Search results for: vector of approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14680

Search results for: vector of approach

14230 Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover

Authors: Javed Mallick

Abstract:

In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islands

Keywords: land use land cover mapping, land surface temperature, support vector machine, LISA model, parallel coordinate plot

Procedia PDF Downloads 75
14229 Assessing Functional Structure in European Marine Ecosystems Using a Vector-Autoregressive Spatio-Temporal Model

Authors: Katyana A. Vert-Pre, James T. Thorson, Thomas Trancart, Eric Feunteun

Abstract:

In marine ecosystems, spatial and temporal species structure is an important component of ecosystems’ response to anthropological and environmental factors. Although spatial distribution patterns and fish temporal series of abundance have been studied in the past, little research has been allocated to the joint dynamic spatio-temporal functional patterns in marine ecosystems and their use in multispecies management and conservation. Each species represents a function to the ecosystem, and the distribution of these species might not be random. A heterogeneous functional distribution will lead to a more resilient ecosystem to external factors. Applying a Vector-Autoregressive Spatio-Temporal (VAST) model for count data, we estimate the spatio-temporal distribution, shift in time, and abundance of 140 species of the Eastern English Chanel, Bay of Biscay and Mediterranean Sea. From the model outputs, we determined spatio-temporal clusters, calculating p-values for hierarchical clustering via multiscale bootstrap resampling. Then, we designed a functional map given the defined cluster. We found that the species distribution within the ecosystem was not random. Indeed, species evolved in space and time in clusters. Moreover, these clusters remained similar over time deriving from the fact that species of a same cluster often shifted in sync, keeping the overall structure of the ecosystem similar overtime. Knowing the co-existing species within these clusters could help with predicting data-poor species distribution and abundance. Further analysis is being performed to assess the ecological functions represented in each cluster.

Keywords: cluster distribution shift, European marine ecosystems, functional distribution, spatio-temporal model

Procedia PDF Downloads 193
14228 Task Based Language Learning: A Paradigm Shift in ESL/EFL Teaching and Learning: A Case Study Based Approach

Authors: Zehra Sultan

Abstract:

The study is based on the task-based language teaching approach which is found to be very effective in the EFL/ESL classroom. This approach engages learners to acquire the usage of authentic language skills by interacting with the real world through sequence of pedagogical tasks. The use of technology enhances the effectiveness of this approach. This study throws light on the historical background of TBLT and its efficacy in the EFL/ESL classroom. In addition, this study precisely talks about the implementation of this approach in the General Foundation Programme of Muscat College, Oman. It furnishes the list of the pedagogical tasks embedded in the language curriculum of General Foundation Programme (GFP) which are skillfully allied to the College Graduate Attributes. Moreover, the study also discusses the challenges pertaining to this approach from the point of view of teachers, students, and its classroom application. Additionally, the operational success of this methodology is gauged through formative assessments of the GFP, which is apparent in the students’ progress.

Keywords: task-based language teaching, authentic language, communicative approach, real world activities, ESL/EFL activities

Procedia PDF Downloads 122
14227 Behind Fuzzy Regression Approach: An Exploration Study

Authors: Lavinia B. Dulla

Abstract:

The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.

Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval

Procedia PDF Downloads 297
14226 Human Development Outcomes and Macroeconomic Indicators Nexus in Nigeria: An Empirical Investigation

Authors: Risikat Oladoyin S. Dauda, Onyebuchi Iwegbu

Abstract:

This study investigates the response of human development outcomes to selected macroeconomic indicators in Nigeria. Human development outcomes is measured by human development index while the selected macroeconomic variables are inflation rate, real interest rate, government capital expenditure, real exchange rate, current account balance, and savings. Structural Vector Autoregression (SVAR) technique is employed in examining the response of human development index to the macroeconomic shocks. The result from the forecast error variance decomposition and Impulse-Response analysis reveals that fiscal policy (government capital expenditure) shock is the greatest determinant of human development outcomes. This result reiterates the role which the government plays in improving the welfare of the citizenry. The fiscal policy tool is pivotal in human development which comes in the form of investment in education, health, housing, and infrastructure. Further conclusion drawn from this study is that human development outcome positively and significantly responds to shocks from real interest rate, a monetary policy transmission variable and is felt greatly in the short run period. The policy implication of this study is that if capital budget implementation falls below expectations, human development will be engendered. Hence, efforts should be made to ensure that full implementation and appraisal of government capital expenditure is taken sacrosanct as any shock from such plan, engenders human development outcome.

Keywords: human development outcome, macroeconomic outcomes, structural vector autoregression, SVAR

Procedia PDF Downloads 150
14225 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus

Abstract:

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Keywords: transformer, parametrical model of transformer, fault, sweep frequency response analysis, finite element method

Procedia PDF Downloads 480
14224 Direct CP Violation in Baryonic B-Hadron Decays

Authors: C. Q. Geng, Y. K. Hsiao

Abstract:

We study direct CP-violating asymmetries (CPAs) in the baryonic B decays of B- -> p\bar{p}M and Λb decays of Λb ®pM andΛb -> J/ΨpM with M=π-, K-,ρ-,K*- based on the generalized factorization method in the standard model (SM). In particular, we show that the CPAs in the vector modes of B-®p\bar{p}K* and Λb -> p K*- can be as large as 20%. We also discuss the simplest purely baryonic decays of Λb-> p\bar{p}n, p\bar{p}Λ, Λ\bar{p}Λ, and Λ\bar{Λ}Λ. We point out that some of CPAs are promising to be measured by the current as well as future B facilities.

Keywords: CP violation, B decays, baryonic decays, Λb decays

Procedia PDF Downloads 254
14223 The Role of Eclectic Approach to Teach Communicative Function at Secondary Level

Authors: Fariha Asif

Abstract:

The main purpose of this study was to investigate the effectiveness of eclectic approach in teaching of communicative functions. The objectives of the study were to get the information about the use of communicative functions through eclectic approach and to point out the most effective way of teaching functional communication and social interaction with the help of communicative activities through eclectic approach. The next step was to select sample from the selected population. As the research was descriptive so a questionnaire was developed on the basis of hypothesis and distributed to different selected schools of Lahore, Pakistan. Then data was tabulated, analyzed and interpreted through computer by finding percentages of different responses given by teachers to see the results. It was concluded that eclectic approach is effective in teaching communicative functions and communicative functions are better when taught through eclectic approach and communicative activities are more appropriate way of teaching communicative functions. It was found those teachers who were qualified in ELT gave better opinions as compare to those who did not have this degree. Techniques like presentations, dialogues and roleplay proved to be effective for teaching functional communication through communicative activities and also motivate the students not only in learning rules but also in using them to communicate with others.

Keywords: methodology, functions, teaching, ESP

Procedia PDF Downloads 567
14222 An Approach from Fichte as a Response to the Kantian Dualism of Subject and Object: The Unity of the Subject and Object in Both Theoretical and Ethical Possibility

Authors: Mengjie Liu

Abstract:

This essay aims at responding to the Kant arguments on how to fit the self-caused subject into the deterministic object which follows the natural laws. This essay mainly adopts the approach abstracted from Fichte’s “Wissenshaftslehre” (Doctrine of Science) to picture a possible solution to the conciliation of Kantian dualism. The Fichte approach is based on the unity of the theoretical and practical reason, which can be understood as a philosophical abstraction from ordinary experience combining both subject and object. This essay will discuss the general Kantian dualism problem and Fichte’s unity approach in the first part. Then the essay will elaborate on the achievement of this unity of the subject and object through Fichte’s “the I posits itself” process in the second section. The following third section is related to the ethical unity of subject and object based on the Fichte approach. The essay will also discuss the limitation of Fichte’s approach from two perspectives: (1) the theoretical possibility of the existence of the pure I and (2) Schelling’s statement that the Absolute I is a result rather than the originating act. This essay demonstrates a possible approach to unifying the subject and object supported by Fichte’s “Absolute I” and ethical theories and also points out the limitations of Fichte’s theories.

Keywords: Fichte, identity, Kantian dualism, Wissenshaftslehre

Procedia PDF Downloads 88
14221 Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition

Authors: Latha Subbiah, Dhanalakshmi Samiappan

Abstract:

In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms.

Keywords: curvelet, decomposition, levelset, ultrasound

Procedia PDF Downloads 339
14220 Analyzing the Results of Buildings Energy Audit by Using Grey Set Theory

Authors: Tooraj Karimi, Mohammadreza Sadeghi Moghadam

Abstract:

Grey set theory has the advantage of using fewer data to analyze many factors, and it is therefore more appropriate for system study rather than traditional statistical regression which require massive data, normal distribution in the data and few variant factors. So, in this paper grey clustering and entropy of coefficient vector of grey evaluations are used to analyze energy consumption in buildings of the Oil Ministry in Tehran. In fact, this article intends to analyze the results of energy audit reports and defines most favorable characteristics of system, which is energy consumption of buildings, and most favorable factors affecting these characteristics in order to modify and improve them. According to the results of the model, ‘the real Building Load Coefficient’ has been selected as the most important system characteristic and ‘uncontrolled area of the building’ has been diagnosed as the most favorable factor which has the greatest effect on energy consumption of building. Grey clustering in this study has been used for two purposes: First, all the variables of building relate to energy audit cluster in two main groups of indicators and the number of variables is reduced. Second, grey clustering with variable weights has been used to classify all buildings in three categories named ‘no standard deviation’, ‘low standard deviation’ and ‘non- standard’. Entropy of coefficient vector of Grey evaluations is calculated to investigate greyness of results. It shows that among the 38 buildings surveyed in terms of energy consumption, 3 cases are in standard group, 24 cases are in ‘low standard deviation’ group and 11 buildings are completely non-standard. In addition, clustering greyness of 13 buildings is less than 0.5 and average uncertainly of clustering results is 66%.

Keywords: energy audit, grey set theory, grey incidence matrixes, grey clustering, Iran oil ministry

Procedia PDF Downloads 373
14219 Competition, Stability, and Economic Growth: A Causality Approach

Authors: Mahvish Anwaar

Abstract:

Research Question: In this paper, we explore the causal relationship between banking competition, banking stability, and economic growth. Research Findings: The unbalanced panel data starting from 2000 to 2018 is collected to analyze the causality among banking competition, banking stability, and economic growth. The main focus of the study is to check the direction of causality among selected variables. The results of the study support the demand following, supply leading, feedback, and neutrality hypothesis conditional to different measures of banking competition, banking stability, and economic growth. Theoretical Implication: Jayakumar, Pradhan, Dash, Maradana, and Gaurav (2018) proposed a theoretical model of the causal relationship between banking competition, banking stability, and economic growth by using different indicators. So, we empirically test the proposed indicators in our study. This study makes a contribution to the literature by showing the defined relationship between developing and developed countries. Policy Implications: The study covers various policy implications regarding investors to analyze how to properly manage their finances, and government agencies will take help from the present study to find the best and most suitable policies by examining how the economy can grow concerning its finances.

Keywords: competition, stability, economic growth, vector auto-regression, granger causality

Procedia PDF Downloads 62
14218 The Capabilities Approach as a Future Alternative to Neoliberal Higher Education in the MENA Region

Authors: Ranya Elkhayat

Abstract:

This paper aims at offering a futures study for higher education in the Middle East. Paying special attention to the negative impacts of neoliberalism, the paper will demonstrate how higher education is now commodified, corporatized and how arts and humanities are eschewed in favor of science and technology. This conceptual paper argues against the neoliberal agenda and aims at providing an alternative exemplified in the Capabilities Approach with special reference to Martha Nussbaum’s theory. The paper is divided into four main parts: the current state of higher education under neoliberal values, a prediction of the conditions of higher education in the near future, the future of higher education using the theoretical framework of the Capabilities Approach, and finally, some areas of concern regarding the approach. The implications of the study demonstrate that Nussbaum’s Capabilities Approach will ensure that the values of education are preserved while avoiding the pitfalls of neoliberalism.

Keywords: capabilities approach, education future, higher education, MENA

Procedia PDF Downloads 194
14217 A Framework for Internet Education: Personalised Approach

Authors: Zoe Wong

Abstract:

The purpose of this paper is to develop a framework for internet education. This framework uses the personalized learning approach for everyone who can freely develop their qualifications & careers. The key components of the framework includes students, teachers, assessments and infrastructure. It allows remove the challenges and limitations of the current educational system and allows learners' to cope with progressing learning materials.

Keywords: internet education, personalized approach, information technology, framework

Procedia PDF Downloads 356
14216 Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance

Authors: A. N. Dagang, E. I. Ismail, Z. Zakaria

Abstract:

This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna.

Keywords: plasma antenna, fluorescent tube, CST, plasma parameters

Procedia PDF Downloads 385
14215 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 295
14214 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 53
14213 A Review of Research on Pre-training Technology for Natural Language Processing

Authors: Moquan Gong

Abstract:

In recent years, with the rapid development of deep learning, pre-training technology for natural language processing has made great progress. The early field of natural language processing has long used word vector methods such as Word2Vec to encode text. These word vector methods can also be regarded as static pre-training techniques. However, this context-free text representation brings very limited improvement to subsequent natural language processing tasks and cannot solve the problem of word polysemy. ELMo proposes a context-sensitive text representation method that can effectively handle polysemy problems. Since then, pre-training language models such as GPT and BERT have been proposed one after another. Among them, the BERT model has significantly improved its performance on many typical downstream tasks, greatly promoting the technological development in the field of natural language processing, and has since entered the field of natural language processing. The era of dynamic pre-training technology. Since then, a large number of pre-trained language models based on BERT and XLNet have continued to emerge, and pre-training technology has become an indispensable mainstream technology in the field of natural language processing. This article first gives an overview of pre-training technology and its development history, and introduces in detail the classic pre-training technology in the field of natural language processing, including early static pre-training technology and classic dynamic pre-training technology; and then briefly sorts out a series of enlightening technologies. Pre-training technology, including improved models based on BERT and XLNet; on this basis, analyze the problems faced by current pre-training technology research; finally, look forward to the future development trend of pre-training technology.

Keywords: natural language processing, pre-training, language model, word vectors

Procedia PDF Downloads 55
14212 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction

Authors: Kudzanayi Chiteka, Wellington Makondo

Abstract:

The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.

Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models

Procedia PDF Downloads 270
14211 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 39
14210 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques

Authors: Gizem Eser Erdek

Abstract:

This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.

Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet

Procedia PDF Downloads 75
14209 Simulation-Based Unmanned Surface Vehicle Design Using PX4 and Robot Operating System With Kubernetes and Cloud-Native Tooling

Authors: Norbert Szulc, Jakub Wilk, Franciszek Górski

Abstract:

This paper presents an approach for simulating and testing robotic systems based on PX4, using a local Kubernetes cluster. The approach leverages modern cloud-native tools and runs on single-board computers. Additionally, this solution enables the creation of datasets for computer vision and the evaluation of control system algorithms in an end-to-end manner. This paper compares this approach to method commonly used Docker based approach. This approach was used to develop simulation environment for an unmanned surface vehicle (USV) for RoboBoat 2023 by running a containerized configuration of the PX4 Open-source Autopilot connected to ROS and the Gazebo simulation environment.

Keywords: cloud computing, Kubernetes, single board computers, simulation, ROS

Procedia PDF Downloads 74
14208 Unsupervised Learning and Similarity Comparison of Water Mass Characteristics with Gaussian Mixture Model for Visualizing Ocean Data

Authors: Jian-Heng Wu, Bor-Shen Lin

Abstract:

The temperature-salinity relationship is one of the most important characteristics used for identifying water masses in marine research. Temperature-salinity characteristics, however, may change dynamically with respect to the geographic location and is quite sensitive to the depth at the same location. When depth is taken into consideration, however, it is not easy to compare the characteristics of different water masses efficiently for a wide range of areas of the ocean. In this paper, the Gaussian mixture model was proposed to analyze the temperature-salinity-depth characteristics of water masses, based on which comparison between water masses may be conducted. Gaussian mixture model could model the distribution of a random vector and is formulated as the weighting sum for a set of multivariate normal distributions. The temperature-salinity-depth data for different locations are first used to train a set of Gaussian mixture models individually. The distance between two Gaussian mixture models can then be defined as the weighting sum of pairwise Bhattacharyya distances among the Gaussian distributions. Consequently, the distance between two water masses may be measured fast, which allows the automatic and efficient comparison of the water masses for a wide range area. The proposed approach not only can approximate the distribution of temperature, salinity, and depth directly without the prior knowledge for assuming the regression family, but may restrict the complexity by controlling the number of mixtures when the amounts of samples are unevenly distributed. In addition, it is critical for knowledge discovery in marine research to represent, manage and share the temperature-salinity-depth characteristics flexibly and responsively. The proposed approach has been applied to a real-time visualization system of ocean data, which may facilitate the comparison of water masses by aggregating the data without degrading the discriminating capabilities. This system provides an interface for querying geographic locations with similar temperature-salinity-depth characteristics interactively and for tracking specific patterns of water masses, such as the Kuroshio near Taiwan or those in the South China Sea.

Keywords: water mass, Gaussian mixture model, data visualization, system framework

Procedia PDF Downloads 142
14207 Platooning Method Using Dynamic Correlation of Destination Vectors in Urban Areas

Authors: Yuya Tanigami, Naoaki Yamanaka, Satoru Okamoto

Abstract:

Economic losses due to delays in traffic congestion regarding urban transportation networks have become a more serious social problem as traffic volume increases. Platooning has recently been attracting attention from many researchers to alleviate traffic jams, especially on the highway. On highways, platooning can have positive effects, such as reducing inter-vehicular distance and reducing air resistance. However, the impacts of platooning on urban roads have not been addressed in detail since traffic lights may break the platoons. In this study, we propose a platooning method using L2 norm and cosine similarity to form a platoon with highly similar routes. Also, we investigate the sorting method within a platoon according to each vehicle’s straightness. Our proposed sorting platoon method, which uses two lanes, eliminates Head of Line Blocking at the intersection and improves throughput at intersections. This paper proposes a cyber-physical system (CPS) approach to collaborative urban platoon control. We conduct simulations using the traffic simulator SUMO and the road network, which imitates Manhattan Island. Results from the SUMO confirmed that our method shortens the average travel time by 10-20%. This paper shows the validity of forming a platoon based on destination vectors and sorting vehicles within a platoon.

Keywords: CPS, platooning, connected car, vector correlation

Procedia PDF Downloads 73
14206 Species Composition and Plasmodium Infection Rates of Anopheles Mosquitoes in Kilosa, Tanzania

Authors: Amina R. Issae, Godfrey C. Katusi, Beda J. Mwang’Onde, Ladslaus L. Mnyone, Allen L. Malisa

Abstract:

Background: The fluctuating composition of mosquito species over time, driven by ecological changes in specific regions, plays a pivotal role in the transmission of malaria. Grasping these dynamics is fundamental for establishing a baseline understanding and is crucial for identifying transmission patterns. This knowledge is essential in devising effective strategies for managing and controlling vector populations. Our study focused on examining the species composition and Plasmodium infection rates of malaria vectors, aiming to enhance the health and well-being of communities affected by malaria. Methods: Species composition was determined through a cross-sectional collection of mosquitoes, conducted once in the village, in four selected villages of Kilosa district, Tanzania. Mosquitoes were collected indoors and outdoors using CDC light traps. A sub-sample of all collected mosquitoes was subjected to PCR identification and assayed for Plasmodium porozoites. Results: A total of 6493 female Anophelines mosquitoes were collected, of which eight species were identified as Anopheles gambiaes.l., An. funestus group, An. coustani, An. pharoensis, An. squamosus, and An. rufipes. The abundance of the Anopheles gambiaes.s.and An. funestuss.s. varied with location and village. A total of 5 sporozoite-positive mosquitoes were found, of which 4 were An. funestuss.s. and 1 was An. gambiaes.s. Conclusions: Anopheles gambiaes.s.and An. funestuss.s. were identified as the most abundant malaria vectors, respectively. Sporozoite analysis indicated this for An. funestuss.s. contribute to most of the malaria transmission in the area. Further studies are required to assess the role of seasonal shifts in vector abundance, insecticide resistance and malaria transmission of the vectors.

Keywords: mosquito, composition, malaria, sporozoites

Procedia PDF Downloads 46
14205 Multivariate Control Chart to Determine Efficiency Measurements in Industrial Processes

Authors: J. J. Vargas, N. Prieto, L. A. Toro

Abstract:

Control charts are commonly used to monitor processes involving either variable or attribute of quality characteristics and determining the control limits as a critical task for quality engineers to improve the processes. Nonetheless, in some applications it is necessary to include an estimation of efficiency. In this paper, the ability to define the efficiency of an industrial process was added to a control chart by means of incorporating a data envelopment analysis (DEA) approach. In depth, a Bayesian estimation was performed to calculate the posterior probability distribution of parameters as means and variance and covariance matrix. This technique allows to analyse the data set without the need of using the hypothetical large sample implied in the problem and to be treated as an approximation to the finite sample distribution. A rejection simulation method was carried out to generate random variables from the parameter functions. Each resulting vector was used by stochastic DEA model during several cycles for establishing the distribution of each efficiency measures for each DMU (decision making units). A control limit was calculated with model obtained and if a condition of a low level efficiency of DMU is presented, system efficiency is out of control. In the efficiency calculated a global optimum was reached, which ensures model reliability.

Keywords: data envelopment analysis, DEA, Multivariate control chart, rejection simulation method

Procedia PDF Downloads 372
14204 Unsupervised Reciter Recognition Using Gaussian Mixture Models

Authors: Ahmad Alwosheel, Ahmed Alqaraawi

Abstract:

This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.

Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model

Procedia PDF Downloads 379
14203 Estimating the Timing Interval for Malarial Indoor Residual Spraying: A Modelling Approach

Authors: Levicatus Mugenyi, Joaniter Nankabirwa, Emmanuel Arinaitwe, John Rek, Niel Hens, Moses Kamya, Grant Dorsey

Abstract:

Background: Indoor residual spraying (IRS) reduces vector densities and malaria transmission, however, the most effective spraying intervals for IRS have not been well established. We aim to estimate the optimal timing interval for IRS using a modeling approach. Methods: We use a generalized additive model to estimate the optimal timing interval for IRS using the predicted malaria incidence. The model is applied to post IRS cohort clinical data from children aged 0.5–10 years in selected households in Tororo, historically a high malaria transmission setting in Uganda. Six rounds of IRS were implemented in Tororo during the study period (3 rounds with bendiocarb: December 2014 to December 2015, and 3 rounds with actellic: June 2016 to July 2018). Results: Monthly incidence of malaria from October 2014 to February 2019 decreased from 3.25 to 0.0 per person-years in the children under 5 years, and 1.57 to 0.0 for 5-10 year-olds. The optimal time interval for IRS differed between bendiocarb and actellic and by IRS round. It was estimated to be 17 and 40 weeks after the first round of bendiocarb and actellic, respectively. After the third round of actellic, 36 weeks was estimated to be optimal. However, we could not estimate from the data the optimal time after the second and third rounds of bendiocarb and after the second round of actellic. Conclusion: We conclude that to sustain the effect of IRS in a high-medium transmission setting, the second rounds of bendiocarb need to be applied roughly 17 weeks and actellic 40 weeks after the first round, and the timing differs for subsequent rounds. The amount of rainfall did not influence the trend in malaria incidence after IRS, as well as the IRS timing intervals. Our results suggest that shorter intervals for the IRS application can be more effective compared to the current practice, which is about 24 weeks for bendiocarb and 48 weeks for actellic. However, when considering our findings, one should account for the cost and drug resistance associated with IRS. We also recommend that the timing and incidence should be monitored in the future to improve these estimates.

Keywords: incidence, indoor residual spraying, generalized additive model, malaria

Procedia PDF Downloads 120
14202 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation

Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano

Abstract:

Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.

Keywords: machine learning, recommender system, software platform, support vector machine

Procedia PDF Downloads 133
14201 The Response of the Central Bank to the Exchange Rate Movement: A Dynamic Stochastic General Equilibrium-Vector Autoregressive Approach for Tunisian Economy

Authors: Abdelli Soulaima, Belhadj Besma

Abstract:

The paper examines the choice of the central bank toward the movements of the nominal exchange rate and evaluates its effects on the volatility of the output growth and the inflation. The novel hybrid method of the dynamic stochastic general equilibrium called the DSGE-VAR is proposed for analyzing this policy experiment in a small scale open economy in particular Tunisia. The contribution is provided to the empirical literature as we apply the Tunisian data with this model, which is rarely used in this context. Note additionally that the issue of treating the degree of response of the central bank to the exchange rate in Tunisia is special. To ameliorate the estimation, the Bayesian technique is carried out for the sample 1980:q1 to 2011 q4. Our results reveal that the central bank should not react or softly react to the exchange rate. The variance decomposition displayed that the overall inflation volatility is more pronounced with the fixed exchange rate regime for most of the shocks except for the productivity and the interest rate. The output volatility is also higher with this regime with the majority of the shocks exempting the foreign interest rate and the interest rate shocks.

Keywords: DSGE-VAR modeling, exchange rate, monetary policy, Bayesian estimation

Procedia PDF Downloads 293