Search results for: transient hot wire
343 Mining in Nigeria and Development Effort of Metallurgical Technologies at National Metallurgical Development Center Jos, Plateau State-Nigeria
Authors: Linus O. Asuquo
Abstract:
Mining in Nigeria and development effort of metallurgical technologies at National Metallurgical Development Centre Jos has been addressed in this paper. The paper has looked at the history of mining in Nigeria, the impact of mining on social and industrial development, and the contribution of the mining sector to Nigeria’s Gross Domestic Product (GDP). The paper clearly stated that Nigeria’s mining sector only contributes 0.5% to the nation’s GDP unlike Botswana that the mining sector contributes 38% to the nation’s GDP. Nigeria Bureau of Statistics has it on record that Nigeria has about 44 solid minerals awaiting to be exploited. Clearly highlighted by this paper is the abundant potentials that exist in the mining sector for investment. The paper made an exposition on the extensive efforts made at National Metallurgical Development Center (NMDC) to develop metallurgical technologies in various areas of the metals sector; like mineral processing, foundry development, nonferrous metals extraction, materials testing, lime calcination, ANO (Trade name for powder lubricant) wire drawing lubricant, refractories and many others. The paper went ahead to draw a conclusion that there is a need to develop the mining sector in Nigeria and to give a sustainable support to the efforts currently made at NMDC to develop metallurgical technologies which are capable of transforming the metals sector in Nigeria, which will lead to industrialization. Finally the paper made some recommendations which traverse the topic for the best expectation.Keywords: mining, minerals, technologies, value addition
Procedia PDF Downloads 102342 CO2 Adsorption on the Activated Klaten-Indonesian Natural Zeolite in a Packed Bed Adsorber
Authors: Sang Kompiang Wirawan, Chandra Purnomo
Abstract:
Carbon dioxide (CO2) adsorption on the activated Klaten-Indonesian natural zeolite (AKINZ) in a packed bed adsorber has been studied. Experiment works consisted of acid activation and adsorption experiments. The natural zeolite sample was activated using 0.3 M HCl at the temperature of 353 K. In the adsorption experiments the feed gas concentrations were 40 and 80 % CO2 in helium within various temperatures of 303; 323 and 373 K. The experiments were conducted by using transient step change adsorption and 20 % Ar/He tracer experiment was conducted to measure dispersion and time lag effect of the packed bed system. A mathematical model of CO2 adsorption had been set up by assuming plug flow;isothermal;isobaric and no gas film mass transport resistance. Single site Langmuir physisorption and Maxwell Stefan mass transport in micropore were applied. All the data were then optimized to get the best value of modified fitted parameter. The model was in a good agreement with the experiment data. Diffusivity tended to increase by increasing temperatures.Keywords: adsorption, Langmuir, Maxwell-Stefan, natural zeolite, surface diffusion
Procedia PDF Downloads 355341 Unravelling Glyphosates Disruptive Effects on the Photochemical Efficiency of Amaranthus cruentus
Authors: Jacques M. Berner, Lehlogonolo Maloma
Abstract:
Context: Glyphosate, a widely used herbicide, has raised concerns about its impact on various crops. Amaranthus cruentus, an important grain crop species, is particularly susceptible to glyphosate. Understanding the specific disruptions caused by glyphosate on the photosynthetic process in Amaranthus cruentus is crucial for assessing its effects on crop productivity and ecological sustainability. Research Aim: This study aimed to investigate the dose-dependent impact of glyphosate on the photochemical efficiency of Amaranthus cruentus using the OJIP transient analysis. The goal was to assess the specific disruptions caused by glyphosate on key parameters of photosystem II. Methodology: The experiment was conducted in a controlled greenhouse environment. Amaranthus cruentus plants were exposed to different concentrations of glyphosate, including half, recommended, and double the recommended application rates. The photochemical efficiency of the plants was evaluated using non-invasive chlorophyll a fluorescence measurements and subsequent analysis of OJIP transients. Measurements were taken on 1-hour dark-adapted leaves using a Hansatech Handy PEA+ chlorophyll fluorimeter. Findings: The study's results demonstrated a significant reduction in the photochemical efficiency of Amaranthus cruentus following glyphosate treatment. The OJIP transients showed distinct alterations in the glyphosate-treated plants compared to the control group. These changes included a decrease in maximal fluorescence (FP) and a delay in the rise of the fluorescence signal, indicating impairment in the energy conversion process within the photosystem II. Glyphosate exposure also led to a substantial decrease in the maximum quantum yield efficiency of photosystem II (FV/FM) and the total performance index (PItotal), which reflects the overall photochemical efficiency of photosystem II. These reductions in photochemical efficiency were observed even at half the recommended dose of glyphosate. Theoretical Importance: The study provides valuable insights into the specific disruptions caused by glyphosate on the photochemical efficiency of Amaranthus cruentus. Data Collection and Analysis Procedures: Data collection involved non-invasive chlorophyll a fluorescence measurements using a chlorophyll fluorimeter on dark-adapted leaves. The OJIP transients were then analyzed to assess specific disruptions in key parameters of photosystem II. Statistical analysis was conducted to determine the significance of the differences observed between glyphosate-treated plants and the control group. Question Addressed: The study aimed to address the question of how glyphosate exposure affects the photochemical efficiency of Amaranthus cruentus, specifically examining disruptions in the photosynthetic electron transport chain and overall photochemical efficiency. Conclusion: The study demonstrates that glyphosate severely impairs the photochemical efficiency of Amaranthus cruentus, as indicated by the alterations in OJIP transients. Even at half the recommended dose, glyphosate caused significant reductions in photochemical efficiency. These findings highlight the detrimental effects of glyphosate on crop productivity and emphasize the need for further research to evaluate its long-term consequences and ecological implications in agriculture. The authors gratefully acknowledge the support from North-West University for making this research possible.Keywords: glyphosate, amaranthus cruentus, ojip transient analysis, pitotal, photochemical efficiency, chlorophyll fluorescence, weeds
Procedia PDF Downloads 91340 Advanced Technologies for Detector Readout in Particle Physics
Authors: Y. Venturini, C. Tintori
Abstract:
Given the continuous demand for improved readout performances in particle and dark matter physics, CAEN SpA is pushing on the development of advanced technologies for detector readout. We present the Digitizers 2.0, the result of the success of the previous Digitizers generation, combined with expanded capabilities and a renovation of the user experience introducing the open FPGA. The first product of the family is the VX2740 (64 ch, 125 MS/s, 16 bit) for advanced waveform recording and Digital Pulse Processing, fitting with the special requirements of Dark Matter and Neutrino experiments. In parallel, CAEN is developing the FERS-5200 platform, a Front-End Readout System designed to read out large multi-detector arrays, such as SiPMs, multi-anode PMTs, silicon strip detectors, wire chambers, GEM, gas tubes, and others. This is a highly-scalable distributed platform, based on small Front-End cards synchronized and read out by a concentrator board, allowing to build extremely large experimental setup. We plan to develop a complete family of cost-effective Front-End cards tailored to specific detectors and applications. The first one available is the A5202, a 64-channel unit for SiPM readout based on CITIROC ASIC by Weeroc.Keywords: dark matter, digitizers, front-end electronics, open FPGA, SiPM
Procedia PDF Downloads 128339 Numerical Analysis of the Flow Characteristics Around a Deformable Vortex Generator
Authors: Aimad Koulali
Abstract:
Flow structure evolution around a single pair of Delta vortex generators (VGs) is studied numerically. For laminar, transient, and turbulent flow regimes, numerical simulations have been performed in a duct with a pair of Delta vortex generators. The finiteelementmethodwasused to simulate the flow. To formulate the fluid structure interaction problem, the ALE formulation was used. The aim of this study is to provide a detailed insight into the generation and dissipation of longitudinal vortices over a wide range of flow regimes, including the laminar-turbulent transition. A wide range of parameters has been exploited to describe the inducedphenomenawithin the flow. Weexaminedvariousparametersdepending on the VG geometry, the flow regime, and the channel geometry. A detailed analysis of the turbulence and wall shear stress properties has been evaluated. The results affirm that there are still optimal values to obtain better performing vortices in order to improve the exchange performance.Keywords: finte element method, deformable vortex generator, numerical analysis, fluid structure interaction, ALE formlation, turbulent flow
Procedia PDF Downloads 99338 Pigging Operation in Two-Phase Flow Pipeline- Empirical and Simulation
Authors: Behnaz Jamshidi, Seyed Hassan Hashemabadi
Abstract:
The main objective of this study is to investigate on pigging operation of two phase flow pipeline and compare the empirical and simulation results for 108 km long , 0.7934 mm (32 inches) diameter sea line of "Phase 1 South Pars Gas Complex", located in south of Iran. The pigging time, pig velocity, the amount of slug and slug catcher pressure were calculated and monitored closely as the key parameters. Simulation was done by "OLGA" dynamic simulation software and obtained results were compared and validated with empirical data in real operation. The relative errors between empirical data and simulation of the process were 3 % and 9 % for pigging time and accumulated slug volume respectively. Simulated pig velocity and changes of slug catcher pressure were consistent with real values, too. It was also found the slug catcher and condensate stabilization units have been adequately sized for gas-liquid separation and handle the slug batch during transient conditions such as pigging and start up.Keywords: sea line, pigging, slug catcher, two-phase flow, dynamic simulation
Procedia PDF Downloads 507337 A Real Time Expert System for Decision Support in Nuclear Power Plants
Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru
Abstract:
In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.Keywords: emergence procedure, expert system, operator support, PWR nuclear power plant
Procedia PDF Downloads 333336 Temperature Gradient In Weld Zones During Friction Stir Process Using Finite Element Method
Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah
Abstract:
Finite element approach have been used via three-dimensional models by using Altair Hyper Work, a commercially available software, to describe heat gradients along the welding zones (axially and coronaly) in Friction Stir Welding (FSW). Transient thermal finite element analyses are performed in AA 6061-T6 Aluminum Alloy to obtain temperature distribution in the welded aluminum plates during welding operation. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and work piece is used in the analysis. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the work piece.Keywords: Frictions Stir Welding (FSW), temperature distribution, Finite Element Method (FEM), altair hyperwork
Procedia PDF Downloads 534335 Statistical Description of Counterpoise Effective Length Based on Regressive Formulas
Authors: Petar Sarajcev, Josip Vasilj, Damir Jakus
Abstract:
This paper presents a novel statistical description of the counterpoise effective length due to lightning surges, where the (impulse) effective length had been obtained by means of regressive formulas applied to the transient simulation results. The effective length is described in terms of a statistical distribution function, from which median, mean, variance, and other parameters of interest could be readily obtained. The influence of lightning current amplitude, lightning front duration, and soil resistivity on the effective length has been accounted for, assuming statistical nature of these parameters. A method for determining the optimal counterpoise length, in terms of the statistical impulse effective length, is also presented. It is based on estimating the number of dangerous events associated with lightning strikes. Proposed statistical description and the associated method provide valuable information which could aid the design engineer in optimising physical lengths of counterpoises in different grounding arrangements and soil resistivity situations.Keywords: counterpoise, grounding conductor, effective length, lightning, Monte Carlo method, statistical distribution
Procedia PDF Downloads 426334 Short-Term Energy Efficiency Decay and Risk Analysis of Ground Source Heat Pump System
Authors: Tu Shuyang, Zhang Xu, Zhou Xiang
Abstract:
The objective of this paper is to investigate the effect of short-term heat exchange decay of ground heat exchanger (GHE) on the ground source heat pump (GSHP) energy efficiency and capacity. A resistance-capacitance (RC) model was developed and adopted to simulate the transient characteristics of the ground thermal condition and heat exchange. The capacity change of the GSHP was linked to the inlet and outlet water temperature by polynomial fitting according to measured parameters given by heat pump manufacturers. Thus, the model, which combined the heat exchange decay with the capacity change, reflected the energy efficiency decay of the whole system. A case of GSHP system was analyzed by the model, and the result showed that there was risk that the GSHP might not meet the load demand because of the efficiency decay in a short-term operation. The conclusion would provide some guidances for GSHP system design to overcome the risk.Keywords: capacity, energy efficiency, GSHP, heat exchange
Procedia PDF Downloads 350333 The Model Establishment and Analysis of TRACE/MELCOR for Kuosheng Nuclear Power Plant Spent Fuel Pool
Authors: W. S. Hsu, Y. Chiang, Y. S. Tseng, J. R. Wang, C. Shih, S. W. Chen
Abstract:
Kuosheng nuclear power plant (NPP) is a BWR/6 plant in Taiwan. There is more concern for the safety of NPPs in Taiwan after Japan Fukushima NPP disaster occurred. Hence, in order to estimate the safety of Kuosheng NPP spent fuel pool (SFP), by using TRACE, MELCOR, and SNAP codes, the safety analysis of Kuosheng NPP SFP was performed. There were two main steps in this research. First, the Kuosheng NPP SFP models were established. Second, the transient analysis of Kuosheng SFP was done by TRACE and MELCOR under the cooling system failure condition (Fukushima-like condition). The results showed that the calculations of MELCOR and TRACE were very similar in this case, and the fuel uncover happened roughly at 4th day after the failure of cooling system. The above results indicated that Kuosheng NPP SFP may be unsafe in the case of long-term SBO situation. In addition, future calculations were needed to be done by the other codes like FRAPTRAN for the cladding calculations.Keywords: TRACE, MELCOR, SNAP, spent fuel pool
Procedia PDF Downloads 331332 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet
Authors: Rangoli Goyal, Rama Bhargava
Abstract:
The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.Keywords: FEM, thermophoresis, diffusiophoresis, Brownian motion
Procedia PDF Downloads 420331 Basic One-Dimensional Modelica®-Model for Simulation of Gas-Phase Adsorber Dynamics
Authors: Adrian Rettig, Silvan Schneider, Reto Tamburini, Mirko Kleingries, Ulf Christian Muller
Abstract:
Industrial adsorption processes are, mainly due to si-multaneous heat and mass transfer, characterized by a high level of complexity. The conception of such processes often does not take place systematically; instead scale-up/down respectively number-up/down methods based on existing systems are used. This paper shows how Modelica® can be used to develop a transient model enabling a more systematic design of such ad- and desorption components and processes. The core of this model is a lumped-element submodel of a single adsorbent grain, where the thermodynamic equilibria and the kinetics of the ad- and desorption processes are implemented and solved on the basis of mass-, momentum and energy balances. For validation of this submodel, a fixed bed adsorber, whose characteristics are described in detail in the literature, was modeled and simulated. The simulation results are in good agreement with the experimental results from the literature. Therefore, the model development will be continued, and the extended model will be applied to further adsorber types like rotor adsorbers and moving bed adsorbers.Keywords: adsorption, desorption, linear driving force, dynamic model, Modelica®, integral equation approach
Procedia PDF Downloads 371330 Land Use Sensitivity Map for the Extreme Flood Events in the Kelantan River Basin
Authors: Nader Saadatkhah, Jafar Rahnamarad, Shattri Mansor, Zailani Khuzaimah, Arnis Asmat, Nor Aizam Adnan, Siti Noradzah Adam
Abstract:
Kelantan river basin as a flood prone area at the east coast of the peninsular Malaysia has suffered several flood and mudflow events in the recent years. The current research attempted to assess the land cover changes impact in the Kelantan river basin focused on the runoff contributions from different land cover classes and the potential impact of land cover changes on runoff generation. In this regards, the hydrological regional modeling of rainfall induced runoff event as the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) was employed to compute rate of infiltration, and subsequently changes in the discharge volume in this study. The effects of land use changes on peak flow and runoff volume was investigated using storm rainfall events during the last three decades.Keywords: improved-TRIGRS model, land cover changes, Kelantan river basin, flood event
Procedia PDF Downloads 412329 Comparison Between Genetic Algorithms and Particle Swarm Optimization Optimized Proportional Integral Derirative and PSS for Single Machine Infinite System
Authors: Benalia Nadia, Zerzouri Nora, Ben Si Ali Nadia
Abstract:
Abstract: Among the many different modern heuristic optimization methods, genetic algorithms (GA) and the particle swarm optimization (PSO) technique have been attracting a lot of interest. The GA has gained popularity in academia and business mostly because to its simplicity, ability to solve highly nonlinear mixed integer optimization problems that are typical of complex engineering systems, and intuitiveness. The mechanics of the PSO methodology, a relatively recent heuristic search tool, are modeled after the swarming or cooperative behavior of biological groups. It is suitable to compare the performance of the two techniques since they both aim to solve a particular objective function but make use of distinct computing methods. In this article, PSO and GA optimization approaches are used for the parameter tuning of the power system stabilizer and Proportional integral derivative regulator. Load angle and rotor speed variations in the single machine infinite bus bar system is used to measure the performance of the suggested solution.Keywords: SMIB, genetic algorithm, PSO, transient stability, power system stabilizer, PID
Procedia PDF Downloads 83328 Heat Transfer Modeling of 'Carabao' Mango (Mangifera indica L.) during Postharvest Hot Water Treatments
Authors: Hazel James P. Agngarayngay, Arnold R. Elepaño
Abstract:
Mango is the third most important export fruit in the Philippines. Despite the expanding mango trade in world market, problems on postharvest losses caused by pests and diseases are still prevalent. Many disease control and pest disinfestation methods have been studied and adopted. Heat treatment is necessary to eliminate pests and diseases to be able to pass the quarantine requirements of importing countries. During heat treatments, temperature and time are critical because fruits can easily be damaged by over-exposure to heat. Modeling the process enables researchers and engineers to study the behaviour of temperature distribution within the fruit over time. Understanding physical processes through modeling and simulation also saves time and resources because of reduced experimentation. This research aimed to simulate the heat transfer mechanism and predict the temperature distribution in ‘Carabao' mangoes during hot water treatment (HWT) and extended hot water treatment (EHWT). The simulation was performed in ANSYS CFD Software, using ANSYS CFX Solver. The simulation process involved model creation, mesh generation, defining the physics of the model, solving the problem, and visualizing the results. Boundary conditions consisted of the convective heat transfer coefficient and a constant free stream temperature. The three-dimensional energy equation for transient conditions was numerically solved to obtain heat flux and transient temperature values. The solver utilized finite volume method of discretization. To validate the simulation, actual data were obtained through experiment. The goodness of fit was evaluated using mean temperature difference (MTD). Also, t-test was used to detect significant differences between the data sets. Results showed that the simulations were able to estimate temperatures accurately with MTD of 0.50 and 0.69 °C for the HWT and EHWT, respectively. This indicates good agreement between the simulated and actual temperature values. The data included in the analysis were taken at different locations of probe punctures within the fruit. Moreover, t-tests showed no significant differences between the two data sets. Maximum heat fluxes obtained at the beginning of the treatments were 394.15 and 262.77 J.s-1 for HWT and EHWT, respectively. These values decreased abruptly at the first 10 seconds and gradual decrease was observed thereafter. Data on heat flux is necessary in the design of heaters. If underestimated, the heating component of a certain machine will not be able to provide enough heat required by certain operations. Otherwise, over-estimation will result in wasting of energy and resources. This study demonstrated that the simulation was able to estimate temperatures accurately. Thus, it can be used to evaluate the influence of various treatment conditions on the temperature-time history in mangoes. When combined with information on insect mortality and quality degradation kinetics, it could predict the efficacy of a particular treatment and guide appropriate selection of treatment conditions. The effect of various parameters on heat transfer rates, such as the boundary and initial conditions as well as the thermal properties of the material, can be systematically studied without performing experiments. Furthermore, the use of ANSYS software in modeling and simulation can be explored in modeling various systems and processes.Keywords: heat transfer, heat treatment, mango, modeling and simulation
Procedia PDF Downloads 247327 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition
Authors: Hamed Djalal
Abstract:
The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.Keywords: forced convection, pressure drop, thermal hydraulic analysis, vertical heated rectangular channel
Procedia PDF Downloads 154326 Cladding Technology for Metal-Hybrid Composites with Network-Structure
Authors: Ha-Guk Jeong, Jong-Beom Lee
Abstract:
Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics
Procedia PDF Downloads 179325 Efficient Monolithic FEM for Compressible Flow and Conjugate Heat Transfer
Authors: Santhosh A. K.
Abstract:
This work presents an efficient monolithic finite element strategy for solving thermo-fluid-structure interaction problems involving compressible fluids and linear-elastic structure. This formulation uses displacement variables for structure and velocity variables for the fluid, with no additional variables required to ensure traction, velocity, temperature, and heat flux continuity at the fluid-structure interface. Rate of convergence in each time step is quadratic, which is achieved in this formulation by deriving an exact tangent stiffness matrix. The robustness and good performance of the method is ascertained by applying the proposed strategy on a wide spectrum of problems taken from the literature pertaining to steady, transient, two dimensional, axisymmetric, and three dimensional fluid flow and conjugate heat transfer. It is shown that the current formulation gives excellent results on all the case studies conducted, which includes problems involving compressibility effects as well as problems where fluid can be treated as incompressible.Keywords: linear thermoelasticity, compressible flow, conjugate heat transfer, monolithic FEM
Procedia PDF Downloads 199324 Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients
Authors: Khaled M. EL-Naggar
Abstract:
Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.Keywords: optimization, estimation, synchronous, machine, crow search
Procedia PDF Downloads 140323 Negative Pressure Waves in Hydraulic Systems
Authors: Fuad H. Veliev
Abstract:
Negative pressure phenomenon appears in many thermodynamic, geophysical and biophysical processes in the Nature and technological systems. For more than 100 years of the laboratory researches beginning from F. M. Donny’s tests, the great values of negative pressure have been achieved. But this phenomenon has not been practically applied, being only a nice lab toy due to the special demands for the purity and homogeneity of the liquids for its appearance. The possibility of creation of direct wave of negative pressure in real heterogeneous liquid systems was confirmed experimentally under the certain kinetic and hydraulic conditions. The negative pressure can be considered as the factor of both useful and destroying energies. The new approach to generation of the negative pressure waves in impure, unclean fluids has allowed the creation of principally new energy saving technologies and installations to increase the effectiveness and efficiency of different production processes. It was proved that the negative pressure is one of the main factors causing hard troubles in some technological and natural processes. Received results emphasize the necessity to take into account the role of the negative pressure as an energy factor in evaluation of many transient thermohydrodynamic processes in the Nature and production systems.Keywords: liquid systems, negative pressure, temperature, wave, metastable state
Procedia PDF Downloads 416322 Bone Marrow Edema Syndrome in the Foot and Ankle
Authors: S. Alireza Mirghasemi, Elly Trepman, Mohammad Saleh Sadeghi, Narges Rahimi Gabaran, Shervin Rashidinia
Abstract:
Bone marrow edema syndrome (BMES) is an uncommon and self-limited syndrome characterized by atraumatic extremity pain with unknown of etiology. Symptom onset may include sudden or gradual swelling and pain at rest or during activity, usually at night. This syndrome mostly affects middle-aged men and younger women who have pain in the lower extremities. The most common sites involved with BMES, in decreasing order of frequency, are the bones about the hip, knee, ankle, and foot. The diagnosis of BMES is made with magnetic resonance imaging to exclude other causes of bone marrow edema. The correct diagnosis often is delayed because of the low prevalence and nonspecific signs in the foot and ankle. This delay may intensify bone pain and impair patient function and quality of life. The goal of BMES treatment is to relieve pain and shorten disease duration. Treatment options are limited and may include symptomatic treatment, pharmacologic treatment, and surgery.Keywords: transient osteoporosis, bone marrow edema syndrome, iloprost, bisphosphonates
Procedia PDF Downloads 362321 Hybrid Laser-Gas Metal Arc Welding of ASTM A106-B Steel Pipes
Authors: Masoud Mohammadpour, Nima Yazdian, Radovan Kovacevic
Abstract:
The Oil and Gas industries are vigorously looking for new ways to increase the efficiency of their pipeline constructions. Besides the other approaches, implementing of new welding methods for joining pipes can be the best candidate on this regard. Hybrid Laser Arc Welding (HLAW) with the capabilities of high welding speed, deep penetration, and excellent gap bridging ability can be a possible alternative method in pipeline girth welding. This paper investigates the feasibility of applying the HLAW to join ASTM A106-B as the mostly used piping material for transporting high-temperature and high-pressure fluids and gases. The experiments were carried out on six-inch diameter pipes with the wall thickness of 10mm. AWS ER 70 S6 filler wire with diameter of 1.2mm was employed. Relating to this welding procedure, characterization of welded samples such as hardness, tensile testing and Charpy V-notch testing were performed and the results will be reported in this paper. In order to have better understanding about the thermal history and the microstructural alterations caused by the welding heat cycle, a comprehensive Finite Element (FE) model was also conducted. The obtained results have shown that the Gas Metal Arc Welding (GMAW) procedure with the minimum number of 5 passes to complete the wall thickness, was reduced to only single pass by using the HLAW process with the welding time less than 15s.Keywords: finite element modeling, high-temperature service, hybrid laser/arc welding, welding pipes
Procedia PDF Downloads 207320 Fault Detection of Pipeline in Water Distribution Network System
Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee
Abstract:
Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform
Procedia PDF Downloads 512319 Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures
Authors: Mohammad Reza Zamani Kouhpanji
Abstract:
Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere’s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them.Keywords: MEMS/NEMS devices, paired wire actuators and sensors, dynamical response, fatigue and fracture characterization, Ampere’s force law
Procedia PDF Downloads 399318 Study of Flow-Induced Noise Control Effects on Flat Plate through Biomimetic Mucus Injection
Authors: Chen Niu, Xuesong Zhang, Dejiang Shang, Yongwei Liu
Abstract:
Fishes can secrete high molecular weight fluid on their body skin to enable their rapid movement in the water. In this work, we employ a hybrid method that combines Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) to investigate the effects of different mucus viscosities and injection velocities on fluctuation pressure in the boundary layer and flow-induced structural vibration noise of a flat plate model. To accurately capture the transient flow distribution on the plate surface, we use Large Eddy Simulation (LES) while the mucus inlet is positioned at a sufficient distance from the model to ensure effective coverage. Mucus injection is modeled using the Volume of Fluid (VOF) method for multiphase flow calculations. The results demonstrate that mucus control of pulsating pressure effectively reduces flow-induced structural vibration noise, providing an approach for controlling flow-induced noise in underwater vehicles.Keywords: mucus, flow control, noise control, flow-induced noise
Procedia PDF Downloads 145317 Heat Exchanger Optimization of a Domestic Refrigerator with Separate Cooling Circuits
Authors: Tugba Tosun, Mert Tosun
Abstract:
Cooling system performance and energy consumption in the bypass two-circuit cycle have been studied experimentally to find optimum evaporator type and geometry, capillary tube diameter and capillary length. Two types of evaporators, such as wire on the tube and finned tube evaporators were used for the experiments in the fresh food compartment. As capillary tube inner diameter and total length; 0.66 mm and 0.8mm, and 3000 mm and 3500 mm were selected as parameters, respectively. Experiments were performed at the 25⁰C ambient temperature while the average temperature of the fresh food compartment is kept at 5⁰C and the highest package temperature of the freezer compartment is kept at -18⁰C, which are defined in IEC 62552 European standard. The Design of Experiments (DOE) technique which is six sigma method has been used to indicate of effective parameters in the bypass two-circuit cycle. The experimental results revealed that the most effective parameter of the system is the evaporator type. Finned tube evaporator with 12 tube passes was found as the best option for the bypass two-circuit refrigeration cycle among the 8 different opportunities. The optimum cooling performance and the lowest energy consumption were provided with 0.66 mm capillary tube inner diameter and 3500 mm capillary tube length.Keywords: capillary tube, energy consumption, heat exchanger, refrigerator, separate cooling circuits
Procedia PDF Downloads 168316 Realistic Testing Procedure of Power Swing Blocking Function in Distance Relay
Authors: Farzad Razavi, Behrooz Taheri, Mohammad Parpaei, Mehdi Mohammadi Ghalesefidi, Siamak Zarei
Abstract:
As one of the major problems in protecting large-dimension power systems, power swing and its effect on distance have caused a lot of damages to energy transfer systems in many parts of the world. Therefore, power swing has gained attentions of many researchers, which has led to invention of different methods for power swing detection. Power swing detection algorithm is highly important in distance relay, but protection relays should have general requirements such as correct fault detection, response rate, and minimization of disturbances in a power system. To ensure meeting the requirements, protection relays need different tests during development, setup, maintenance, configuration, and troubleshooting steps. This paper covers power swing scheme of the modern numerical relay protection, 7sa522 to address the effect of the different fault types on the function of the power swing blocking. In this study, it was shown that the different fault types during power swing cause different time for unblocking distance relay.Keywords: power swing, distance relay, power system protection, relay test, transient in power system
Procedia PDF Downloads 384315 Study of the Effect of Rotation on the Deformation of a Flexible Blade Rotor
Authors: Aref Maalej, Marwa Fakhfakh, Wael Ben Amira
Abstract:
We present in this work a numerical investigation of fluid-structure interaction to study the elastic behavior of flexible rotors. The principal aim is to provide the effect of the aero/hydrodynamic parameters on the bending deformation of flexible rotors. This study is accomplished using the strong two-way fluid-structure interaction (FSI) developed by the ANSYS Workbench software. This method is used for coupling the fluid solver to the transient structural solver to study the elastic behavior of flexible rotors in water. In this study, we use a moderately flexible rotor modeled by a single blade with simplified rectangular geometry. In this work, we focus on the effect of the rotational frequency on the flapwise bending deformation. It is demonstrated that the blade deforms in the downstream direction, and the amplitude of these deformations increases with the rotational frequencies. Also, from a critical frequency, the blade begins to deform in the upstream direction.Keywords: numerical simulation, flexible blade, fluid-structure interaction, ANSYS workbench, flapwise deformation
Procedia PDF Downloads 87314 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy
Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang
Abstract:
The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.Keywords: cross-validation support vector machine, refined com- posite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device
Procedia PDF Downloads 129