most digital and computer systems. Leakage power is very important in memory cells since most memory applications access only one or very few memory rows at a given time. As technology scales down, the importance of leakage current and power analysis for memory design is increasing. In this paper, we discover an option for low power interconnect synthesis at the 32nm node and beyond, using Fin-type Field-Effect Transistors (FinFETs) which are a promising substitute for bulk CMOS at the considered gate lengths. We consider a mechanism for improving FinFETs efficiency, called variable supply voltage schemes. In this paper, we’ve illustrated the design and implementation of FinFET based 4x4 SRAM cell array by means of one bit 7T SRAM. FinFET based 7T SRAM has been designed and analysis have been carried out for leakage current, dynamic power and delay. For the validation of our design approach, the output of FinFET SRAM array have been compared with standard CMOS SRAM and significant improvements are obtained in proposed model.

Keywords: FinFET, 7T SRAM cell, leakage current, delay

Procedia PDF Downloads 437
136 ¹⁸F-FDG PET/CT Impact on Staging of Pancreatic Cancer

Authors: Jiri Kysucan, Dusan Klos, Katherine Vomackova, Pavel Koranda, Martin Lovecek, Cestmir Neoral, Roman Havlik

Abstract:

Aim: The prognosis of patients with pancreatic cancer is poor. The median of survival after establishing diagnosis is 3-11 months without surgical treatment, 13-20 months with surgical treatment depending on the disease stage, 5-year survival is less than 5%. Radical surgical resection remains the only hope of curing the disease. Early diagnosis with valid establishment of tumor resectability is, therefore, the most important aim for patients with pancreatic cancer. The aim of the work is to evaluate the contribution and define the role of 18F-FDG PET/CT in preoperative staging. Material and Methods: In 195 patients (103 males, 92 females, median age 66,7 years, 32-88 years) with a suspect pancreatic lesion, as part of the standard preoperative staging, in addition to standard examination methods (ultrasonography, contrast spiral CT, endoscopic ultrasonography, endoscopic ultrasonographic biopsy), a hybrid 18F-FDG PET/CT was performed. All PET/CT findings were subsequently compared with standard staging (CT, EUS, EUS FNA), with peroperative findings and definitive histology in the operated patients as reference standards. Interpretation defined the extent of the tumor according to TNM classification. Limitations of resectability were local advancement (T4) and presence of distant metastases (M1). Results: PET/CT was performed in a total of 195 patients with a suspect pancreatic lesion. In 153 patients, pancreatic carcinoma was confirmed and of these patients, 72 were not indicated for radical surgical procedure due to local inoperability or generalization of the disease. The sensitivity of PET/CT in detecting the primary lesion was 92.2%, specificity was 90.5%. A false negative finding in 12 patients, a false positive finding was seen in 4 cases, positive predictive value (PPV) 97.2%, negative predictive value (NPV) 76,0%. In evaluating regional lymph nodes, sensitivity was 51.9%, specificity 58.3%, PPV 58,3%, NPV 51.9%. In detecting distant metastases, PET/CT reached a sensitivity of 82.8%, specificity was 97.8%, PPV 96.9%, NPV 87.0%. PET/CT found distant metastases in 12 patients, which were not detected by standard methods. In 15 patients (15.6%) with potentially radically resectable findings, the procedure was contraindicated based on PET/CT findings and the treatment strategy was changed. Conclusion: PET/CT is a highly sensitive and specific method useful in preoperative staging of pancreatic cancer. It improves the selection of patients for radical surgical procedures, who can benefit from it and decreases the number of incorrectly indicated operations.

Keywords: cancer, PET/CT, staging, surgery

Procedia PDF Downloads 234
135 An Automatic Generating Unified Modelling Language Use Case Diagram and Test Cases Based on Classification Tree Method

Authors: Wassana Naiyapo, Atichat Sangtong

Abstract:

The processes in software development by Object Oriented methodology have many stages those take time and high cost. The inconceivable error in system analysis process will affect to the design and the implementation process. The unexpected output causes the reason why we need to revise the previous process. The more rollback of each process takes more expense and delayed time. Therefore, the good test process from the early phase, the implemented software is efficient, reliable and also meet the user’s requirement. Unified Modelling Language (UML) is the tool which uses symbols to describe the work process in Object Oriented Analysis (OOA). This paper presents the approach for automatically generated UML use case diagram and test cases. UML use case diagram is generated from the event table and test cases are generated from use case specifications and Graphic User Interfaces (GUI). Test cases are derived from the Classification Tree Method (CTM) that classify data to a node present in the hierarchy structure. Moreover, this paper refers to the program that generates use case diagram and test cases. As the result, it can reduce work time and increase efficiency work.

Keywords: classification tree method, test case, UML use case diagram, use case specification

Procedia PDF Downloads 145
134 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration

Authors: C. Iraklis, G. Evmiridis, A. Iraklis

Abstract:

Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.

Keywords: congestion, distribution networks, loss reduction, particle swarm optimization, smart grid

Procedia PDF Downloads 429
133 Decode and Forward Cooperative Protocol Enhancement Using Interference Cancellation

Authors: Siddeeq Y. Ameen, Mohammed K. Yousif

Abstract:

Cooperative communication systems are considered to be a promising technology to improve the system capacity, reliability and performances over fading wireless channels. Cooperative relaying system with a single antenna will be able to reach the advantages of multiple antenna communication systems. It is ideally suitable for the distributed communication systems; the relays can cooperate and form virtual MIMO systems. Thus the paper will aim to investigate the possible enhancement of cooperated system using decode and forward protocol. On decode and forward an attempt to cancel or at least reduce the interference instead of increasing the SNR values is achieved. The latter can be achieved via the use group of relays depending on the channel status from source to relay and relay to destination respectively. In the proposed system, the transmission time has been divided into two phases to be used by decode and forward protocol. The first phase has been allocated for the source to transmit its data whereas the relays and destination nodes are in receiving mode. On the other hand, the second phase is allocated for the first and second groups of relay nodes to relay the data to the destination node. Simulations results have shown an improvement in performance is achieved compared to the conventional decode and forward in terms of BER and transmission rate.

Keywords: cooperative systems, decode and forward, interference cancellation, virtual MIMO

Procedia PDF Downloads 307
132 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks

Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith

Abstract:

Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.

Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN

Procedia PDF Downloads 112
131 Rethinking Everyday Urban Spaces Using Principles of Resilient Urbanism: A Case of Flooding in Thiruvalla

Authors: Prejily Thomas John

Abstract:

Flooding of urban areas often has an adverse impact on the dense population residing in cities. The vulnerable areas are the most affected due to flooding, which even results in loss of life. The increasing trend of urban floods is a universal phenomenon and leads to a vital loss in the physical, economic, social, and environmental dimensions. The shift from floods being natural disasters to man-made disasters due to unplanned urban growth is evident from national and international reports. Thiruvalla, bordered by the Manimala River in the Pathanamthitta district, is an important urban node and a drainage point of various estuaries. The city is often faced with flash floods and overflow from rivers since it is a low-lying land. The need for urban flood resilience for planned urban development is a necessity for livability in consideration of the topography. The paper focuses on developing an urban design framework in everyday urban spaces through the principles of resilient urbanism. The principles guide the creation of flood-resilient spaces and productive urban landscapes for the city to enable better and safer living conditions. A flood-resilient city not only prepares the city for disasters but also improves the ecological and economic conditions.

Keywords: everyday urban spaces, flood resilience, resilient urbanism, productive urban landscapes

Procedia PDF Downloads 65
130 Computational Aerodynamic Shape Optimisation Using a Concept of Control Nodes and Modified Cuckoo Search

Authors: D. S. Naumann, B. J. Evans, O. Hassan

Abstract:

This paper outlines the development of an automated aerodynamic optimisation algorithm using a novel method of parameterising a computational mesh by employing user–defined control nodes. The shape boundary movement is coupled to the movement of the novel concept of the control nodes via a quasi-1D-linear deformation. Additionally, a second order smoothing step has been integrated to act on the boundary during the mesh movement based on the change in its second derivative. This allows for both linear and non-linear shape transformations dependent on the preference of the user. The domain mesh movement is then coupled to the shape boundary movement via a Delaunay graph mapping. A Modified Cuckoo Search (MCS) algorithm is used for optimisation within the prescribed design space defined by the allowed range of control node displacement. A finite volume compressible NavierStokes solver is used for aerodynamic modelling to predict aerodynamic design fitness. The resulting coupled algorithm is applied to a range of test cases in two dimensions including the design of a subsonic, transonic and supersonic intake and the optimisation approach is compared with more conventional optimisation strategies. Ultimately, the algorithm is tested on a three dimensional wing optimisation case.

Keywords: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation

Procedia PDF Downloads 317
129 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Primary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

Finding algorithms to predict the growth of tumors has piqued the interest of researchers ever since the early days of cancer research. A number of studies were carried out as an attempt to obtain reliable data on the natural history of breast cancer growth. Mathematical modeling can play a very important role in the prognosis of tumor process of breast cancer. However, mathematical models describe primary tumor growth and metastases growth separately. Consequently, we propose a mathematical growth model for primary tumor and primary metastases which may help to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoM-IV and corresponding software. We are interested in: 1) modelling the whole natural history of primary tumor and primary metastases; 2) developing adequate and precise CoM-IV which reflects relations between PT and MTS; 3) analyzing the CoM-IV scope of application; 4) implementing the model as a software tool. The CoM-IV is based on exponential tumor growth model and consists of a system of determinate nonlinear and linear equations; corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and primary metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for primary metastases; 3) ‘visible period’ for primary metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-IV model and predictive software: a) detect different growth periods of primary tumor and primary metastases; b) make forecast of the period of primary metastases appearance; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of BC and facilitate optimization of diagnostic tests. The following are calculated by CoM-IV: the number of doublings for ‘nonvisible’ and ‘visible’ growth period of primary metastases; tumor volume doubling time (days) for ‘nonvisible’ and ‘visible’ growth period of primary metastases. The CoM-IV enables, for the first time, to predict the whole natural history of primary tumor and primary metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-IV describes correctly primary tumor and primary distant metastases growth of IV (T1-4N0-3M1) stage with (N1-3) or without regional metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and manifestation of primary metastases.

Keywords: breast cancer, exponential growth model, mathematical modelling, primary metastases, primary tumor, survival

Procedia PDF Downloads 318
128 Immunocytochemical Stability of Antigens in Cytological Samples Stored in In-house Liquid-Based Medium

Authors: Anamarija Kuhar, Veronika Kloboves Prevodnik, Nataša Nolde, Ulrika Klopčič

Abstract:

The decision for immunocytochemistry (ICC) is usually made in the basis of the findings in Giemsa- and/or Papanicolaou- smears. More demanding diagnostic cases require preparation of additional cytological preparations. Therefore, it is convenient to suspend cytological samples in a liquid based medium (LBM) that preserve antigen and morphological properties. However, the duration of these properties being preserved in the medium is usually unknown. Eventually, cell morphology becomes impaired and altered, as well as antigen properties may be lost or become diffused. In this study, the influence of cytological sample storage length in in-house liquid based medium on antigen properties and cell morphology is evaluated. The question is how long the cytological samples in this medium can be stored so that the results of immunocytochemical reactions are still reliable and can be safely used in routine cytopathological diagnostics. The stability of 6 ICC markers that are most frequently used in everyday routine work were tested; Cytokeratin AE1/AE3, Calretinin, Epithelial specific antigen Ep-CAM (MOC-31), CD 45, Oestrogen receptor (ER), and Melanoma triple cocktail were tested on methanol fixed cytospins prepared from fresh fine needle aspiration biopsies, effusion samples, and disintegrated lymph nodes suspended in in-house cell medium. Cytospins were prepared on the day of the sampling as well as on the second, fourth, fifth, and eight day after sample collection. Next, they were fixed in methanol and immunocytochemically stained. Finally, the percentage of positive stained cells, reaction intensity, counterstaining, and cell morphology were assessed using two assessment methods: the internal assessment and the UK NEQAS ICC scheme assessment. Results show that the antigen properties for Cytokeratin AE1/AE3, MOC-31, CD 45, ER, and Melanoma triple cocktail were preserved even after 8 days of storage in in-house LBM, while the antigen properties for Calretinin remained unchanged only for 4 days. The key parameters for assessing detection of antigen are the proportion of cells with a positive reaction and intensity of staining. Well preserved cell morphology is highly important for reliable interpretation of ICC reaction. Therefore, it would be valuable to perform a similar analysis for other ICC markers to determine the duration in which the antigen and morphological properties are preserved in LBM.

Keywords: cytology samples, cytospins, immunocytochemistry, liquid-based cytology

Procedia PDF Downloads 125
127 Genetic Dissection of QTLs in Intraspecific Hybrids Derived from Muskmelon (Cucumis Melo L.) and Mangalore Melon (Cucumis Melo Var Acidulus) for Shelflife and Fruit Quality Traits

Authors: Virupakshi Hiremata, Ratnakar M. Shet, Raghavendra Gunnaiah, Prashantha A.

Abstract:

Muskmelon is a health-beneficial and refreshing dessert vegetable with a low shelf life. Mangalore melon, a genetic homeologue of muskmelon, has a shelf life of more than six months and is mostly used for culinary purposes. Understanding the genetics of shelf life, yield and yield-related traits and identification of markers linked to such traits is helpful in transfer of extended shelf life from Mangalore melon to the muskmelon through intra-specific hybridization. For QTL mapping, 276 F2 mapping population derived from the cross Arka Siri × SS-17 was genotyped with 40 polymorphic markers distributed across 12 chromosomes. The same population was also phenotyped for yield, shelf life and fruit quality traits. One major QTL (R2 >10) and fourteen minor QTLs (R2 <10) localized on four linkage groups, governing different traits were mapped in F2 mapping population developed from the intraspecific cross with a LOD > 5.5. The phenotypic varience explained by each locus varied from 3.63 to 10.97 %. One QTL was linked to shelf-life (qSHL-3-1), five QTLs were linked to TSS (qTSS-1-1, qTSS-3-3, qTSS-3-1, qTSS-3-2 and qTSS-1-2), two QTLs for flesh thickness (qFT-3-1, and qFT-3-2) and seven QTLs for fruit yield per vine (qFYV-3-1, qFYV-1-1, qFYV-3-1, qFYV1-1, qFYV-1-3, qFYV2-1 and qFYV6-1). QTL flanking markers may be used for marker assisted introgression of shelf life into muskmelon. Important QTL will be further fine-mapped for identifying candidate genes by QTLseq and RNAseq analysis. Fine-mapping of Important Quantitative Trait Loci (QTL) holds immense promise in elucidating the genetic basis of complex traits. Leveraging advanced techniques like QTLseq and RNA sequencing (RNA seq) is crucial for this endeavor. QTLseq combines next-generation sequencing with traditional QTL mapping, enabling precise identification of genomic regions associated with traits of interest. Through high-throughput sequencing, QTLseq provides a detailed map of genetic variations linked to phenotypic variations, facilitating targeted investigations. Moreover, RNA seq analysis offers a comprehensive view of gene expression patterns in response to specific traits or conditions. By comparing transcriptomes between contrasting phenotypes, RNA seq aids in pinpointing candidate genes underlying QTL regions. Integrating QTLseq with RNA seq allows for a multi-dimensional approach, coupling genetic variation with gene expression dynamics.

Keywords: QTL, shelf life, TSS, muskmelon and Mangalore melon

Procedia PDF Downloads 30
126 A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6

Authors: M. Moslehpour, S. Khorsandi

Abstract:

Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.

Keywords: NDP, IPsec, SEND, CGA, modifier, malicious node, self-computing, distributed-computing

Procedia PDF Downloads 267
125 An Enhanced Hybrid Backoff Technique for Minimizing the Occurrence of Collision in Mobile Ad Hoc Networks

Authors: N. Sabiyath Fatima, R. K. Shanmugasundaram

Abstract:

In Mobile Ad-hoc Networks (MANETS), every node performs both as transmitter and receiver. The existing backoff models do not exactly forecast the performance of the wireless network. Also, the existing models experience elevated packet collisions. Every time a collision happens, the station’s contention window (CW) is doubled till it arrives at the utmost value. The main objective of this paper is to diminish collision by means of contention window Multiplicative Increase Decrease Backoff (CWMIDB) scheme. The intention of rising CW is to shrink the collision possibility by distributing the traffic into an outsized point in time. Within wireless Ad hoc networks, the CWMIDB algorithm dynamically controls the contention window of the nodes experiencing collisions. During packet communication, the backoff counter is evenly selected from the given choice of [0, CW-1]. At this point, CW is recognized as contention window and its significance lies on the amount of unsuccessful transmission that had happened for the packet. On the initial transmission endeavour, CW is put to least amount value (C min), if transmission effort fails, subsequently the value gets doubled, and once more the value is set to least amount on victorious broadcast. CWMIDB is simulated inside NS2 environment and its performance is compared with Binary Exponential Backoff Algorithm. The simulation results show improvement in transmission probability compared to that of the existing backoff algorithm.

Keywords: backoff, contention window, CWMIDB, MANET

Procedia PDF Downloads 258
124 An Application Framework for Integrating Wireless Sensor and Actuator Networks for Precision Farmingas Web of Things to Cloud Interface Using PaaS

Authors: Sumaya Ismail, Aijaz Ahmad Reshi

Abstract:

The advances in sensor and embedded technologies have led to rapid developments in Wireless Sensor Networks (WSNs). Presently researchers focus on the integration of WSNs to the Internet for their pervasive availability to access these network resources as the interoperable subsystems. The recent computing technologies like cloud computing has made resource sharing as a converged infrastructure with required service interfaces for the shared resources over the Internet. This paper presents application architecture for wireless Sensor and Actuator Networks (WSANS) following web of things, which allows easy integration of each node to the Internet in order to provide them with web accessibility. The architecture enables the sensors and actuator nodes accessed and controlled using cloud interface on WWW. The application architecture was implemented using existing web and its emerging technologies. In particular, the Representational State Transfer protocol (REST) was extended for the specific requirements of the application. The Cloud computing environment has been used as a development platform for the application to assess the possibility of integrating the WSAN nodes to Cloud services. The mushroom farm environment monitoring and control using WSANs has been taken as a research use case.

Keywords: WSAN, REST, web of things, ZigBee, cloud interface, PaaS, sensor gateway

Procedia PDF Downloads 86
123 Experimental Study for the Development of a Wireless Communication System in a Solar Central Tower Facility

Authors: Victor H. Benitez, Ramon V. Armas-Flores, Jesus H. Pacheco-Ramirez

Abstract:

Systems transforming solar energy into electrical power have emerged as a viable source of clean, renewable energy. Solar power tower technology is a good example of this type of system, which consists of several mobile mirrors, called heliostats, which reflect the sun's radiation to the same point, located on top of a tower at the center of heliostat field, for collection or transformation into another type of energy. The so-called Hermosillo’s Solar Platform (Plataforma Solar de Hermosillo, PSH, in Spanish) is a facility constituted with several heliostats, its aim and scope is for research purposes. In this paper, the implementation of a wireless communication system based on intelligent nodes is proposed in order to allow the communication and control of the heliostats in PSH. Intelligent nodes transmit information from one point to another, and can perform other actions that allow them to adapt to the conditions and limitations of a field of heliostats, thus achieving effective communication system. After deployment of the nodes in the heliostats, tests were conducted to measure the effectiveness of the communication, and determine the feasibility of using the proposed technologies. The test results were always positive, exceeding expectations held for its operation in the field of heliostats. Therefore, it was possible to validate the efficiency of the wireless communication system to be implemented in PSH, allowing communication and control of the heliostats.

Keywords: heliostat, intelligent node, solar energy, wireless communication

Procedia PDF Downloads 392
122 Multi-Level Clustering Based Congestion Control Protocol for Cyber Physical Systems

Authors: Manpreet Kaur, Amita Rani, Sanjay Kumar

Abstract:

The Internet of Things (IoT), a cyber-physical paradigm, allows a large number of devices to connect and send the sensory data in the network simultaneously. This tremendous amount of data generated leads to very high network load consequently resulting in network congestion. It further amounts to frequent loss of useful information and depletion of significant amount of nodes’ energy. Therefore, there is a need to control congestion in IoT so as to prolong network lifetime and improve the quality of service (QoS). Hence, we propose a two-level clustering based routing algorithm considering congestion score and packet priority metrics that focus on minimizing the network congestion. In the proposed Priority based Congestion Control (PBCC) protocol the sensor nodes in IoT network form clusters that reduces the amount of traffic and the nodes are prioritized to emphasize important data. Simultaneously, a congestion score determines the occurrence of congestion at a particular node. The proposed protocol outperforms the existing Packet Discard Network Clustering (PDNC) protocol in terms of buffer size, packet transmission range, network region and number of nodes, under various simulation scenarios.

Keywords: internet of things, cyber-physical systems, congestion control, priority, transmission rate

Procedia PDF Downloads 290
121 Acoustic Blood Plasmapheresis in Polymeric Resonators

Authors: Itziar Gonzalez, Pilar Carreras, Alberto Pinto, Roque Ruben Andres

Abstract:

Acoustophoretic separation of plasma from blood is based on a collection process of the blood cells, driven by an acoustic radiation force. The number of cells, their concentration, and the sample hydrodynamics are involved in these processes. However, their influence on the acoustic blood response has not yet been reported in the literature. Addressing it, this paper presents an experimental study of blood samples exposed to ultrasonic standing waves at different hematocrit levels and hydrodynamic conditions. The experiments were performed in a glass capillary (700µm-square cross section) actuated by a piezoelectric ceramic at 1MHz, hosting 2D orthogonal half-wavelength resonances transverse to the channel length, with a single-pressure-node along its central axis where cells collected driven by the acoustic radiation force. Four blood dilutions in PBS of 1:20, 1:10, 1:5, and 1:2 were tested at eight flow rate conditions Q=0:120µL/min. The 1:5 dilution (H=9%) demonstrated to be optimal for the plasmapheresis at any of the flow rates analyzed, requiring the shortest times to achieve plasma free of cells. The study opens new possibilities to optimize processes of plasmapheresis processes by ultrasounds at different hematocrit conditions in future personalized diagnoses/treatments involving blood samples.

Keywords: ultrasounds, microfluidics, flow rate, acoustophoresis, polymeric resonators

Procedia PDF Downloads 121
120 Emerging Research Trends in Routing Protocol for Wireless Sensor Network

Authors: Subhra Prosun Paul, Shruti Aggarwal

Abstract:

Now a days Routing Protocol in Wireless Sensor Network has become a promising technique in the different fields of the latest computer technology. Routing in Wireless Sensor Network is a demanding task due to the different design issues of all sensor nodes. Network architecture, no of nodes, traffic of routing, the capacity of each sensor node, network consistency, service value are the important factor for the design and analysis of Routing Protocol in Wireless Sensor Network. Additionally, internal energy, the distance between nodes, the load of sensor nodes play a significant role in the efficient routing protocol. In this paper, our intention is to analyze the research trends in different routing protocols of Wireless Sensor Network in terms of different parameters. In order to explain the research trends on Routing Protocol in Wireless Sensor Network, different data related to this research topic are analyzed with the help of Web of Science and Scopus databases. The data analysis is performed from global perspective-taking different parameters like author, source, document, country, organization, keyword, year, and a number of the publication. Different types of experiments are also performed, which help us to evaluate the recent research tendency in the Routing Protocol of Wireless Sensor Network. In order to do this, we have used Web of Science and Scopus databases separately for data analysis. We have observed that there has been a tremendous development of research on this topic in the last few years as it has become a very popular topic day by day.

Keywords: analysis, routing protocol, research trends, wireless sensor network

Procedia PDF Downloads 201
119 Intensive Care Unit Patient Self-Determination When Facing Cardiovascular Surgery for the First Time

Authors: Hsiao-Lin Fang

Abstract:

The Patient Self-Determination Act is based on the belief that each life is unique. The act regards each patient as an autonomous entity and explicitly protects the patient’s rights to know and make decisions and choices while ensuring that the patient’s wish for a peaceful end is granted. Even when the patient is unconscious and unable to express himself/herself, the patient’s self-determination and its exercise are still protected under the law. The act also ensures that healthcare professionals (HCPs) have a specific set of rules to follow and complete legal protection when their patients are unable to express themselves clearly. This report is about a 55-year-old female patient who weighed 110 kg and was diagnosed with acute type A aortic dissection. The case was that the patient suddenly felt backache and nausea during sleep before daybreak and was therefore transferred to this hospital from the original one. After the doctor explained the patient’s conditions, it was concluded that surgery was necessary. However, the patient’s family was immediately against the surgery after having heard its possible complications. Nevertheless, the patient was still willing to receive the surgery. Being at odds with her family, the patient decided to sign the surgery agreement herself and agreed to receive the two surgical procedures: (1) ascending aorta replacement and (2) innominate artery debranching. After the surgery, the patient did not regain consciousness and therefore received computed tomography scanning of the brain, which revealed false lumen involving proximal left common carotid artery, left subclavian artery and innominate artery, and severe compression of the true lumen with total/subtotal occlusion in the left common carotid artery. On the following day, the doctor discussed two further surgical procedures: (1) endografting for descending aorta and (2) endografting for left common carotid artery and subclavian artery with the family. However, as the patient’s postoperative recovery of consciousness only reached the level of stupor and her family had no intention of subsequent healthcare for the patient, the family made the joint decision three days later to have the endotracheal tube removed from the patient and let her die a natural death. Suggestion: An advance directive (AD) can be created beforehand. Once the patient is in a special clinical state (e.g., terminal illness, permanent vegetative state, etc.), the AD can determine whether to sustain the patient’s life through ‘medical intervention’ or to respect the patient’s rights to choose a peaceful end and receive palliative care. Through the expression of self-determination, it is possible to respect the patient’s medical practice autonomy and protect the patient’s dignity and right to a peaceful end, thereby respecting and supporting the patient’s decision. This also allows the three sides: the patient, the family and the medical team to understand the patient’s true wish in the process of advance care planning (ACP) and thereby promote harmony in the HCP-patient relationship.

Keywords: intensive care unit patient, cardiovascular surgery, self-determination, advance directive

Procedia PDF Downloads 157
118 An Application Framework for Integrating Wireless Sensor and Actuator Networks for Precision Farming as Web of Things to Cloud Interface Using Platform as a Service

Authors: Sumaya Iqbal, Aijaz Ahmad Reshi

Abstract:

The advances in sensor and embedded technologies have led to rapid developments in Wireless Sensor Networks (WSNs). Presently researchers focus on the integration of WSNs to Internet for their pervasive availability to access these network resources as the interoperable subsystems. The recent computing technologies like cloud computing has made the resource sharing as a converged infrastructure with required service interfaces for the shared resources over the Internet. This paper presents application architecture for wireless Sensor and Actuator Networks (WSANS) following web of things, which allows easy integration of each node to the Internet in order to provide them web accessibility. The architecture enables the sensors and actuator nodes accessed and controlled using cloud interface on WWW. The application architecture was implemented using existing web and its emerging technologies. In particular Representational State Transfer protocol (REST) was extended for the specific requirements of the application. Cloud computing environment has been used as a development platform for the application to assess the possibility of integrating the WSAN nodes to Cloud services. The mushroom farm environment monitoring and control using WSANs has been taken as a research use case.

Keywords: WSAN, REST, web of things, ZigBee, cloud interface, PaaS, sensor gateway

Procedia PDF Downloads 104
117 Experimental Analysis of Structure Borne Noise in an Enclosure

Authors: Waziralilah N. Fathiah, A. Aminudin, U. Alyaa Hashim, T. Vikneshvaran D. Shakirah Shukor

Abstract:

This paper presents the experimental analysis conducted on a structure borne noise in a rectangular enclosure prototype made by joining of sheet aluminum metal and plywood. The study is significant as many did not realized the annoyance caused by structural borne-noise. In this study, modal analysis is carried out to seek the structure’s behaviour in order to identify the characteristics of enclosure in frequency domain ranging from 0 Hz to 200 Hz. Here, numbers of modes are identified and the characteristic of mode shape is categorized. Modal experiment is used to diagnose the structural behaviour while microphone is used to diagnose the sound. Spectral testing is performed on the enclosure. It is acoustically excited using shaker and as it vibrates, the vibrational and noise responses sensed by tri-axis accelerometer and microphone sensors are recorded respectively. Experimental works is performed on each node lies on the gridded surface of the enclosure. Both experimental measurement is carried out simultaneously. The modal experimental results of the modal modes are validated by simulation performed using MSC Nastran software. In pursuance of reducing the structure borne-noise, mitigation method is used whereby the stiffener plates are perpendicularly placed on the sheet aluminum metal. By using this method, reduction in structure borne-noise is successfully made at the end of the study.

Keywords: enclosure, modal analysis, sound analysis, structure borne-noise

Procedia PDF Downloads 413
116 The Transient Reactive Power Regulation Capability of SVC for Large Scale WECS Connected to Distribution Networks

Authors: Y. Ates, A. R. Boynuegri, M. Uzunoglu, A. Karakas

Abstract:

The recent interest in alternative and renewable energy systems results in increased installed capacity ratio of such systems in total energy production of the world. Specifically, wind energy conversion systems (WECS) draw significant attention among possible alternative energy options, recently. On the contrary of the positive points of penetrating WECS in all over the world in terms of environment protection, energy independence of the countries, etc., there are significant problems to be solved for the grid connection of large scale WECS. The reactive power regulation, voltage variation suppression, etc. can be presented as major issues to be considered in this regard. Thus, this paper evaluates the application of a Static VAr Compensator (SVC) unit for the reactive power regulation and operation continuity of WECS during a fault condition. The system is modeled employing the IEEE 13 node test system. Thus, it is possible to evaluate the system performance with an overall grid simulation model close to real grid systems. The overall simulation model is developed in MATLAB/Simulink/SimPowerSystems® environments and the obtained results effectively match the target of the provided study.

Keywords: IEEE 13 bus distribution system, reactive power regulation, static VAr compensator, wind energy conversion system

Procedia PDF Downloads 721
115 Altered L-Type Calcium Channel Activity in Atrioventricular Nodal Myocytes from Rats with Streptozotocin-Induced Type I Diabetes Mellitus

Authors: Kathryn H. Yull, Lina T. Al Kury, Frank Christopher Howarth

Abstract:

Cardiovascular diseases are frequently reported in patients with Type-1 Diabetes mellitus (DM). In addition to changes in cardiac muscle inotropy, electrical abnormalities are also commonly observed in these patients. In the present study, using streptozotocin (STZ) rat model of Type-1 DM, we have characterized the changes in L-type calcium channel activity in single atrioventricular nodal (AVN) myocytes. Ionic currents were recorded from AVN myocytes isolated from the hearts of control rats and from those with STZ-induced diabetes. Patch-clamp recordings were used to assess changes in cellular electrical activity in individual myocytes. Type-1 DM significantly altered the cellular characteristics of L-type calcium current (ICaL). A reduction in peak ICaL density was observed, with no corresponding changes in the activation parameters of the current. ICaL also exhibited faster time-dependent inactivation in AVN myocytes from diabetic rats. A negative shift in the voltage dependence of inactivation was also evident. These findings demonstrate that experimentally–induced type-1 DM significantly alters AVN L-type calcium channel cellular electrophysiology. The changes in ion channel activity may underlie the abnormalities in the cardiac electrical function that contribute to the high mortality levels in patients with DM.

Keywords: cardiac, ion-channel, diabetes, atrioventricular node, calcium channel

Procedia PDF Downloads 323
114 A Cellular-Based Structural Health Monitoring Device (HMD) Based on Cost-Effective 1-Axis Accelerometers

Authors: Chih-Hsing Lin, Wen-Ching Chen, Chih-Ting Kuo, Gang-Neng Sung, Chih-Chyau Yang, Chien-Ming Wu, Chun-Ming Huang

Abstract:

This paper proposes a cellular-based structure health monitoring device (HMD) for temporary bridge monitoring without the requirement of power line and internet service. The proposed HMD includes sensor node, power module, cellular gateway, and rechargeable batteries. The purpose of HMD focuses on short-term collection of civil infrastructure information. It achieves the features of low cost by using three 1-axis accelerometers with data synchronization problem being solved. Furthermore, instead of using data acquisition system (DAQ) sensed data is transmitted to Host through cellular gateway. Compared with 3-axis accelerometer, our proposed 1-axis accelerometers based device achieves 50.5% cost saving with high sensitivity 2000mv/g. In addition to fit different monitoring environments, the proposed system can be easily replaced and/or extended with different PCB boards, such as communication interfaces and sensors, to adapt to various applications. Therefore, with using the proposed device, the real-time diagnosis system for civil infrastructure damage monitoring can be conducted effectively.

Keywords: cellular-based structural health monitoring, cost-effective 1-axis accelerometers, short-term monitoring, structural engineering

Procedia PDF Downloads 503
113 Wireless Sensor Network for Forest Fire Detection and Localization

Authors: Tarek Dandashi

Abstract:

WSNs may provide a fast and reliable solution for the early detection of environment events like forest fires. This is crucial for alerting and calling for fire brigade intervention. Sensor nodes communicate sensor data to a host station, which enables a global analysis and the generation of a reliable decision on a potential fire and its location. A WSN with TinyOS and nesC for the capturing and transmission of a variety of sensor information with controlled source, data rates, duration, and the records/displaying activity traces is presented. We propose a similarity distance (SD) between the distribution of currently sensed data and that of a reference. At any given time, a fire causes diverging opinions in the reported data, which alters the usual data distribution. Basically, SD consists of a metric on the Cumulative Distribution Function (CDF). SD is designed to be invariant versus day-to-day changes of temperature, changes due to the surrounding environment, and normal changes in weather, which preserve the data locality. Evaluation shows that SD sensitivity is quadratic versus an increase in sensor node temperature for a group of sensors of different sizes and neighborhood. Simulation of fire spreading when ignition is placed at random locations with some wind speed shows that SD takes a few minutes to reliably detect fires and locate them. We also discuss the case of false negative and false positive and their impact on the decision reliability.

Keywords: forest fire, WSN, wireless sensor network, algortihm

Procedia PDF Downloads 247
112 Formal Implementation of Routing Information Protocol Using Event-B

Authors: Jawid Ahmad Baktash, Tadashi Shiroma, Tomokazu Nagata, Yuji Taniguchi, Morikazu Nakamura

Abstract:

The goal of this paper is to explore the use of formal methods for Dynamic Routing, The purpose of network communication with dynamic routing is sending a massage from one node to others by using pacific protocols. In dynamic routing connections are possible based on protocols of Distance vector (Routing Information Protocol, Border Gateway protocol), Link State (Open Shortest Path First, Intermediate system Intermediate System), Hybrid (Enhanced Interior Gateway Routing Protocol). The responsibility for proper verification becomes crucial with Dynamic Routing. Formal methods can play an essential role in the Routing, development of Networks and testing of distributed systems. Event-B is a formal technique consists of describing rigorously the problem; introduce solutions or details in the refinement steps to obtain more concrete specification, and verifying that proposed solutions are correct. The system is modeled in terms of an abstract state space using variables with set theoretic types and the events that modify state variables. Event-B is a variant of B, was designed for developing distributed systems. In Event-B, the events consist of guarded actions occurring spontaneously rather than being invoked. The invariant state properties must be satisfied by the variables and maintained by the activation of the events.

Keywords: dynamic rout RIP, formal method, event-B, pro-B

Procedia PDF Downloads 387
111 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection

Authors: YingWei Tan, XueFeng Ding

Abstract:

Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.

Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding

Procedia PDF Downloads 47
110 Static and Dynamic Analysis of Hyperboloidal Helix Having Thin Walled Open and Close Sections

Authors: Merve Ermis, Murat Yılmaz, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

The static and dynamic analyses of hyperboloidal helix having the closed and the open square box sections are investigated via the mixed finite element formulation based on Timoshenko beam theory. Frenet triad is considered as local coordinate systems for helix geometry. Helix domain is discretized with a two-noded curved element and linear shape functions are used. Each node of the curved element has 12 degrees of freedom, namely, three translations, three rotations, two shear forces, one axial force, two bending moments and one torque. Finite element matrices are derived by using exact nodal values of curvatures and arc length and it is interpolated linearly throughout the element axial length. The torsional moments of inertia for close and open square box sections are obtained by finite element solution of St. Venant torsion formulation. With the proposed method, the torsional rigidity of simply and multiply connected cross-sections can be also calculated in same manner. The influence of the close and the open square box cross-sections on the static and dynamic analyses of hyperboloidal helix is investigated. The benchmark problems are represented for the literature.

Keywords: hyperboloidal helix, squared cross section, thin walled cross section, torsional rigidity

Procedia PDF Downloads 363
109 Grid Based Traffic Vulnerability Model Using Betweenness Centrality for Urban Disaster Management Information

Authors: Okyu Kwon, Dongho Kang, Byungsik Kim, Seungkwon Jung

Abstract:

We propose a technique to measure the impact of loss of traffic function in a particular area to surrounding areas. The proposed method is applied to the city of Seoul, which is the capital of South Korea, with a population of about ten million. Based on the actual road network in Seoul, we construct an abstract road network between 1kmx1km grid cells. The link weight of the abstract road network is re-adjusted considering traffic volume measured at several survey points. On the modified abstract road network, we evaluate the traffic vulnerability by calculating a network measure of betweenness centrality (BC) for every single grid cells. This study analyzes traffic impacts caused by road dysfunction due to heavy rainfall in urban areas. We could see the change of the BC value in all other grid cells by calculating the BC value once again when the specific grid cell lost its traffic function, that is, when the node disappeared on the grid-based road network. The results show that it is appropriate to use the sum of the BC variation of other cells as the influence index of each lattice cell on traffic. This research was supported by a grant (2017-MOIS31-004) from Fundamental Technology Development Program for Extreme Disaster Response funded by Korean Ministry of Interior and Safety (MOIS).

Keywords: vulnerability, road network, beweenness centrality, heavy rainfall, road impact

Procedia PDF Downloads 78
108 Cardiac Pacemaker in a Patient Undergoing Breast Radiotherapy-Multidisciplinary Approach

Authors: B. Petrović, M. Petrović, L. Rutonjski, I. Djan, V. Ivanović

Abstract:

Objective: Cardiac pacemakers are very sensitive to radiotherapy treatment from two sources: electromagnetic influence from the medical linear accelerator producing ionizing radiation- influencing electronics within the pacemaker, and the absorption of dose to the device. On the other hand, patients with cardiac pacemakers at the place of a tumor are rather rare, and single clinic hardly has experience with the management of such patients. The widely accepted international guidelines for management of radiation oncology patients recommend that these patients should be closely monitored and examined before, during and after radiotherapy treatment by cardiologist, and their device and condition followed up. The number of patients having both cancer and pacemaker, is growing every year, as both cancer incidence, as well as cardiac diseases incidence, are inevitably growing figures. Materials and methods: Female patient, age 69, was diagnozed with valvular cardiomyopathy and got implanted a pacemaker in 2005 and prosthetic mitral valve in 1993 (cancer was diagnosed in 2012). She was stable cardiologically and came to radiation therapy department with the diagnosis of right breast cancer, with the tumor in upper lateral quadrant of the right breast. Since she had all lymph nodes positive (28 in total), she had to have irradiated the supraclavicular region, as well as the breast with the tumor bed. She previously received chemotherapy, approved by the cardiologist. The patient was estimated to be with the high risk as device was within the field of irradiation, and the patient had high dependence on her pacemaker. The radiation therapy plan was conducted as 3D conformal therapy. The delineated target was breast with supraclavicular region, where the pacemaker was actually placed, with the addition of a pacemaker as organ at risk, to estimate the dose to the device and its components as recommended, and the breast. The targets received both 50 Gy in 25 fractions (where 20% of a pacemaker received 50 Gy, and 60% of a device received 40 Gy). The electrode to the heart received between 1 Gy and 50 Gy. Verification of dose planned and delivered was performed. Results: Evaluation of the patient status according to the guidelines and especially evaluation of all associated risks to the patient during treatment was done. Patient was irradiated by prescribed dose and followed up for the whole year, with no symptoms of failure of the pacemaker device during, or after treatment in follow up period. The functionality of a device was estimated to be unchanged, according to the parameters (electrode impedance and battery energy). Conclusion: Patient was closely monitored according to published guidelines during irradiation and afterwards. Pacemaker irradiated with the full dose did not show any signs of failure despite recommendations data, but in correlation with other published data.

Keywords: cardiac pacemaker, breast cancer, radiotherapy treatment planning, complications of treatment

Procedia PDF Downloads 421