Search results for: traffic modeling
111 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor
Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen
Abstract:
In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.
Procedia PDF Downloads 256110 Analytical and Numerical Modeling of Strongly Rotating Rarefied Gas Flows
Authors: S. Pradhan, V. Kumaran
Abstract:
Centrifugal gas separation processes effect separation by utilizing the difference in the mole fraction in a high speed rotating cylinder caused by the difference in molecular mass, and consequently the centrifugal force density. These have been widely used in isotope separation because chemical separation methods cannot be used to separate isotopes of the same chemical species. More recently, centrifugal separation has also been explored for the separation of gases such as carbon dioxide and methane. The efficiency of separation is critically dependent on the secondary flow generated due to temperature gradients at the cylinder wall or due to inserts, and it is important to formulate accurate models for this secondary flow. The widely used Onsager model for secondary flow is restricted to very long cylinders where the length is large compared to the diameter, the limit of high stratification parameter, where the gas is restricted to a thin layer near the wall of the cylinder, and it assumes that there is no mass difference in the two species while calculating the secondary flow. There are two objectives of the present analysis of the rarefied gas flow in a rotating cylinder. The first is to remove the restriction of high stratification parameter, and to generalize the solutions to low rotation speeds where the stratification parameter may be O (1), and to apply for dissimilar gases considering the difference in molecular mass of the two species. Secondly, we would like to compare the predictions with molecular simulations based on the direct simulation Monte Carlo (DSMC) method for rarefied gas flows, in order to quantify the errors resulting from the approximations at different aspect ratios, Reynolds number and stratification parameter. In this study, we have obtained analytical and numerical solutions for the secondary flows generated at the cylinder curved surface and at the end-caps due to linear wall temperature gradient and external gas inflow/outflow at the axis of the cylinder. The effect of sources of mass, momentum and energy within the flow domain are also analyzed. The results of the analytical solutions are compared with the results of DSMC simulations for three types of forcing, a wall temperature gradient, inflow/outflow of gas along the axis, and mass/momentum input due to inserts within the flow. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used diffuse reflection boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a temperature slip (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity.Keywords: rotating flows, generalized onsager and carrier-Maslen model, DSMC simulations, rarefied gas flow
Procedia PDF Downloads 401109 Measuring Enterprise Growth: Pitfalls and Implications
Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić
Abstract:
Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises
Procedia PDF Downloads 254108 Culvert Blockage Evaluation Using Australian Rainfall And Runoff 2019
Authors: Rob Leslie, Taher Karimian
Abstract:
The blockage of cross drainage structures is a risk that needs to be understood and managed or lessened through the design. A blockage is a random event, influenced by site-specific factors, which needs to be quantified for design. Under and overestimation of blockage can have major impacts on flood risk and cost associated with drainage structures. The importance of this matter is heightened for those projects located within sensitive lands. It is a particularly complex problem for large linear infrastructure projects (e.g., rail corridors) located within floodplains where blockage factors can influence flooding upstream and downstream of the infrastructure. The selection of the appropriate blockage factors for hydraulic modeling has been subject to extensive research by hydraulic engineers. This paper has been prepared to review the current Australian Rainfall and Runoff 2019 (ARR 2019) methodology for blockage assessment by applying this method to a transport corridor brownfield upgrade case study in New South Wales. The results of applying the method are also validated against asset data and maintenance records. ARR 2019 – Book 6, Chapter 6 includes advice and an approach for estimating the blockage of bridges and culverts. This paper concentrates specifically on the blockage of cross drainage structures. The method has been developed to estimate the blockage level for culverts affected by sediment or debris due to flooding. The objective of the approach is to evaluate a numerical blockage factor that can be utilized in a hydraulic assessment of cross drainage structures. The project included an assessment of over 200 cross drainage structures. In order to estimate a blockage factor for use in the hydraulic model, a process has been advanced that considers the qualitative factors (e.g., Debris type, debris availability) and site-specific hydraulic factors that influence blockage. A site rating associated with the debris potential (i.e., availability, transportability, mobility) at each crossing was completed using the method outlined in ARR 2019 guidelines. The hydraulic results inputs (i.e., flow velocity, flow depth) and qualitative factors at each crossing were developed into an advanced spreadsheet where the design blockage level for cross drainage structures were determined based on the condition relating Inlet Clear Width and L10 (average length of the longest 10% of the debris reaching the site) and the Adjusted Debris Potential. Asset data, including site photos and maintenance records, were then reviewed and compared with the blockage assessment to check the validity of the results. The results of this assessment demonstrate that the estimated blockage factors at each crossing location using ARR 2019 guidelines are well-validated with the asset data. The primary finding of the study is that the ARR 2019 methodology is a suitable approach for culvert blockage assessment that has been validated against a case study spanning a large geographical area and multiple sub-catchments. The study also found that the methodology can be effectively coded within a spreadsheet or similar analytical tool to automate its application.Keywords: ARR 2019, blockage, culverts, methodology
Procedia PDF Downloads 371107 Climate Change and Rural-Urban Migration in Brazilian Semiarid Region
Authors: Linda Márcia Mendes Delazeri, Dênis Antônio Da Cunha
Abstract:
Over the past few years, the evidence that human activities have altered the concentration of greenhouse gases in the atmosphere have become stronger, indicating that this accumulation is the most likely cause of climate change observed so far. The risks associated with climate change, although uncertain, have the potential to increase social vulnerability, exacerbating existing socioeconomic challenges. Developing countries are potentially the most affected by climate change, since they have less potential to adapt and are those most dependent on agricultural activities, one of the sectors in which the major negative impacts are expected. In Brazil, specifically, it is expected that the localities which form the semiarid region are among the most affected, due to existing irregularity in rainfall and high temperatures, in addition to economic and social factors endemic to the region. Given the strategic limitations to handle the environmental shocks caused by climate change, an alternative adopted in response to these shocks is migration. Understanding the specific features of migration flows, such as duration, destination and composition is essential to understand the impacts of migration on origin and destination locations and to develop appropriate policies. Thus, this study aims to examine whether climatic factors have contributed to rural-urban migration in semiarid municipalities in the recent past and how these migration flows will be affected by future scenarios of climate change. The study was based on microeconomic theory of utility maximization, in which, to decide to leave the countryside and move on to the urban area, the individual seeks to maximize its utility. Analytically, we estimated an econometric model using the modeling of Fixed Effects and the results confirmed the expectation that climate drivers are crucial for the occurrence of the rural-urban migration. Also, other drivers of the migration process, as economic, social and demographic factors were also important. Additionally, predictions about the rural-urban migration motivated by variations in temperature and precipitation in the climate change scenarios RCP 4.5 and 8.5 were made for the periods 2016-2035 and 2046-2065, defined by the Intergovernmental Panel on Climate Change (IPCC). The results indicate that there will be increased rural-urban migration in the semiarid region in both scenarios and in both periods. In general, the results of this study reinforce the need for formulations of public policies to avoid migration for climatic reasons, such as policies that give support to the productive activities generating income in rural areas. By providing greater incentives for family agriculture and expanding sources of credit for the farmer, it will have a better position to face climate adversities and to settle in rural areas. Ultimately, if migration becomes necessary, there must be the adoption of policies that seek an organized and planned development of urban areas, considering migration as an adaptation strategy to adverse climate effects. Thus, policies that act to absorb migrants in urban areas and ensure that they have access to basic services offered to the urban population would contribute to the social costs reduction of climate variability.Keywords: climate change, migration, rural productivity, semiarid region
Procedia PDF Downloads 354106 Intervening between Family Functioning and Depressive Symptoms: Effect of Deprivation of Liberty, Self-Efficacy and Differentiation of Self
Authors: Jasna Hrncic
Abstract:
Poor family relations predict depression, but also to other mental health issues. Mediating effect of self-efficacy and differentiation of self and moderating effect of decreased accessibility and/or success of other adaptive and defensive mechanisms for overcoming social disadvantages could explain depression as a specific outcome of dysfunctional family relations. The present study analyzes the mediation effect of self-efficacy and differentiation of self from poor family functioning to depressive symptoms and the moderation effect of deprivation of liberty on the listed mediation effect. Deprivation of liberty has, as a general consequence, a decreased accessibility and/or success of many adaptive and defensive mechanisms. It is hypothesized that: 1) self-efficacy and differentiation of self will mediate between family functioning and depressiveness in the total sample, and 2) deprivation of liberty will moderate the stated relations. Cross-sectional study was conducted among 323 male juveniles in Serbia divided in three groups: 98 adolescents deprived of their liberty due to antisocial behavior (incarcerated antisocial group - IAG), 121 adolescents with antisocial behavior in their natural setting (antisocial control group - CAG) and 105 adolescents in general population (general control group - CGG). The CAG was included along with GCG to control the possible influence that comorbidity of antisocial behavior and depressiveness could have on results. Instruments for family relations assessment were: for a whole family of origin the emotional exchange scale and individuation scale from GRADIR by Knezevic, and for a relationship with mother PCS-YSR and CRPBI by barber, and intimacy, rejection, sacrifice, punishment, demands, control and internal control by Opacic and Kos. Differentiation of self (DOS) is measured by emotional self scale (Opacic), self-efficacy (SE) by general incompetence scale by Bezinovic, and depression by BDI (Back), CES-D (Radloff) and D6R (Momirovic). Two-path structural equation modeling based on most commonly reported fit indices, showed that the mediation model had unfavorable fit to our data for total sample [(χ2 (1, N = 324) = 13.73); RMSEA= .20 (90% CI= [.12, .30]); CFI= .98; NFI= .97; AIC=31.73]. Path model provided an adequate fit to the data only for AIG - and not to the data from ACG and GCG. SE and DOS mediated the relationship between PFF and depressiveness. Test of the indirect effects revealed that 23.85% of PFF influences on depressiveness is mediated by these two mediators (the quotient of mediated effect = .24). Test of specific indirect effects showed that SE mediates 22.17%, while DOS mediates 1.67% of PFF influence on depressiveness. Lack of expected mediation effect could be explained by missing other potential mediators (i.e., relationship with that father, social skills, self-esteem) and lower variability of both predictor and criterion variable due to their low levels on the whole sample and on control subsamples. Results suggested that inaccessibility and/or successfulness of other adaptive and defensive mechanisms for overcoming social disadvantages has a strong impact on the mediation effect of self/efficacy and differentiation of self from poor family functioning to depressive symptoms. Further researches could include other potential mediators and a sample of clinically depressed people.Keywords: antisocial behavior, mediating effect, moderating effect, natural setting, incarceration
Procedia PDF Downloads 120105 Edmonton Urban Growth Model as a Support Tool for the City Plan Growth Scenarios Development
Authors: Sinisa J. Vukicevic
Abstract:
Edmonton is currently one of the youngest North American cities and has achieved significant growth over the past 40 years. Strong urban shift requires a new approach to how the city is envisioned, planned, and built. This approach is evidence-based scenario development, and an urban growth model was a key support tool in framing Edmonton development strategies, developing urban policies, and assessing policy implications. The urban growth model has been developed using the Metronamica software platform. The Metronamica land use model evaluated the dynamic of land use change under the influence of key development drivers (population and employment), zoning, land suitability, and land and activity accessibility. The model was designed following the Big City Moves ideas: become greener as we grow, develop a rebuildable city, ignite a community of communities, foster a healing city, and create a city of convergence. The Big City Moves were converted to three development scenarios: ‘Strong Central City’, ‘Node City’, and ‘Corridor City’. Each scenario has a narrative story that expressed scenario’s high level goal, scenario’s approach to residential and commercial activities, to transportation vision, and employment and environmental principles. Land use demand was calculated for each scenario according to specific density targets. Spatial policies were analyzed according to their level of importance within the policy set definition for the specific scenario, but also through the policy measures. The model was calibrated on the way to reproduce known historical land use pattern. For the calibration, we used 2006 and 2011 land use data. The validation is done independently, which means we used the data we did not use for the calibration. The model was validated with 2016 data. In general, the modeling process contain three main phases: ‘from qualitative storyline to quantitative modelling’, ‘model development and model run’, and ‘from quantitative modelling to qualitative storyline’. The model also incorporates five spatial indicators: distance from residential to work, distance from residential to recreation, distance to river valley, urban expansion and habitat fragmentation. The major finding of this research could be looked at from two perspectives: the planning perspective and technology perspective. The planning perspective evaluates the model as a tool for scenario development. Using the model, we explored the land use dynamic that is influenced by a different set of policies. The model enables a direct comparison between the three scenarios. We explored the similarities and differences of scenarios and their quantitative indicators: land use change, population change (and spatial allocation), job allocation, density (population, employment, and dwelling unit), habitat connectivity, proximity to objects of interest, etc. From the technology perspective, the model showed one very important characteristic: the model flexibility. The direction for policy testing changed many times during the consultation process and model flexibility in applying all these changes was highly appreciated. The model satisfied our needs as scenario development and evaluation tool, but also as a communication tool during the consultation process.Keywords: urban growth model, scenario development, spatial indicators, Metronamica
Procedia PDF Downloads 97104 Optimization of the Performance of a Solar Concentrator System with a Cavity Receiver Using the Genetic Algorithm
Authors: Foozhan Gharehkhani
Abstract:
The use of solar energy as a sustainable renewable energy source has gained significant attention in recent years. Solar concentrating systems (CSP), which direct solar radiation onto a receiver, are an effective means of producing high-temperature thermal energy. Cavity receivers, known for their high thermal efficiency and reduced heat losses, are particularly noteworthy in these systems. Optimizing their design can enhance energy efficiency and reduce costs. This study leverages the genetic algorithm, a powerful optimization tool inspired by natural evolution, to optimize the performance of a solar concentrator system with a cavity receiver, aiming for a more efficient and cost-effective design. In this study, a system consisting of a solar concentrator and a cavity receiver was analyzed. The concentrator was designed as a parabolic dish, and the receiver had a cylindrical cavity with a helical structure. The primary parameters were defined as the cavity diameter (D), the receiver height (h), and the helical pipe diameter (d). Initially, the system was optimized to achieve the maximum heat flux, and the optimal parameter values along with the maximum heat flux were obtained. Subsequently, a multi-objective optimization approach was applied, aiming to maximize the heat flux while minimizing the system construction cost. The optimization process was conducted using the genetic algorithm implemented in MATLAB with precise execution. The results of this study revealed that the optimal dimensions of the receiver, including the cavity diameter (D), receiver height (h), and helical pipe diameter (d), were determined to be 0.142 m, 0.1385 m, and 0.011 m, respectively. This optimization resulted in improvements of 3% in the cavity diameter, 8% in the height, and 5% in the helical pipe diameter. Furthermore, the results indicated that the primary focus of this research was the accurate thermal modeling of the solar collection system. The simulations and the obtained results demonstrated that the optimization applied to this system maximized its thermal performance and elevated its energy efficiency to a desirable level. Moreover, this study successfully modeled and controlled effective temperature variations at different angles of solar irradiation, highlighting significant improvements in system efficiency. The significance of this research lies in leveraging solar energy as one of the prominent renewable energy sources, playing a key role in replacing fossil fuels. Considering the environmental and economic challenges associated with the excessive use of fossil resources—such as increased greenhouse gas emissions, environmental degradation, and the depletion of fossil energy reserves—developing technologies related to renewable energy has become a vital priority. Among these, solar concentrating systems, capable of achieving high temperatures, are particularly important for industrial and heating applications. This research aims to optimize the performance of such systems through precise design and simulation, making a significant contribution to the advancement of advanced technologies and the efficient utilization of solar energy in Iran, thereby addressing the country's future energy needs effectively.Keywords: cavity receiver, genetic algorithm, optimization, solar concentrator system performance
Procedia PDF Downloads 13103 Mediating Role of 'Investment Recovery' and 'Competitiveness' on the Impact of Green Supply Chain Management Practices over Firm Performance: An Empirical Study Based on Textile Industry of Pakistan
Authors: Mehwish Jawaad
Abstract:
Purpose: The concept of GrSCM (Green Supply Chain Management) in the academic and research field is still thought to be in the development stage especially in Asian Emerging Economies. The purpose of this paper is to contribute significantly to the first wave of empirical investigation on GrSCM Practices and Firm Performance measures in Pakistan. The aim of this research is to develop a more holistic approach towards investigating the impact of Green Supply Chain Management Practices (Ecodesign, Internal Environmental Management systems, Green Distribution, Green Purchasing and Cooperation with Customers) on multiple dimensions of Firm Performance Measures (Economic Performance, Environmental Performance and Operational Performance) with a mediating role of Investment Recovery and Competitiveness. This paper also serves as an initiative to identify if the relationship between Investment Recovery and Firm Performance Measures is mediated by Competitiveness. Design/ Methodology/Approach: This study is based on survey Data collected from 272, ISO (14001) Certified Textile Firms Based in Lahore, Faisalabad, and Karachi which are involved in Spinning, Dyeing, Printing or Bleaching. A Theoretical model was developed incorporating the constructs representing Green Activities and Firm Performance Measures of a firm. The data was analyzed using Partial Least Square Structural Equation Modeling. Senior and Mid-level managers provided the data reflecting the degree to which their organizations deal with both internal and external stakeholders to improve the environmental sustainability of their supply chain. Findings: Of the 36 proposed Hypothesis, 20 are considered valid and significant. The statistics result reveal that GrSCM practices positively impact Environmental Performance followed by Economic and Operational Performance. Investment Recovery acts as a strong mediator between Intra organizational Green activities and performance outcomes. The relationship of Reverse Logistics influencing outcomes is significantly mediated by Competitiveness. The pressure originating from customers exert significant positive influence on the firm to adopt Green Practices consequently leading to higher outcomes. Research Contribution/Originality: Underpinning the Resource dependence theory and as a first wave of investigating the impact of Green Supply chain on performance outcomes in Pakistan, this study intends to make a prominent mark in the field of research. Investment and Competitiveness together are tested as a mediator for the first time in this arena. Managerial implications: Practitioner is provided with a framework for assessing the synergistic impact of GrSCM practices on performance. Upgradation of Accreditations and Audit Programs on regular basis are the need of the hour. Making the processes leaner with the sale of excess inventories and scrap helps the firm to work more efficiently and productively.Keywords: economic performance, environmental performance, green supply chain management practices, operational performance, sustainability, a textile sector of Pakistan
Procedia PDF Downloads 227102 Assessing of Social Comfort of the Russian Population with Big Data
Authors: Marina Shakleina, Konstantin Shaklein, Stanislav Yakiro
Abstract:
The digitalization of modern human life over the last decade has facilitated the acquisition, storage, and processing of data, which are used to detect changes in consumer preferences and to improve the internal efficiency of the production process. This emerging trend has attracted academic interest in the use of big data in research. The study focuses on modeling the social comfort of the Russian population for the period 2010-2021 using big data. Big data provides enormous opportunities for understanding human interactions at the scale of society with plenty of space and time dynamics. One of the most popular big data sources is Google Trends. The methodology for assessing social comfort using big data involves several steps: 1. 574 words were selected based on the Harvard IV-4 Dictionary adjusted to fit the reality of everyday Russian life. The set of keywords was further cleansed by excluding queries consisting of verbs and words with several lexical meanings. 2. Search queries were processed to ensure comparability of results: the transformation of data to a 10-point scale, elimination of popularity peaks, detrending, and deseasoning. The proposed methodology for keyword search and Google Trends processing was implemented in the form of a script in the Python programming language. 3. Block and summary integral indicators of social comfort were constructed using the first modified principal component resulting in weighting coefficients values of block components. According to the study, social comfort is described by 12 blocks: ‘health’, ‘education’, ‘social support’, ‘financial situation’, ‘employment’, ‘housing’, ‘ethical norms’, ‘security’, ‘political stability’, ‘leisure’, ‘environment’, ‘infrastructure’. According to the model, the summary integral indicator increased by 54% and was 4.631 points; the average annual rate was 3.6%, which is higher than the rate of economic growth by 2.7 p.p. The value of the indicator describing social comfort in Russia is determined by 26% by ‘social support’, 24% by ‘education’, 12% by ‘infrastructure’, 10% by ‘leisure’, and the remaining 28% by others. Among 25% of the most popular searches, 85% are of negative nature and are mainly related to the blocks ‘security’, ‘political stability’, ‘health’, for example, ‘crime rate’, ‘vulnerability’. Among the 25% most unpopular queries, 99% of the queries were positive and mostly related to the blocks ‘ethical norms’, ‘education’, ‘employment’, for example, ‘social package’, ‘recycling’. In conclusion, the introduction of the latent category ‘social comfort’ into the scientific vocabulary deepens the theory of the quality of life of the population in terms of the study of the involvement of an individual in the society and expanding the subjective aspect of the measurements of various indicators. Integral assessment of social comfort demonstrates the overall picture of the development of the phenomenon over time and space and quantitatively evaluates ongoing socio-economic policy. The application of big data in the assessment of latent categories gives stable results, which opens up possibilities for their practical implementation.Keywords: big data, Google trends, integral indicator, social comfort
Procedia PDF Downloads 206101 Relationship of Entrepreneurial Ecosystem Factors and Entrepreneurial Cognition: An Exploratory Study Applied to Regional and Metropolitan Ecosystems in New South Wales, Australia
Authors: Sumedha Weerasekara, Morgan Miles, Mark Morrison, Branka Krivokapic-Skoko
Abstract:
This paper is aimed at exploring the interrelationships among entrepreneurial ecosystem factors and entrepreneurial cognition in regional and metropolitan ecosystems. Entrepreneurial ecosystem factors examined include: culture, infrastructure, access to finance, informal networks, support services, access to universities, and the depth and breadth of the talent pool. Using a multivariate approach we explore the impact of these ecosystem factors or elements on entrepreneurial cognition. In doing so, the existing body of knowledge from the literature on entrepreneurial ecosystem and cognition have been blended to explore the relationship between entrepreneurial ecosystem factors and cognition in a way not hitherto investigated. The concept of the entrepreneurial ecosystem has received increased attention as governments, universities and communities have started to recognize the potential of integrated policies, structures, programs and processes that foster entrepreneurship activities by supporting innovation, productivity and employment growth. The notion of entrepreneurial ecosystems has evolved and grown with the advancement of theoretical research and empirical studies. Importance of incorporating external factors like culture, political environment, and the economic environment within a single framework will enhance the capacity of examining the whole systems functionality to better understand the interaction of the entrepreneurial actors and factors within a single framework. The literature on clusters underplays the role of entrepreneurs and entrepreneurial management in creating and co-creating organizations, markets, and supporting ecosystems. Entrepreneurs are only one actor following a limited set of roles and dependent upon many other factors to thrive. As a consequence, entrepreneurs and relevant authorities should be aware of the other actors and factors with which they engage and rely, and make strategic choices to achieve both self and also collective objectives. The study uses stratified random sampling method to collect survey data from 12 different regions in regional and metropolitan regions of NSW, Australia. A questionnaire was administered online among 512 Small and medium enterprise owners operating their business in selected 12 regions in NSW, Australia. Data were analyzed using descriptive analyzing techniques and partial least squares - structural equation modeling. The findings show that even though there is a significant relationship between each and every entrepreneurial ecosystem factors, there is a weak relationship between most entrepreneurial ecosystem factors and entrepreneurial cognition. In the metropolitan context, the availability of finance and informal networks have the largest impact on entrepreneurial cognition while culture, infrastructure, and support services having the smallest impact and the talent pool and universities having a moderate impact on entrepreneurial cognition. Interestingly, in a regional context, culture, availability of finance, and the talent pool have the highest impact on entrepreneurial cognition, while informal networks having the smallest impact and the remaining factors – infrastructure, universities, and support services have a moderate impact on entrepreneurial cognition. These findings suggest the need for a location-specific strategy for supporting the development of entrepreneurial cognition.Keywords: academic achievement, colour response card, feedback
Procedia PDF Downloads 146100 Developing a Deep Understanding of the Immune Response in Hepatitis B Virus Infected Patients Using a Knowledge Driven Approach
Authors: Hanan Begali, Shahi Dost, Annett Ziegler, Markus Cornberg, Maria-Esther Vidal, Anke R. M. Kraft
Abstract:
Chronic hepatitis B virus (HBV) infection can be treated with nucleot(s)ide analog (NA), for example, which inhibits HBV replication. However, they have hardly any influence on the functional cure of HBV, which is defined by hepatitis B surface antigen (HBsAg) loss. NA needs to be taken life-long, which is not available for all patients worldwide. Additionally, NA-treated patients are still at risk of developing cirrhosis, liver failure, or hepatocellular carcinoma (HCC). Although each patient has the same components of the immune system, immune responses vary between patients. Therefore, a deeper understanding of the immune response against HBV in different patients is necessary to understand the parameters leading to HBV cure and to use this knowledge to optimize HBV therapies. This requires seamless integration of an enormous amount of diverse and fine-grained data from viral markers, e.g., hepatitis B core-related antigen (HBcrAg) and hepatitis B surface antigen (HBsAg). The data integration system relies on the assumption that profiling human immune systems requires the analysis of various variables (e.g., demographic data, treatments, pre-existing conditions, immune cell response, or HLA-typing) rather than only one. However, the values of these variables are collected independently. They are presented in a myriad of formats, e.g., excel files, textual descriptions, lab book notes, and images of flow cytometry dot plots. Additionally, patients can be identified differently in these analyses. This heterogeneity complicates the integration of variables, as data management techniques are needed to create a unified view in which individual formats and identifiers are transparent when profiling the human immune systems. The proposed study (HBsRE) aims at integrating heterogeneous data sets of 87 chronically HBV-infected patients, e.g., clinical data, immune cell response, and HLA-typing, with knowledge encoded in biomedical ontologies and open-source databases into a knowledge-driven framework. This new technique enables us to harmonize and standardize heterogeneous datasets in the defined modeling of the data integration system, which will be evaluated in the knowledge graph (KG). KGs are data structures that represent the knowledge and data as factual statements using a graph data model. Finally, the analytic data model will be applied on top of KG in order to develop a deeper understanding of the immune profiles among various patients and to evaluate factors playing a role in a holistic profile of patients with HBsAg level loss. Additionally, our objective is to utilize this unified approach to stratify patients for new effective treatments. This study is developed in the context of the project “Transforming big data into knowledge: for deep immune profiling in vaccination, infectious diseases, and transplantation (ImProVIT)”, which is a multidisciplinary team composed of computer scientists, infection biologists, and immunologists.Keywords: chronic hepatitis B infection, immune response, knowledge graphs, ontology
Procedia PDF Downloads 11299 Insufficiency of Cardioprotection at Adaptation to Chronic Hypoxia and at Remote Postconditioning in Young and Aged Rats with Metabolic Syndrome, the Role of Metabolic Disorders or Opioid Signaling
Authors: Natalia V. Naryzhnaya, Alexandr V. Mukhomedzyanov, Ivan A. Derkachev, Boris K. Kurbatov, Leonid N. Maslov
Abstract:
Background: Techniques of adaptation to hypoxia and remote postconditioning (RPost) have great prospects for use in the clinic. However, recent studies have shown low efficacy of remote postconditioning in patients with AMI. We hypothesize that the reasons for this inefficiency may be metabolic disorders, which are very common, especially in patients with cardiovascular disease, and age of patients. The purpose of the study was to reveal the effectiveness of adaptation to chronic hypoxia and RPost. To determine the possible relationship between the decrease in the effectiveness of projective impacts and disorders of carbohydrate and lipid metabolism. Design: The study was carried out on Wistar rats 60 day old. MetS was induced by high-carbohydrate, high-fat diet (HСHFD). Modeling MS led to the formation of obesity, hypertension, impaired lipid and carbohydrate metabolism, hyperleptinemia, and moderate stress. Groups with adaptation to chronic hypoxia were subjected to hypoxia for 21 days at 12% O2 and 0.3% CO2 after complete of HСHFD. All animals were subjected to 45 min coronary occlusion and 120 min reperfusion. Groups with RPost, immediately after the end of ischemia, tourniquets were applied to the hind limbs in the area of the hip joint (3 times in the mode of 5 min ischemia, 5 min reperfusion). Results: RPost led to a twofold reduction of infarct size in rats with intact metabolism (р < 0.0001), while in rats with MetS, a decrease in infarct size during RPost was 25 % (p = 0.00003). A direct correlation was found between of infarct size during RPost and the serum leptin level of rats with MetC (r = 0.85). The presented data suggested that a decrease in the efficiency of remote postconditioning in rats with diet-induced metabolic syndrome depends on serum leptin. Chronic hypoxia resulted in a 38% reduced in infarct size in metabolically intact rats. The decrease of cardioprotection was observed in rats with chronic hypoxia and MetS. Infarct size showed a direct correlation with impaired glucose tolerance (AUC, glucose tolerance test, r = 0.034) and serum triglyceride levels (r = 0.39). Our study showed the dependence of cardioprotection in rats with metabolic syndrome during chronic hypoxia and DPost on opioids in the blood serum and myocardium, protein kinase C and NO synthase activity. Conclusion: The results obtained showed that the infarct-limiting efficiency of adaptation to hypoxia and remote postconditioning is reduced or completely absent in animals with metabolic syndrome. The increase in the infarction, in this case, directly depends on the disturbances in carbohydrate. lipid metabolism and opioids signaling. Funding: Investigation of effectiveness of chronic hypoxia at the metabolic syndrome was carried out within the support of Russian Science Foundation Grant 22-15-00048. Studies of the mechanisms of arterial hypertension in induced metabolic syndrome were carried out within the framework of the state assignment (122020300042-4). The work was performed using the Center for Collective Use "Medical Genomics".Keywords: chronic hypoxia, opioids, remote postconditioning, metabolic syndrome
Procedia PDF Downloads 8198 The Relationships between Sustainable Supply Chain Management Practices, Digital Transformation, and Enterprise Performance in Vietnam
Authors: Thi Phuong Pham
Abstract:
This paper explores the intricate relationships between Sustainable Supply Chain Management (SSCM) practices, digital transformation (DT), and enterprise performance within the context of Vietnam. Over the past two decades, there has been a paradigm shift in supply chain management, with sustainability gaining prominence due to increasing concerns about climate change, labor practices, and the environmental impact of business operations. In the ever-evolving realm of global business, sustainability and digital transformation (DT) intersecting dynamics have become pivotal catalysts for organizational success. This research investigates how integrating SSCM with DT can enhance enterprise performance, a subject of significant relevance as Vietnam undergoes rapid economic growth and digital transformation. The primary objectives of this research are twofold: (1) to examine the effects of SSCM practices on enterprise performance in three critical aspects: economic, environmental, and social performance in Vietnam and (2) to explore the mediating role of DT in this relationship. By analyzing these dynamics, the study aims to provide valuable insights for policymakers and the academic community regarding the potential benefits of aligning SSCM principles with digital technologies. To achieve these objectives, the research employs a robust mixed-method approach. The research begins with a comprehensive literature review to establish a theoretical framework that underpins the empirical analysis. Data collection was conducted through a structured survey targeting Vietnamese enterprises, with the survey instrument designed to measure SSCM practices, DT, and enterprise performance using a five-point Likert scale. The reliability and validity of the survey were ensured by pre-testing with industry practitioners and refining the questionnaire based on their feedback. For data analysis, structural equation modeling (SEM) was employed to quantify the direct effects of SSCM on enterprise performance, while mediation analysis using the PROCESS Macro 4.0 in SPSS was conducted to assess the mediating role of DT. The findings reveal that SSCM practices positively influence enterprise performance by enhancing operational efficiency, reducing costs, and improving sustainability metrics. Furthermore, DT acts as a significant mediator, amplifying the positive impacts of SSCM practices through improved data management, enhanced communication, and more agile supply chain processes. These results underscore the critical role of DT in maximizing the benefits of SSCM practices, particularly in a developing economy like Vietnam. This research contributes to the existing body of knowledge by highlighting the synergistic effects of SSCM and DT on enterprise performance. It offers practical implications for businesses that enhance their sustainability and digital capabilities, providing a roadmap for integrating these two pivotal aspects to achieve competitive advantage. The study's insights can also inform governmental policies designed to foster sustainable economic growth and digital innovation in Vietnam.Keywords: sustainable supply chain management, digital transformation, enterprise performance, Vietnam
Procedia PDF Downloads 3297 Solution Thermodynamics, Photophysical and Computational Studies of TACH2OX, a C-3 Symmetric 8-Hydroxyquinoline: Abiotic Siderophore Analogue of Enterobactin
Authors: B. K. Kanungo, Monika Thakur, Minati Baral
Abstract:
8-hydroxyquinoline, (8HQ), experiences a renaissance due to its utility as a building block in metallosupramolecular chemistry and its versatile use of its derivatives in various fields of analytical chemistry, materials science, and pharmaceutics. It forms stable complexes with a variety of metal ions. Assembly of more than one such unit to form a polydentate chelator enhances its coordinating ability and the related properties due to the chelate effect resulting in high stability constant. Keeping in view the above, a nonadentate chelator N-[3,5-bis(8-hydroxyquinoline-2-amido)cyclohexyl]-8-hydroxyquinoline-2-carboxamide, (TACH2OX), containing a central cis,cis-1,3,5-triaminocyclohexane appended to three 8-hydroxyquinoline at 2-position through amide linkage is developed, and its solution thermodynamics, photophysical and Density Functional Theory (DFT) studies were undertaken. The synthesis of TACH2OX was carried out by condensation of cis,cis-1,3,5-triaminocyclohexane, (TACH) with 8‐hydroxyquinoline‐2‐carboxylic acid. The brown colored solid has been fully characterized through melting point, infrared, nuclear magnetic resonance, electrospray ionization mass and electronic spectroscopy. In solution, TACH2OX forms protonated complexes below pH 3.4, which consecutively deprotonates to generate trinegative ion with the rise of pH. Nine protonation constants for the ligand were obtained that ranges between 2.26 to 7.28. The interaction of the chelator with two trivalent metal ion Fe3+ and Al3+ were studied in aqueous solution at 298 K. The metal-ligand formation constants (ML) obtained by potentiometric and spectrophotometric method agree with each other. The protonated and hydrolyzed species were also detected in the system. The in-silico studies of the ligand, as well as the complexes including their protonated and deprotonated species assessed by density functional theory technique, gave an accurate correlation with each observed properties such as the protonation constants, stability constants, infra-red, nmr, electronic absorption and emission spectral bands. The nature of electronic and emission spectral bands in terms of number and type were ascertained from time-dependent density functional theory study and the natural transition orbitals (NTO). The global reactivity indices parameters were used for comparison of the reactivity of the ligand and the complex molecules. The natural bonding orbital (NBO) analysis could successfully describe the structure and bonding of the metal-ligand complexes specifying the percentage of contribution in atomic orbitals in the creation of molecular orbitals. The obtained high value of metal-ligand formation constants indicates that the newly synthesized chelator is a very powerful synthetic chelator. The minimum energy molecular modeling structure of the ligand suggests that the ligand, TACH2OX, in a tripodal fashion firmly coordinates to the metal ion as hexa-coordinated chelate displaying distorted octahedral geometry by binding through three sets of N, O- donor atoms, present in each pendant arm of the central tris-cyclohexaneamine tripod.Keywords: complexes, DFT, formation constant, TACH2OX
Procedia PDF Downloads 15496 Low Cost LiDAR-GNSS-UAV Technology Development for PT Garam’s Three Dimensional Stockpile Modeling Needs
Authors: Mohkammad Nur Cahyadi, Imam Wahyu Farid, Ronny Mardianto, Agung Budi Cahyono, Eko Yuli Handoko, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan
Abstract:
Unmanned aerial vehicle (UAV) technology has cost efficiency and data retrieval time advantages. Using technologies such as UAV, GNSS, and LiDAR will later be combined into one of the newest technologies to cover each other's deficiencies. This integration system aims to increase the accuracy of calculating the volume of the land stockpile of PT. Garam (Salt Company). The use of UAV applications to obtain geometric data and capture textures that characterize the structure of objects. This study uses the Taror 650 Iron Man drone with four propellers, which can fly for 15 minutes. LiDAR can classify based on the number of image acquisitions processed in the software, utilizing photogrammetry and structural science principles from Motion point cloud technology. LiDAR can perform data acquisition that enables the creation of point clouds, three-dimensional models, Digital Surface Models, Contours, and orthomosaics with high accuracy. LiDAR has a drawback in the form of coordinate data positions that have local references. Therefore, researchers use GNSS, LiDAR, and drone multi-sensor technology to map the stockpile of salt on open land and warehouses every year, carried out by PT. Garam twice, where the previous process used terrestrial methods and manual calculations with sacks. Research with LiDAR needs to be combined with UAV to overcome data acquisition limitations because it only passes through the right and left sides of the object, mainly when applied to a salt stockpile. The UAV is flown to assist data acquisition with a wide coverage with the help of integration of the 200-gram LiDAR system so that the flying angle taken can be optimal during the flight process. Using LiDAR for low-cost mapping surveys will make it easier for surveyors and academics to obtain pretty accurate data at a more economical price. As a survey tool, LiDAR is included in a tool with a low price, around 999 USD; this device can produce detailed data. Therefore, to minimize the operational costs of using LiDAR, surveyors can use Low-Cost LiDAR, GNSS, and UAV at a price of around 638 USD. The data generated by this sensor is in the form of a visualization of an object shape made in three dimensions. This study aims to combine Low-Cost GPS measurements with Low-Cost LiDAR, which are processed using free user software. GPS Low Cost generates data in the form of position-determining latitude and longitude coordinates. The data generates X, Y, and Z values to help georeferencing process the detected object. This research will also produce LiDAR, which can detect objects, including the height of the entire environment in that location. The results of the data obtained are calibrated with pitch, roll, and yaw to get the vertical height of the existing contours. This study conducted an experimental process on the roof of a building with a radius of approximately 30 meters.Keywords: LiDAR, unmanned aerial vehicle, low-cost GNSS, contour
Procedia PDF Downloads 10095 Numerical Model of Crude Glycerol Autothermal Reforming to Hydrogen-Rich Syngas
Authors: A. Odoom, A. Salama, H. Ibrahim
Abstract:
Hydrogen is a clean source of energy for power production and transportation. The main source of hydrogen in this research is biodiesel. Glycerol also called glycerine is a by-product of biodiesel production by transesterification of vegetable oils and methanol. This is a reliable and environmentally-friendly source of hydrogen production than fossil fuels. A typical composition of crude glycerol comprises of glycerol, water, organic and inorganic salts, soap, methanol and small amounts of glycerides. Crude glycerol has limited industrial application due to its low purity thus, the usage of crude glycerol can significantly enhance the sustainability and production of biodiesel. Reforming techniques is an approach for hydrogen production mainly Steam Reforming (SR), Autothermal Reforming (ATR) and Partial Oxidation Reforming (POR). SR produces high hydrogen conversions and yield but is highly endothermic whereas POR is exothermic. On the downside, PO yields lower hydrogen as well as large amount of side reactions. ATR which is a fusion of partial oxidation reforming and steam reforming is thermally neutral because net reactor heat duty is zero. It has relatively high hydrogen yield, selectivity as well as limits coke formation. The complex chemical processes that take place during the production phases makes it relatively difficult to construct a reliable and robust numerical model. Numerical model is a tool to mimic reality and provide insight into the influence of the parameters. In this work, we introduce a finite volume numerical study for an 'in-house' lab-scale experiment of ATR. Previous numerical studies on this process have considered either using Comsol or nodal finite difference analysis. Since Comsol is a commercial package which is not readily available everywhere and lab-scale experiment can be considered well mixed in the radial direction. One spatial dimension suffices to capture the essential feature of ATR, in this work, we consider developing our own numerical approach using MATLAB. A continuum fixed bed reactor is modelled using MATLAB with both pseudo homogeneous and heterogeneous models. The drawback of nodal finite difference formulation is that it is not locally conservative which means that materials and momenta can be generated inside the domain as an artifact of the discretization. Control volume, on the other hand, is locally conservative and suites very well problems where materials are generated and consumed inside the domain. In this work, species mass balance, Darcy’s equation and energy equations are solved using operator splitting technique. Therefore, diffusion-like terms are discretized implicitly while advection-like terms are discretized explicitly. An upwind scheme is adapted for the advection term to ensure accuracy and positivity. Comparisons with the experimental data show very good agreements which build confidence in our modeling approach. The models obtained were validated and optimized for better results.Keywords: autothermal reforming, crude glycerol, hydrogen, numerical model
Procedia PDF Downloads 14494 Strategies for the Optimization of Ground Resistance in Large Scale Foundations for Optimum Lightning Protection
Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda
Abstract:
In this paper, we discuss the standard improvements which can be made to reduce the earth resistance in difficult terrains for optimum lightning protection, what are the practical limitations, and how the modeling can be refined for accurate diagnostics and ground resistance minimization. Ground resistance minimization can be made via three different approaches: burying vertical electrodes connected in parallel, burying horizontal conductive plates or meshes, or modifying the own terrain, either by changing the entire terrain material in a large volume or by adding earth-enhancing compounds. The use of vertical electrodes connected in parallel pose several practical limitations. In order to prevent loss of effectiveness, it is necessary to keep a minimum distance between each electrode, which is typically around five times larger than the electrode length. Otherwise, the overlapping of the local equipotential lines around each electrode reduces the efficiency of the configuration. The addition of parallel electrodes reduces the resistance and facilitates the measurement, but the basic parallel resistor formula of circuit theory will always underestimate the final resistance. Numerical simulation of equipotential lines around the electrodes overcomes this limitation. The resistance of a single electrode will always be proportional to the soil resistivity. The electrodes are usually installed with a backfilling material of high conductivity, which increases the effective diameter. However, the improvement is marginal, since the electrode diameter counts in the estimation of the ground resistance via a logarithmic function. Substances that are used for efficient chemical treatment must be environmentally friendly and must feature stability, high hygroscopicity, low corrosivity, and high electrical conductivity. A number of earth enhancement materials are commercially available. Many are comprised of carbon-based materials or clays like bentonite. These materials can also be used as backfilling materials to reduce the resistance of an electrode. Chemical treatment of soil has environmental issues. Some products contain copper sulfate or other copper-based compounds, which may not be environmentally friendly. Carbon-based compounds are relatively inexpensive and they do have very low resistivities, but they also feature corrosion issues. Typically, the carbon can corrode and destroy a copper electrode in around five years. These compounds also have potential environmental concerns. Some earthing enhancement materials contain cement, which, after installation acquire properties that are very close to concrete. This prevents the earthing enhancement material from leaching into the soil. After analyzing different configurations, we conclude that a buried conductive ring with vertical electrodes connected periodically should be the optimum baseline solution for the grounding of a large size structure installed on a large resistivity terrain. In order to show this, a practical example is explained here where we simulate the ground resistance of a conductive ring buried in a terrain with a resistivity in the range of 1 kOhm·m.Keywords: grounding improvements, large scale scientific instrument, lightning risk assessment, lightning standards
Procedia PDF Downloads 14193 Evaluation of Nanoparticle Application to Control Formation Damage in Porous Media: Laboratory and Mathematical Modelling
Authors: Gabriel Malgaresi, Sara Borazjani, Hadi Madani, Pavel Bedrikovetsky
Abstract:
Suspension-Colloidal flow in porous media occurs in numerous engineering fields, such as industrial water treatment, the disposal of industrial wastes into aquifers with the propagation of contaminants and low salinity water injection into petroleum reservoirs. The main effects are particle mobilization and captured by the porous rock, which can cause pore plugging and permeability reduction which is known as formation damage. Various factors such as fluid salinity, pH, temperature, and rock properties affect particle detachment. Formation damage is unfavorable specifically near injection and production wells. One way to control formation damage is pre-treatment of the rock with nanoparticles. Adsorption of nanoparticles on fines and rock surfaces alters zeta-potential of the surfaces and enhances the attachment force between the rock and fine particles. The main objective of this study is to develop a two-stage mathematical model for (1) flow and adsorption of nanoparticles on the rock in the pre-treatment stage and (2) fines migration and permeability reduction during the water production after the pre-treatment. The model accounts for adsorption and desorption of nanoparticles, fines migration, and kinetics of particle capture. The system of equations allows for the exact solution. The non-self-similar wave-interaction problem was solved by the Method of Characteristics. The analytical model is new in two ways: First, it accounts for the specific boundary and initial condition describing the injection of nanoparticle and production from the pre-treated porous media; second, it contains the effect of nanoparticle sorption hysteresis. The derived analytical model contains explicit formulae for the concentration fronts along with pressure drop. The solution is used to determine the optimal injection concentration of nanoparticle to avoid formation damage. The mathematical model was validated via an innovative laboratory program. The laboratory study includes two sets of core-flood experiments: (1) production of water without nanoparticle pre-treatment; (2) pre-treatment of a similar core with nanoparticles followed by water production. Positively-charged Alumina nanoparticles with the average particle size of 100 nm were used for the rock pre-treatment. The core was saturated with the nanoparticles and then flushed with low salinity water; pressure drop across the core and the outlet fine concentration was monitored and used for model validation. The results of the analytical modeling showed a significant reduction in the fine outlet concentration and formation damage. This observation was in great agreement with the results of core-flood data. The exact solution accurately describes fines particle breakthroughs and evaluates the positive effect of nanoparticles in formation damage. We show that the adsorbed concentration of nanoparticle highly affects the permeability of the porous media. For the laboratory case presented, the reduction of permeability after 1 PVI production in the pre-treated scenario is 50% lower than the reference case. The main outcome of this study is to provide a validated mathematical model to evaluate the effect of nanoparticles on formation damage.Keywords: nano-particles, formation damage, permeability, fines migration
Procedia PDF Downloads 62792 The Temperature Degradation Process of Siloxane Polymeric Coatings
Authors: Andrzej Szewczak
Abstract:
Study of the effect of high temperatures on polymer coatings represents an important field of research of their properties. Polymers, as materials with numerous features (chemical resistance, ease of processing and recycling, corrosion resistance, low density and weight) are currently the most widely used modern building materials, among others in the resin concrete, plastic parts, and hydrophobic coatings. Unfortunately, the polymers have also disadvantages, one of which decides about their usage - low resistance to high temperatures and brittleness. This applies in particular thin and flexible polymeric coatings applied to other materials, such a steel and concrete, which degrade under varying thermal conditions. Research about improvement of this state includes methods of modification of the polymer composition, structure, conditioning conditions, and the polymerization reaction. At present, ways are sought to reflect the actual environmental conditions, in which the coating will be operating after it has been applied to other material. These studies are difficult because of the need for adopting a proper model of the polymer operation and the determination of phenomena occurring at the time of temperature fluctuations. For this reason, alternative methods are being developed, taking into account the rapid modeling and the simulation of the actual operating conditions of polymeric coating’s materials in real conditions. The nature of a duration is typical for the temperature influence in the environment. Studies typically involve the measurement of variation one or more physical and mechanical properties of such coating in time. Based on these results it is possible to determine the effects of temperature loading and develop methods affecting in the improvement of coatings’ properties. This paper contains a description of the stability studies of silicone coatings deposited on the surface of a ceramic brick. The brick’s surface was hydrophobized by two types of inorganic polymers: nano-polymer preparation based on dialkyl siloxanes (Series 1 - 5) and an aqueous solution of the silicon (series 6 - 10). In order to enhance the stability of the film formed on the brick’s surface and immunize it to variable temperature and humidity loading, the nano silica was added to the polymer. The right combination of the polymer liquid phase and the solid phase of nano silica was obtained by disintegration of the mixture by the sonification. The changes of viscosity and surface tension of polymers were defined, which are the basic rheological parameters affecting the state and the durability of the polymer coating. The coatings created on the brick’s surfaces were then subjected to a temperature loading of 100° C and moisture by total immersion in water, in order to determine any water absorption changes caused by damages and the degradation of the polymer film. The effect of moisture and temperature was determined by measurement (at specified number of cycles) of changes in the surface hardness (using a Vickers’ method) and the absorption of individual samples. As a result, on the basis of the obtained results, the degradation process of polymer coatings related to their durability changes in time was determined.Keywords: silicones, siloxanes, surface hardness, temperature, water absorption
Procedia PDF Downloads 24591 South African Multiple Deprivation-Concentration Index Quantiles Differentiated by Components of Success and Impediment to Tuberculosis Control Programme Using Mathematical Modelling in Rural O. R. Tambo District Health Facilities
Authors: Ntandazo Dlatu, Benjamin Longo-Mbenza, Andre Renzaho, Ruffin Appalata, Yolande Yvonne Valeria Matoumona Mavoungou, Mbenza Ben Longo, Kenneth Ekoru, Blaise Makoso, Gedeon Longo Longo
Abstract:
Background: The gap between complexities related to the integration of Tuberculosis /HIV control and evidence-based knowledge motivated the initiation of the study. Therefore, the objective of this study was to explore correlations between national TB management guidelines, multiple deprivation indexes, quantiles, components and levels of Tuberculosis control programme using mathematical modeling in rural O.R. Tambo District Health Facilities, South Africa. Methods: The study design used mixed secondary data analysis and cross-sectional analysis between 2009 and 2013 across O.R Tambo District, Eastern Cape, South Africa using univariate/ bivariate analysis, linear multiple regression models, and multivariate discriminant analysis. Health inequalities indicators and component of an impediment to the tuberculosis control programme were evaluated. Results: In total, 62 400 records for TB notification were analyzed for the period 2009-2013. There was a significant but negative between Financial Year Expenditure (r= -0.894; P= 0.041) Seropositive HIV status(r= -0.979; P= 0.004), Population Density (r = -0.881; P= 0.048) and the number of TB defaulter in all TB cases. It was shown unsuccessful control of TB management program through correlations between numbers of new PTB smear positive, TB defaulter new smear-positive, TB failure all TB, Pulmonary Tuberculosis case finding index and deprivation-concentration-dispersion index. It was shown successful TB program control through significant and negative associations between declining numbers of death in co-infection of HIV and TB, TB deaths all TB and SMIAD gradient/ deprivation-concentration-dispersion index. The multivariate linear model was summarized by unadjusted r of 96%, adjusted R2 of 95 %, Standard Error of estimate of 0.110, R2 changed of 0.959 and significance for variance change for P=0.004 to explain the prediction of TB defaulter in all TB with equation y= 8.558-0.979 x number of HIV seropositive. After adjusting for confounding factors (PTB case finding the index, TB defaulter new smear-positive, TB death in all TB, TB defaulter all TB, and TB failure in all TB). The HIV and TB death, as well as new PTB smear positive, were identified as the most important, significant, and independent indicator to discriminate most deprived deprivation index far from other deprivation quintiles 2-5 using discriminant analysis. Conclusion: Elimination of poverty such as overcrowding, lack of sanitation and environment of highest burden of HIV might end the TB threat in O.R Tambo District, Eastern Cape, South Africa. Furthermore, ongoing adequate budget comprehensive, holistic and collaborative initiative towards Sustainable Developmental Goals (SDGs) is necessary for complete elimination of TB in poor O.R Tambo District.Keywords: tuberculosis, HIV/AIDS, success, failure, control program, health inequalities, South Africa
Procedia PDF Downloads 17590 Testing Two Actors Contextual Interaction Theory in a Multi Actors Context: Case of COVID-19 Disease Prevention and Control Policy
Authors: Muhammad Fayyaz Nazir, Ellen Wayenberg, Shahzadaah Faahed Qureshi
Abstract:
Introduction: The study is based on the Contextual Interaction Theory (CIT) constructs to explore the role of policy actors in implementing the COVID-19 Disease Prevention and Control (DP&C) Policy. The study analyzes the role of healthcare workers' contextual factors, such as cognition, motives, and resources, and their interactions in implementing Social Distancing (SD). In this way, we test a two actors policy implementation theory, i.e., the CIT in a three-actor context. Methods: Data was collected through document analysis and semi-structured interviews. For a qualitative study design, interviews were conducted with questions on cognition, motives, and resources from the healthcare workers involved in implementing SD in the local context in Multan – Pakistan. The possible interactions resulting from contextual factors of the policy actors – healthcare workers were identified through framework analysis protocol guided by CIT and supported by trustworthiness criterion and data saturation. Results: This inquiry resulted in theory application, addition, and enrichment. The theoretical application in the three actor's contexts illustrates the different levels of motives, cognition, and resources of healthcare workers – senior administrators, managers, and healthcare professionals. The senior administrators working in National Command and Operations Center (NCOC), Provincial Technical Committees (PTCs), and Districts Covid Teams (DCTs) were playing their role with high motivation. They were fully informed about the policy and moderately resourceful. The policy implementors: healthcare managers working on implementing the SD within their respective hospitals were playing their role with high motivation and were fully informed about the policy. However, they lacked the required resources to implement SD. The target medical and allied healthcare professionals were moderately motivated but lack of resources and information. The interaction resulted in cooperation and the need for learning to manage the future healthcare crisis. However, the lack of resources created opposition to the implementation of SD. Objectives of the Study: The study aimed to apply a two actors theory in a multi actors context. We take this as an opportunity to qualitatively test the theory in a novel situation of the Covid-19 pandemic and make way for its quantitative application by designing a survey instrument so that implementation researchers can apply CIT through multivariate analyses or higher-order statistical modeling. Conclusion: Applying two actors' implementation theory in exploring a complex case of healthcare intervention in three actors context is a unique work that has never been done before, up to the best of our knowledge. So, the work will contribute to the policy implementation studies by applying, extending, and enriching an implementation theory in a novel case of the Covi-19 pandemic, ultimately fulfilling the gap in implementation literature. Policy institutions and other low or middle-income countries can learn from this research and improve SD implementation by working on the variables with weak significance levels.Keywords: COVID-19, disease prevention and control policy, implementation, policy actors, social distancing
Procedia PDF Downloads 6189 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak
Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi
Abstract:
This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak
Procedia PDF Downloads 15788 Delineation of Different Geological Interfaces Beneath the Bengal Basin: Spectrum Analysis and 2D Density Modeling of Gravity Data
Authors: Md. Afroz Ansari
Abstract:
The Bengal basin is a spectacular example of a peripheral foreland basin formed by the convergence of the Indian plate beneath the Eurasian and Burmese plates. The basin is embraced on three sides; north, west and east by different fault-controlled tectonic features whereas released in the south where the rivers are drained into the Bay of Bengal. The Bengal basin in the eastern part of the Indian subcontinent constitutes the largest fluvio-deltaic to shallow marine sedimentary basin in the world today. This continental basin coupled with the offshore Bengal Fan under the Bay of Bengal forms the biggest sediment dispersal system. The continental basin is continuously receiving the sediments by the two major rivers Ganga and Brahmaputra (known as Jamuna in Bengal), and Meghna (emerging from the point of conflux of the Ganga and Brahmaputra) and large number of rain-fed, small tributaries originating from the eastern Indian Shield. The drained sediments are ultimately delivered into the Bengal fan. The significance of the present study is to delineate the variations in thicknesses of the sediments, different crustal structures, and the mantle lithosphere throughout the onshore-offshore Bengal basin. In the present study, the different crustal/geological units and the shallower mantle lithosphere were delineated by analyzing the Bouguer Gravity Anomaly (BGA) data along two long traverses South-North (running from Bengal fan cutting across the transition offshore-onshore of the Bengal basin and intersecting the Main Frontal Thrust of India-Himalaya collision zone in Sikkim-Bhutan Himalaya) and West-East (running from the Peninsular Indian Shield across the Bengal basin to the Chittagong–Tripura Fold Belt). The BGA map was derived from the analysis of topex data after incorporating Bouguer correction and all terrain corrections. The anomaly map was compared with the available ground gravity data in the western Bengal basin and the sub-continents of India for consistency of the data used. Initially, the anisotropy associated with the thicknesses of the different crustal units, crustal interfaces and moho boundary was estimated through spectral analysis of the gravity data with varying window size over the study area. The 2D density sections along the traverses were finalized after a number of iterations with the acceptable root mean square (RMS) errors. The estimated thicknesses of the different crustal units and dips of the Moho boundary along both the profiles are consistent with the earlier results. Further the results were encouraged by examining the earthquake database and focal mechanism solutions for better understanding the geodynamics. The earthquake data were taken from the catalogue of US Geological Survey, and the focal mechanism solutions were compiled from the Harvard Centroid Moment Tensor Catalogue. The concentrations of seismic events at different depth levels are not uncommon. The occurrences of earthquakes may be due to stress accumulation as a result of resistance from three sides.Keywords: anisotropy, interfaces, seismicity, spectrum analysis
Procedia PDF Downloads 27587 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach
Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman
Abstract:
Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.Keywords: categorical data, log linear modeling, neural network, shifting cultivation
Procedia PDF Downloads 5786 Health and Greenhouse Gas Emission Implications of Reducing Meat Intakes in Hong Kong
Authors: Cynthia Sau Chun Yip, Richard Fielding
Abstract:
High meat and especially red meat intakes are significantly and positively associated with a multiple burden of diseases and also high greenhouse gas (GHG) emissions. This study investigated population meat intake patterns in Hong Kong. It quantified the burden of disease and GHG emission outcomes by modeling to adjust Hong Kong population meat intakes to recommended healthy levels. It compared age- and sex-specific population meat, fruit and vegetable intakes obtained from a population survey among adults aged 20 years and over in Hong Kong in 2005-2007, against intake recommendations suggested in the Modelling System to Inform the Revision of the Australian Guide to Healthy Eating (AGHE-2011-MS) technical document. This study found that meat and meat alternatives, especially red meat intakes among Hong Kong males aged 20+ years and over are significantly higher than recommended. Red meat intakes among females aged 50-69 years and other meat and alternatives intakes among aged 20-59 years are also higher than recommended. Taking the 2005-07 age- and sex-specific population meat intake as baselines, three counterfactual scenarios of adjusting Hong Kong adult population meat intakes to AGHE-2011-MS and Pre-2011 AGHE recommendations by the year 2030 were established. Consequent energy intake gaps were substituted with additional legume, fruit and vegetable intakes. To quantify the consequent GHG emission outcomes associated with Hong Kong meat intakes, Cradle-to-ready-to-eat lifecycle assessment emission outcome modelling was used. Comparative risk assessment of burden of disease model was used to quantify the health outcomes. This study found adjusting meat intakes to recommended levels could reduce Hong Kong GHG emission by 17%-44% when compared against baseline meat intake emissions, and prevent 2,519 to 7,012 premature deaths in males and 53 to 1,342 in females, as well as multiple burden of diseases when compared to the baseline meat intake scenario. Comparing lump sum meat intake reduction and outcome measures across the entire population, and using emission factors, and relative risks from individual studies in previous co-benefit studies, this study used age- and sex-specific input and output measures, emission factors and relative risks obtained from high quality meta-analysis and meta-review respectively, and has taken government dietary recommendations into account. Hence evaluations in this study are of better quality and more reflective of real life practices. Further to previous co-benefit studies, this study pinpointed age- and sex-specific population and meat-type-specific intervention points and leverages. When compared with similar studies in Australia, this study also showed that intervention points and leverages among populations in different geographic and cultural background could be different, and that globalization also globalizes meat consumption emission effects. More regional and cultural specific evaluations are recommended to promote more sustainable meat consumption and enhance global food security.Keywords: burden of diseases, greenhouse gas emissions, Hong Kong diet, sustainable meat consumption
Procedia PDF Downloads 31385 Music Piracy Revisited: Agent-Based Modelling and Simulation of Illegal Consumption Behavior
Authors: U. S. Putro, L. Mayangsari, M. Siallagan, N. P. Tjahyani
Abstract:
National Collective Management Institute (LKMN) in Indonesia stated that legal music products were about 77.552.008 unit while illegal music products were about 22.0688.225 unit in 1996 and this number keeps getting worse every year. Consequently, Indonesia named as one of the countries with high piracy levels in 2005. This study models people decision toward unlawful behavior, music content piracy in particular, using agent-based modeling and simulation (ABMS). The classification of actors in the model constructed in this study are legal consumer, illegal consumer, and neutral consumer. The decision toward piracy among the actors is a manifestation of the social norm which attributes are social pressure, peer pressure, social approval, and perceived prevalence of piracy. The influencing attributes fluctuate depending on the majority of surrounding behavior called social network. There are two main interventions undertaken in the model, campaign and peer influence, which leads to scenarios in the simulation: positively-framed descriptive norm message, negatively-framed descriptive norm message, positively-framed injunctive norm with benefits message, and negatively-framed injunctive norm with costs message. Using NetLogo, the model is simulated in 30 runs with 10.000 iteration for each run. The initial number of agent was set 100 proportion of 95:5 for illegal consumption. The assumption of proportion is based on the data stated that 95% sales of music industry are pirated. The finding of this study is that negatively-framed descriptive norm message has a worse reversed effect toward music piracy. The study discovers that selecting the context-based campaign is the key process to reduce the level of intention toward music piracy as unlawful behavior by increasing the compliance awareness. The context of Indonesia reveals that that majority of people has actively engaged in music piracy as unlawful behavior, so that people think that this illegal act is common behavior. Therefore, providing the information about how widespread and big this problem is could make people do the illegal consumption behavior instead. The positively-framed descriptive norm message scenario works best to reduce music piracy numbers as it focuses on supporting positive behavior and subject to the right perception on this phenomenon. Music piracy is not merely economical, but rather social phenomenon due to the underlying motivation of the actors which has shifted toward community sharing. The indication of misconception of value co-creation in the context of music piracy in Indonesia is also discussed. This study contributes theoretically that understanding how social norm configures the behavior of decision-making process is essential to breakdown the phenomenon of unlawful behavior in music industry. In practice, this study proposes that reward-based and context-based strategy is the most relevant strategy for stakeholders in music industry. Furthermore, this study provides an opportunity that findings may generalize well beyond music piracy context. As an emerging body of work that systematically constructs the backstage of law and social affect decision-making process, it is interesting to see how the model is implemented in other decision-behavior related situation.Keywords: music piracy, social norm, behavioral decision-making, agent-based model, value co-creation
Procedia PDF Downloads 18984 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads
Authors: Gaurav Kumar Sinha
Abstract:
In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies
Procedia PDF Downloads 7183 Scenario-Based Scales and Situational Judgment Tasks to Measure the Social and Emotional Skills
Authors: Alena Kulikova, Leonid Parmaksiz, Ekaterina Orel
Abstract:
Social and emotional skills are considered by modern researchers as predictors of a person's success both in specific areas of activity and in the life of a person as a whole. The popularity of this scientific direction ensures the emergence of a large number of practices aimed at developing and evaluating socio-emotional skills. Assessment of social and emotional development is carried out at the national level, as well as at the level of individual regions and institutions. Despite the fact that many of the already existing social and emotional skills assessment tools are quite convenient and reliable, there are now more and more new technologies and task formats which improve the basic characteristics of the tools. Thus, the goal of the current study is to develop a tool for assessing social and emotional skills such as emotion recognition, emotion regulation, empathy and a culture of self-care. To develop a tool assessing social and emotional skills, Rasch-Gutman scenario-based approach was used. This approach has shown its reliability and merit for measuring various complex constructs: parental involvement; teacher practices that support cultural diversity and equity; willingness to participate in the life of the community after psychiatric rehabilitation; educational motivation and others. To assess emotion recognition, we used a situational judgment task based on OCC (Ortony, Clore, and Collins) emotions theory. The main advantage of these two approaches compare to classical Likert scales is that it reduces social desirability in answers. A field test to check the psychometric properties of the developed instrument was conducted. The instrument was developed for the presidential autonomous non-profit organization “Russia - Land of Opportunity” for nationwide soft skills assessment among higher education students. The sample for the field test consisted of 500 people, students aged from 18 to 25 (mean = 20; standard deviation 1.8), 71% female. 67% of students are only studying and are not currently working and 500 employed adults aged from 26 to 65 (mean = 42.5; SD 9), 57% female. Analysis of the psychometric characteristics of the scales was carried out using the methods of IRT (Item Response Theory). A one-parameter rating scale model RSM (Rating scale model) and Graded Response model (GRM) of the modern testing theory were applied. GRM is a polyatomic extension of the dichotomous two-parameter model of modern testing theory (2PL) based on the cumulative logit function for modeling the probability of a correct answer. The validity of the developed scales was assessed using correlation analysis and MTMM (multitrait-multimethod matrix). The developed instrument showed good psychometric quality and can be used by HR specialists or educational management. The detailed results of a psychometric study of the quality of the instrument, including the functioning of the tasks of each scale, will be presented. Also, the results of the validity study by MTMM analysis will be discussed.Keywords: social and emotional skills, psychometrics, MTMM, IRT
Procedia PDF Downloads 7882 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference
Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade
Abstract:
In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory
Procedia PDF Downloads 91