Search results for: thick wall tube
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2149

Search results for: thick wall tube

1699 The Effect of Swirl on the Flow Distribution in Automotive Exhaust Catalysts

Authors: Piotr J. Skusiewicz, Johnathan Saul, Ijhar Rusli, Svetlana Aleksandrova, Stephen. F. Benjamin, Miroslaw Gall, Steve Pierson, Carol A. Roberts

Abstract:

The application of turbocharging in automotive engines leads to swirling flow entering the catalyst. The behaviour of this type of flow within the catalyst has yet to be adequately documented. This work discusses the effect of swirling flow on the flow distribution in automotive exhaust catalysts. Compressed air supplied to a moving-block swirl generator allowed for swirling flow with variable intensities to be generated. Swirl intensities were measured at the swirl generator outlet using single-sensor hot-wire probes. The swirling flow was fed into diffusers with total angles of 10°, 30° and 180°. Downstream of the diffusers, a wash-coated diesel oxidation catalyst (DOC) of length 143.8 mm, diameter 76.2 mm and nominal cell density of 400 cpsi was fitted. Velocity profiles were measured at the outlet sleeve about 30 mm downstream of the monolith outlet using single-sensor hot-wire probes. Wall static pressure was recorded using a multi-tube manometer connected to pressure taps positioned along the diffuser walls. The results show that as swirl is increased, more of the flow is directed towards the diffuser walls. The velocity decreases around the centre-line and maximum velocities are observed close to the outer radius of the monolith for all flow rates. At the maximum swirl intensity, reversed flow was recorded near the centre of the monolith. Wall static pressure measurements in the 180° diffuser indicated no pressure recovery as the flow enters the diffuser. This is indicative of flow separation at the inlet to the diffuser. To gain insight into the flow structure, CFD simulations have been performed for the 180° diffuser for a flow rate of 63 g/s. The geometry of the model consists of the complete assembly from the upstream swirl generator to the outlet sleeve. Modelling of the flow in the monolith was achieved using the porous medium approach, where the monolith with parallel flow channels is modelled as a porous medium that resists the flow. A reasonably good agreement was achieved between the experimental and CFD results downstream of the monolith. The CFD simulations allowed visualisation of the separation zones and central toroidal recirculation zones that occur within the expansion region at certain swirl intensities which are highlighted.

Keywords: catalyst, computational fluid dynamics, diffuser, hot-wire anemometry, swirling flow

Procedia PDF Downloads 285
1698 Determination of Starting Design Parameters for Reactive-Dividing Wall Distillation Column Simulation Using a Modified Shortcut Design Method

Authors: Anthony P. Anies, Jose C. Muñoz

Abstract:

A new shortcut method for the design of reactive-dividing wall columns (RDWC) is proposed in this work. The RDWC is decomposed into its thermodynamically equivalent configuration naming the Petlyuk column, which consists of a reactive prefractionator and an unreactive main fractionator. The modified FUGK(Fenske-Underwood-Gilliland-Kirkbride) shortcut distillation method, which incorporates the effect of reaction on the Underwood equations and the Gilliland correlation, is used to design the reactive prefractionator. On the other hand, the conventional FUGK shortcut method is used to design the unreactive main fractionator. The shortcut method is applied to the synthesis of dimethyl ether (DME) through the liquid phase dehydration of methanol, and the results were used as the starting design inputs for rigorous simulation in Aspen Plus V8.8. A mole purity of 99 DME in the distillate stream, 99% methanol in the side draw stream, and 99% water in the bottoms stream were obtained in the simulation, thereby making the proposed shortcut method applicable for the preliminary design of RDWC.

Keywords: aspen plus, dimethyl ether, petlyuk column, reactive-dividing wall column, shortcut method, FUGK

Procedia PDF Downloads 167
1697 The Optimal Location of Brickforce in Brickwork

Authors: Sandile Daniel Ngidi

Abstract:

A brickforce is a product consisting of two main parallel wires joined by in-line welded cross wires. Embedded in the normal thickness of the brickwork joint, the wires are manufactured to a flattened profile to simplify location into the mortar joint without steel build-up problems at lap positions corners/junctions or when used in conjunction with wall ties. A brickforce has been in continuous use since 1918. It is placed in the cement between courses of bricks. Brickforce is used in every course of the foundations and every course above lintel height. Otherwise, brickforce is used every fourth course in between the foundations and lintel height or a concrete slab and lintel height. The brickforce strengthens and stabilizes the wall, especially if you are building on unstable ground. It provides brickwork increased resistance to tensional stresses. Brickforce uses high tensile steel wires, which can withstand high forces but with a very little stretch. This helps to keep crack widths to a minimum. Recently a debate has opened about the purpose of using brickforce in single-story buildings. The debate has been compounded by the fact that there is no consensus about the spacing of brickforce in brickwork or masonry. In addition, very little information had been published on the relative merits of using the same size of brickforce for the different atmospheric conditions in South Africa. This paper aims to compare different types of brickforce systems used in different countries. Conclusions are made to identify the point and location of brickforce that optimize the system.

Keywords: brickforce, masonry concrete, reinforcement, strengthening, wall panels

Procedia PDF Downloads 208
1696 Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes

Authors: A. Abdikian

Abstract:

Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.

Keywords: transverse magnetic, transverse electric, quantum hydrodynamic model, electron exchange-correlation potential, single-wall carbon nanotubes

Procedia PDF Downloads 430
1695 Optimization of a Four-Lobed Swirl Pipe for Clean-In-Place Procedures

Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu

Abstract:

This paper presents a numerical investigation of two horizontally mounted four-lobed swirl pipes in terms of swirl induction effectiveness into flows passing through them. The swirl flows induced by the two swirl pipes have the potential to improve the efficiency of Clean-In-Place procedures in a closed processing system by local intensification of hydrodynamic impact on the internal pipe surface. Pressure losses, swirl development within the two swirl pipe, swirl induction effectiveness, swirl decay and wall shear stress variation downstream of two swirl pipes are analyzed and compared. It was found that a shorter length of swirl inducing pipe used in joint with transition pipes is more effective in swirl induction than when a longer one is used, in that it has a less constraint to the induced swirl and results in slightly higher swirl intensity just downstream of it with the expense of a smaller pressure loss. The wall shear stress downstream of the shorter swirl pipe is also slightly larger than that downstream of the longer swirl pipe due to the slightly higher swirl intensity induced by the shorter swirl pipe. The advantage of the shorter swirl pipe in terms of swirl induction is more significant in flows with a larger Reynolds Number.

Keywords: swirl pipe, swirl effectiveness, CFD, wall shear stress, swirl intensity

Procedia PDF Downloads 586
1694 Investigation of Axisymmetric Bimetallic Tube Extrusion with Conic Die

Authors: A. Eghbali, M. Goodarzi, M. Hagh Panahi

Abstract:

In this article process of direct extrusion of axisymmetric bimetallic tube with conic die profile and constant Mandrel by upper bound method has been analyzed and finite element method is simulated. Deformation area is divided into six smaller deformation areas and are calculated by presenting two generalized velocity field and applicable input and output sections separately (velocity profile with logarithmic curve for input section and spherical velocity profile for materials output ) for each die profile in spherical coordinate system strain rate values in every deformation area. After internal power, shearing power and material friction power is obtained, extrusion force is calculated. The results of upper bound analysis method with given results from other researcher's experiments and simulation by finite parts method (Abaqus software) are compared for conic die.

Keywords: extrusion, upper bound, axisy metric, deformation velocity field

Procedia PDF Downloads 355
1693 A Unified Model for Predicting Particle Settling Velocity in Pipe, Annulus and Fracture

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li

Abstract:

Transports of solid particles through the drill pipe, drill string-hole annulus and hydraulically generated fractures are important dynamic processes encountered in oil and gas well drilling and completion operations. Different from particle transport in infinite space, the transports of cuttings, proppants and formation sand are hindered by a finite boundary. Therefore, an accurate description of the particle transport behavior under the bounded wall conditions encountered in drilling and hydraulic fracturing operations is needed to improve drilling safety and efficiency. In this study, the particle settling experiments were carried out to investigate the particle settling behavior in the pipe, annulus and between the parallel plates filled with power-law fluids. Experimental conditions simulated the particle Reynolds number ranges of 0.01-123.87, the dimensionless diameter ranges of 0.20-0.80 and the fluid flow behavior index ranges of 0.48-0.69. Firstly, the wall effect of the annulus is revealed by analyzing the settling process of the particles in the annular geometry with variable inner pipe diameter. Then, the geometric continuity among the pipe, annulus and parallel plates was determined by introducing the ratio of inner diameter to an outer diameter of the annulus. Further, a unified dimensionless diameter was defined to confirm the relationship between the three different geometry in terms of the wall effect. In addition, a dimensionless term independent from the settling velocity was introduced to establish a unified explicit settling velocity model applicable to pipes, annulus and fractures with a mean relative error of 8.71%. An example case study was provided to demonstrate the application of the unified model for predicting particle settling velocity. This paper is the first study of annulus wall effects based on the geometric continuity concept and the unified model presented here will provide theoretical guidance for improved hydraulic design of cuttings transport, proppant placement and sand management operations.

Keywords: wall effect, particle settling velocity, cuttings transport, proppant transport in fracture

Procedia PDF Downloads 141
1692 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production

Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia

Abstract:

Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.

Keywords: direct steam generation, parabolic trough collectors, Ppressure drop, empirical models

Procedia PDF Downloads 120
1691 Influence of Reinforcement Stiffness on the Performance of Back-to-Back Reinforced Earth Wall upon Rainwater Infiltration

Authors: Gopika Rajagopal, Sudheesh Thiyyakkandi

Abstract:

Back-to-back reinforced earth (RE) walls are extensively used in these days as bridge abutments and highway ramps, owing to their cost efficiency and ease of construction. High quality select fill is the most suitable backfill material due to its excellent engineering properties and constructability. However, industries are compelled to use low quality, locally available soil because of its ample availability on site. However, several failure cases of such walls are reported, especially subsequent to rainfall events. The stiffness of reinforcement is one of the major factors affecting the performance of RE walls. The present study focused on analyzing the effect of reinforcement stiffness on the performance of complete select fill, complete marginal fill, and hybrid-fill (i.e., combination of select and marginal fills) back-to-back RE walls, immediately after construction and upon rainwater infiltration through finite element modelling. A constant width to height (W/H) ratio of 3 and height (H) of 6 m was considered for the numerical analysis and the stiffness of reinforcement layers was varied from 500 kN/m to 10000 kN/m. Results showed that reinforcement stiffness had a noticeable influence on the response of RE wall, subsequent to construction as well as rainwater infiltration. Facing displacement was found to decrease and maximum reinforcement tension and factor of safety were observed to increase with increasing the stiffness of reinforcement. However, beyond a stiffness of 5000 kN/m, no significant reduction in facing displacement was observed. The behavior of fully marginal fill wall considered in this study was found to be reasonable even after rainwater infiltration when the high stiffness reinforcement layers are used.

Keywords: back-to-back reinforced earth wall, finite element modelling, rainwater infiltration, reinforcement stiffness

Procedia PDF Downloads 134
1690 Understanding Surface Failures in Thick Asphalt Pavement: A 3-D Finite Element Model Analysis

Authors: Hana Gebremariam Liliso

Abstract:

This study investigates the factors contributing to the deterioration of thick asphalt pavements, such as rutting and cracking. We focus on the combined influence of traffic loads and pavement structure. This study uses a three-dimensional finite element model with a Mohr-Coulomb failure criterion to analyze the stress levels near the pavement's surface under realistic conditions. Our model considers various factors, including tire-pavement contact stresses, asphalt properties, moving loads, and dynamic analysis. This research suggests that cracking tends to occur between dual tires. Some key discoveries include the risk of cracking increases as temperatures rise; surface cracking at high temperatures is associated with distortional deformation; using a uniform contact stress distribution underestimates the risk of failure compared to realistic three-dimensional tire contact stress, particularly at high temperatures; the risk of failure is higher near the surface when there is a negative temperature gradient in the asphalt layer; and debonding beneath the surface layer leads to increased shear stress and premature failure around the interface.

Keywords: asphalt pavement, surface failure, 3d finite element model, multiaxial stress states, Mohr-Coulomb failure criterion

Procedia PDF Downloads 41
1689 Integrated Design of Froth Flotation Process in Sludge Oil Recovery Using Cavitation Nanobubbles for Increase the Efficiency and High Viscose Compatibility

Authors: Yolla Miranda, Marini Altyra, Karina Kalmapuspita Imas

Abstract:

Oily sludge wastes always fill in upstream and downstream petroleum industry process. Sludge still contains oil that can use for energy storage. Recycling sludge is a method to handling it for reduce the toxicity and very probable to get the remaining oil around 20% from its volume. Froth flotation, a common method based on chemical unit for separate fine solid particles from an aqueous suspension. The basic composition of froth flotation is the capture of oil droplets or small solids by air bubbles in an aqueous slurry, followed by their levitation and collection in a froth layer. This method has been known as no intensive energy requirement and easy to apply. But the low efficiency and unable treat the high viscosity become the biggest problem in froth flotation unit. This study give the design to manage the high viscosity of sludge first and then entering the froth flotation including cavitation tube on it to change the bubbles into nano particles. The recovery in flotation starts with the collision and adhesion of hydrophobic particles to the air bubbles followed by transportation of the hydrophobic particle-bubble aggregate from the collection zone to the froth zone, drainage and enrichment of the froth, and finally by its overflow removal from the cell top. The effective particle separation by froth flotation relies on the efficient capture of hydrophobic particles by air bubbles in three steps. The important step is collision. Decreasing the bubble particles will increasing the collision effect. It cause the process more efficient. The pre-treatment, froth flotation, and cavitation tube integrated each other. The design shows the integrated unit and its process.

Keywords: sludge oil recovery, froth flotation, cavitation tube, nanobubbles, high viscosity

Procedia PDF Downloads 343
1688 Optimal Seismic Design of Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, the optimal seismic design of reinforced concrete shear wall-frame building structures was done using structural optimization. The optimal section sizes were generated through structural optimization based on linear static analysis conforming to American Concrete Institute building design code (ACI 318-14). An analytical procedure was followed to validate the accuracy of the proposed method by comparing stresses on structural members through output files of MATLAB and ETABS. In order to consider the difference of stresses in structural elements by ETABS and MATLAB, and to avoid over-stress members by ETABS, a stress constraint ratio of MATLAB to ETABS was modified and introduced for the most critical load combinations and structural members. Moreover, seismic design of the structure was done following the International Building Code (IBC 2012), American Concrete Institute Building Code (ACI 318-14) and American Society of Civil Engineering (ASCE 7-10) standards. Typical reinforcement requirements for the structural wall, beam and column were discussed and presented using ETABS structural analysis software. The placement and detailing of reinforcement of structural members were also explained and discussed. The outcomes of this study show that the modification of section sizes play a vital role in finding an optimal combination of practical section sizes. In contrast, the optimization problem with size constraints has a higher cost than that of without size constraints. Moreover, the comparison of optimization problem with that of ETABS program shown to be satisfactory and governed ACI 318-14 building design code criteria.

Keywords: structural optimization, seismic design, linear static analysis, etabs, matlab, rc shear wall-frame structures

Procedia PDF Downloads 145
1687 The Effects of Spatial Dimensions and Relocation and Dimensions of Sound Absorbers in a Space on the Objective Parameters of Sound

Authors: Mustafa Kavraz

Abstract:

This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes. This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes.

Keywords: sound absorber, room model, objective parameters of sound, jnd

Procedia PDF Downloads 356
1686 Prediction of Scour Profile Caused by Submerged Three-Dimensional Wall Jets

Authors: Abdullah Al Faruque, Ram Balachandar

Abstract:

Series of laboratory tests were carried out to study the extent of scour caused by a three-dimensional wall jets exiting from a square cross-section nozzle and into a non-cohesive sand beds. Previous observations have indicated that the effect of the tailwater depth was significant for densimetric Froude number greater than ten. However, the present results indicate that the cut off value could be lower depending on the value of grain size-to-nozzle width ratio. Numbers of equations are drawn out for a better scaling of numerous scour parameters. Also suggested the empirical prediction of scour to predict the scour centre line profile and plan view of scour profile at any particular time.

Keywords: densimetric froude number, jets, nozzle, sand, scour, tailwater, time

Procedia PDF Downloads 416
1685 Numerical and Experimental Investigation of Distance Between Fan and Coil Block in a Fin and Tube Air Cooler Heat Exchanger

Authors: Feyza Şahi̇n, Harun Deni̇zli̇, Mustafa Zabun, Hüseyi̇n OnbaşIoğli

Abstract:

Heat exchangers are devices that are widely used to transfer heat between fluids due to their temperature differences. As a type of heat exchanger, air coolers are heat exchangers that cool the air as it passes through the fins of the heat exchanger by transferring heat to the refrigerant in the coil tubes of the heat exchanger. An assembled fin and tube heat exchanger consists of a coil block and a casing with a fan mounted on it. The term “Fan hood” is used to define the distance between the fan and the coil block. Air coolers play a crucial role in cooling systems, and their heat transfer performance can vary depending on design parameters. These parameters can be related to the air side or the internal fluid side. For airside efficiency, the distance between the fan and the coil block affects the performance by creating dead zones at the corners of the casing and maldistribution of airflow. Therefore, a detailed study of the effect of the fan hood on the evaporator and the optimum fan hood distance is necessary for an efficient air cooler design. This study aims to investigate the value of the fan hood in a fin and tube-type air cooler heat exchanger through computational fluid dynamics (CFD) simulations and experimental investigations. CFD simulations will be used to study the airflow within the fan hood. These simulations will provide valuable insights to optimize the design of the fan hood. In addition, experimental tests will be carried out to validate the CFD results and to measure the performance of the fan hood under real conditions. The results will help us to understand the effect of fan hood design on evaporator efficiency and contribute to the development of more efficient cooling systems. This study will provide essential information for evaporator design and improving the energy efficiency of cooling systems.

Keywords: heat exchanger, fan hood, heat exchanger performance, air flow performance

Procedia PDF Downloads 46
1684 Experimental Investigation on the Effect of Ultrasonication on Dispersion and Mechanical Performance of Multi-Wall Carbon Nanotube-Cement Mortar Composites

Authors: S. Alrekabi, A. Cundy, A. Lampropoulos, I. Savina

Abstract:

Due to their remarkable mechanical properties, multi-wall carbon nanotubes (MWCNTs) are considered by many researchers to be a highly promising filler and reinforcement agent for enhanced performance cementitious materials. Currently, however, achieving an effective dispersion of MWCNTs remains a major challenge in developing high performance nano-cementitious composites, since carbon nanotubes tend to form large agglomerates and bundles as a consequence of Van der Waals forces. In this study, effective dispersion of low concentrations of MWCNTs at 0.01%, 0.025%, and 0.05% by weight of cement in the composite was achieved by applying different sonication conditions in combination with the use of polycarboxylate ether as a surfactant. UV-Visible spectroscopy and Transmission electron microscopy (TEM) were used to assess the dispersion of MWCNTs in water, while the dispersion states of MWCNTs within the cement composites and their surface interactions were examined by scanning electron microscopy (SEM). A high sonication intensity applied over a short time period significantly enhanced the dispersion of MWCNTs at initial mixing stages, and 0.025% of MWCNTs wt. of cement, caused 86% and 27% improvement in tensile strength and compressive strength respectively, compared with a plain cement mortar.

Keywords: dispersion, mechanical performance, multi wall carbon nanotubes, sonication conditions

Procedia PDF Downloads 290
1683 Utilization of Multi-Criteria Evaluation in Forensic Engineering and the Expertise outside Wall Subsystem

Authors: Tomas Barnak, Libor Matejka

Abstract:

The aim of this study is to create a standard application using multi-criteria evaluation in the field of forensic engineering. This situation can occur in the professional assessment in several cases such as when it is necessary to consider more criteria variant of the structural subsystems, more variants according to several criteria based on a court claim, which requires expert advice. A problematic situation arises when it is necessary to clearly determine the ranking of the options according to established criteria, and reduce subjective evaluation. For the procurement in the field of construction which is based on the prepared text of the law not only economic criteria but also technical, technological and environmental criteria will be determined. This fact substantially changes the style of evaluation of individual bids. For the above-mentioned needs of procurement, the unification of expert’s decisions and the use of multi-criteria assessment seem to be a reasonable option. In the case of experimental verification when using multi-criteria evaluation of alternatives construction subsystem the economic, technical, technological and environmental criteria will be compared. The core of the solution is to compare a selected number of set criteria, application methods and evaluation weighting based on the weighted values assigned to each of the criteria to use multi-criteria evaluation methods. The sequence of individual variations is determined by the evaluation of the importance of the values of corresponding criteria concerning expertise in the problematic of outside wall constructional subsystems.

Keywords: criteria, expertise, multi-criteria evaluation, outside wall subsystems

Procedia PDF Downloads 302
1682 Production and Investigation of Ceramic-Metal Composite from Electroless Ni Plated AlN and Al Powders

Authors: Ahmet Yönetken

Abstract:

Al metal matrix composites reinforced with AlN have been fabricated by Tube furnace sintering at various temperatures. A uniform nickel layer on Al(%1AlN)%19Ni, Al(%2AlN)%18Ni, Al(%3AlN)%17Ni, Al(%4AlN)%16Ni, Al(%5AlN)%15Ni powders were deposited prior to sintering using electroless plating technique, allowing closer surface contact than can be achieved using conventional methods such as mechanical alloying. A composite consisting of quaternary additions, a ceramic phase, AlN, within a matrix of Al, AlN, Ni has been prepared at the temperature range between 550°C and 650°C under Ar shroud. X-Ray diffraction, SEM (Scanning Electron Microscope) density, and hardness measurements were employed to characterize the properties of the specimens. Experimental results carried out for 650°C suggest that the best properties as comprehension strength σmax and hardness 681.51(HV) were obtained at 650°C, and the tube furnace sintering of electroless Al plated (%5AlN)%15Ni powders is a promising technique to produce ceramic reinforced Al (%5AlN)%15Ni composites.

Keywords: electroless nickel plating, ceramic-metal composites, powder metallurgy, sintering

Procedia PDF Downloads 223
1681 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter

Authors: Van-Thanh Ho, Jaiyoung Ryu

Abstract:

In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.

Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model

Procedia PDF Downloads 66
1680 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

Authors: Pakawhat Khumkhreung, Yottana Khunatorn

Abstract:

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

Keywords: airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct

Procedia PDF Downloads 143
1679 Design and Modelling of Ge/GaAs Hetero-structure Bipolar Transistor

Authors: Samson Mil'shtein, Dhawal N. Asthana

Abstract:

The presented heterostructure n-p-n bipolar transistor is comprised of Ge/GaAs heterojunctions consisting of 0.15µm thick emitter and 0.65µm collector junctions. High diffusivity of carriers in GaAs base was major motivation of current design. We avoided grading of the base which is common in heterojunction bipolar transistors, in order to keep the electron diffusivity as high as possible. The electrons injected into the 0.25µm thick p-type GaAs base with not very high doping (1017cm-3). The designed HBT enables cut off frequency on the order of 150GHz. The Ge/GaAs heterojunctions presented in our paper have proved to work better than comparable HBTs having GaAs bases and emitter/collector junctions made, for example, of AlGaAs/GaAs or other III-V compound semiconductors. The difference in lattice constants between Ge and GaAs is less than 2%. Therefore, there is no need of transition layers between Ge emitter and GaAs base. Significant difference in energy gap of these two materials presents new scope for improving performance of the emitter. With the complete structure being modelled and simulated using TCAD SILVACO, the collector/ emitter offset voltage of the device has been limited to a reasonable value of 63 millivolts by the dint of low energy band gap value associated with Ge emitter. The efficiency of the emitter in our HBT is 86%. Use of Germanium in the emitter and collector regions presents new opportunities for integration of this vertical device structure into silicon substrate.

Keywords: Germanium, Gallium Arsenide, heterojunction bipolar transistor, high cut-off frequency

Procedia PDF Downloads 397
1678 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading

Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla

Abstract:

Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.

Keywords: cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel

Procedia PDF Downloads 269
1677 Polymer Spiral Film Gas-Liquid Heat Exchanger for Waste Heat Recovery in Exhaust Gases

Authors: S. R. Parthiban, C. Elajchet Senni

Abstract:

Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger.

Keywords: spiral heat exchanger, polymer based materials, fouling factor, heat load

Procedia PDF Downloads 350
1676 Analysis of Secondary Stage Creep in Thick-Walled Composite Cylinders Subjected to Rotary Inertia

Authors: Tejeet Singh, Virat Khanna

Abstract:

Composite materials have drawn considerable attention of engineers due to their light weight and application at high thermo-mechanical loads. With regard to the prediction of the life of high temperature structural components like rotating cylinders and the evaluation of their deterioration with time, it is essential to have a full knowledge of creep characteristics of these materials. Therefore, in the present study the secondary stage creep stresses and strain rates are estimated in thick-walled composite cylinders subjected to rotary inertia at different angular speeds. The composite cylinder is composed of aluminum matrix (Al) and reinforced with silicon carbide (SiC) particles which are uniformly mixed. The creep response of the material of the cylinder is described by threshold stress based creep law. The study indicates that with the increase in angular speed, the radial, tangential, axial and effective stress increases to a significant value. However, the radial stress remains zero at inner radius and outer radius due to imposed boundary conditions of zero pressure. Further, the stresses are tensile in nature throughout the entire radius of composite cylinder. The strain rates are also influenced in the same manner as that of creep stresses. The creep rates will increase significantly with the increase of centrifugal force on account of rotation.

Keywords: composite, creep, rotating cylinder, angular speed

Procedia PDF Downloads 417
1675 A Study of Shigeru Ban's Environmentally-Sensitive Design Approach

Authors: Duygu Merve Bulut, Fehime Yesim Gurani

Abstract:

The Japanese architect Shigeru Ban has succeeded in bringing a different understanding to the modern architectural design approach with both the material selection and the techniques he used while combining the material with the design. Ban, who reflects his respect to people and nature with his designs, has encouraged that design should be done with economic materials, easily accessible and understandable for everyone. Because of this, Ban has attracted attention and appreciated in the architectural world with his environmentally-sensitive design ideology and humanitarian projects. In order to understand Ban’s environmentally-sensitive design approach, with this article, Ban’s projects which have used natural materials; the projects of Ban’s Japenese Pavilion in Germany, Papertainer Museum in South Korea, Centre Pompidou-Metz in France and Cardboard Cathedral in New Zealand were examined and analyzed. In the following parts, 'paper tube' technology that creates awareness in architectural area, which developed and applied by Ban; has been examined in terms of building material and structure of sustainable space design. As a result of this review, Ban’s approach is evaluated in terms of its contribution to the understanding of sustainable design.

Keywords: ecological design, environmentally-sensitive design, paper tube, Shigeru Ban, sustainability

Procedia PDF Downloads 464
1674 Haemodynamics Study in Subject Specific Carotid Bifurcation Using FSI

Authors: S. M. Abdul Khader, Anurag Ayachit, Raghuvir Pai, K. A. Ahmed, V. R. K Rao, S. Ganesh Kamath

Abstract:

The numerical simulation has made tremendous advances in investigating the blood flow phenomenon through elastic arteries. Such study can be useful in demonstrating the disease progression and haemodynamics of cardiovascular diseases such as atherosclerosis. In the present study, patient specific case diagnosed with partially stenosed complete right ICA and normal left carotid bifurcation without any atherosclerotic plaque formation is considered. 3D patient specific carotid bifurcation model is generated based on CT scan data using MIMICS-4.0 and numerical analysis is performed using FSI solver in ANSYS-14.5. The blood flow is assumed to be incompressible, homogenous and Newtonian, while the artery wall is assumed to be linearly elastic. The two-way sequentially-coupled transient FSI analysis is performed using FSI solver for three pulse cycles. The haemodynamic parameters such as flow pattern, Wall Shear Stress, pressure contours and arterial wall deformation are studied at the bifurcation and critical zones such as stenosis. The variation in flow behavior is studied throughout the pulse cycle. Also, the simulation results reveals that there is a considerable increase in the flow behavior in stenosed carotid in contrast to the normal carotid bifurcation system. The investigation also demonstrates the disturbed flow pattern especially at the bifurcation and stenosed zone elevating the haemodynamics, particularly during peak systole and later part of the pulse cycle. The results obtained agree well with the clinical observation and demonstrates the potential of patient specific numerical studies in prognosis of disease progression and plaque rupture.

Keywords: fluid-structure interaction, arterial stenosis, wall shear stress, carotid artery bifurcation

Procedia PDF Downloads 554
1673 Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor.

Keywords: melting furnace, inverse heat transfer, enthalpy method, levenberg–marquardt method

Procedia PDF Downloads 301
1672 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material

Authors: Sukhbir Singh

Abstract:

This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.

Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector

Procedia PDF Downloads 98
1671 Interaction of the Circumferential Lamb Wave with Delamination in the Middle of Pipe Wall

Authors: Li Ziming, He Cunfu, Liu Zenghua

Abstract:

With aim for delamination type defects detection in manufacturing process of seamless pipe,this paper studies the interaction of the circumferential lamb wave with delamination in aluminum pipe.The delamination is located in the middle of pipe wall.A numerical study is carried out,the circumferential lamb wave used here is CL0 mode,which is generated with a finite element method code.Wave structures from the simulation are compared with theoretical results to verify the model’s accuracy.Delamination along the circumferential direction is established by demerging nodes of the same coordinates.When CL0 mode is incident at the entrance and exit of a delamination,it generates new mode-CL1,undergoes multiple reverberation and mode conversions between the two ends of the delamination. Signals of different receptions are obtained to provide insight in using CL0 mode for locating the delamination.

Keywords: circumferential lamb wave, delamination, FEM, seamless pipe

Procedia PDF Downloads 292
1670 Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature

Authors: Ishak Hashim, Ammar Alsabery

Abstract:

The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating.

Keywords: conjugate free convection, square cavity, nanofluid, spatial temperature

Procedia PDF Downloads 333