Search results for: opposition based learning
31771 How Holton’s Thematic Analysis Can Help to Understand Why Fred Hoyle Never Accepted Big Bang Cosmology
Authors: Joao Barbosa
Abstract:
After an intense dispute between the big bang cosmology and its big rival, the steady-state cosmology, some important experimental observations, such as the determination of helium abundance in the universe and the discovery of the cosmic background radiation in the 1960s were decisive for the progressive and wide acceptance of big bang cosmology and the inevitable abandonment of steady-state cosmology. But, despite solid theoretical support and those solid experimental observations favorable to big bang cosmology, Fred Hoyle, one of the proponents of the steady-state and the main opponent of the idea of the big bang (which, paradoxically, himself he baptized), never gave up and continued to fight for the idea of a stationary (or quasi-stationary) universe until the end of his life, even after decades of widespread consensus around the big bang cosmology. We can try to understand this persistent attitude of Hoyle by applying Holton’s thematic analysis to cosmology. Holton recognizes in the scientific activity a dimension that, even unconscious or not assumed, is nevertheless very important in the work of scientists, in implicit articulation with the experimental and the theoretical dimensions of science. This is the thematic dimension, constituted by themata – concepts, methodologies, and hypotheses with a metaphysical, aesthetic, logical, or epistemological nature, associated both with the cultural context and the individual psychology of scientists. In practice, themata can be expressed through personal preferences and choices that guide the individual and collective work of scientists. Thematic analysis shows that big bang cosmology is mainly based on a set of themata consisting of evolution, finitude, life cycle, and change; the cosmology of the steady-state is based on opposite themata: steady-state, infinity, continuous existence, and constancy. The passionate controversy that these cosmological views carried out is part of an old cosmological opposition: the thematic opposition between an evolutionary view of the world (associated with Heraclitus) and a stationary view (associated with Parmenides). Personal preferences seem to have been important in this (thematic) controversy, and the thematic analysis that was developed shows that Hoyle is a very illustrative example of a life-long personal commitment to some themata, in this case to the opposite themata of the big bang cosmology. His struggle against the big bang idea was strongly based on philosophical and even religious reasons – which, in a certain sense and in a Holtonian perspective, is related to thematic preferences. In this personal and persistent struggle, Hoyle always refused the way how some experimental observations were considered decisive in favor of the big bang idea, arguing that the success of this idea is based on sociological and cultural prejudices. This Hoyle’s attitude is a personal thematic attitude, in which the acceptance or rejection of what is presented as proof or scientific fact is conditioned by themata: what is a proof or a scientific fact for one scientist is something yet to be established for another scientist who defends different or even opposites themata.Keywords: cosmology, experimental observations, fred hoyle, interpretation, life-long personal commitment, Themata
Procedia PDF Downloads 16831770 Building in Language Support in a Hong Kong Chemistry Classroom with English as a Medium of Instruction: An Exploratory Study
Authors: Kai Yip Michael Tsang
Abstract:
Science writing has played a crucial part in science assessments. This paper reports a study in an area that has received little research attention – how Language across the Curriculum (LAC, i.e. science language and literacy) learning activities in science lessons can increase the science knowledge development of English as a foreign language (EFL) students in Hong Kong. The data comes from a school-based interventional study in chemistry classrooms, with written data from questionnaires, assessments and teachers’ logs and verbal data from interviews and classroom observations. The effectiveness of the LAC teaching and learning activities in various chemistry classrooms were compared and evaluated, with discussion of some implications. Students in the treatment group with lower achieving students received LAC learning and teaching activities while students in the control group with higher achieving students received conventional learning and teaching activities. After the study, they performed better in control group in formative assessments. Moreover, they had a better attitude to learning chemistry content with a richer language support. The paper concludes that LAC teaching and learning activities yielded positive learning outcomes among chemistry learners with low English ability.Keywords: science learning and teaching, content and language integrated learning, language across the curriculum, English as a foreign language
Procedia PDF Downloads 19031769 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network
Authors: Vinai K. Singh
Abstract:
In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans
Procedia PDF Downloads 13631768 Visualizing the Consequences of Smoking Using Augmented Reality
Authors: B. Remya Mohan, Kamal Bijlani, R. Jayakrishnan
Abstract:
Visualization in an educational context provides the learner with visual means of information. Conceptualizing certain circumstances such as consequences of smoking can be done more effectively with the help of the technology, Augmented Reality (AR). It is a new methodology for effective learning. This paper proposes an approach on how AR based on Marker Technology simulates the harmful effects of smoking and its consequences using Unity 3D game engine. The study also illustrates the impact of AR technology on students for better learning. AR technology can be used as a method to improve learning.Keywords: augmented reality, marker technology, multi-platform, virtual buttons
Procedia PDF Downloads 57731767 Project-Based Learning in Engineering Education
Authors: M. Greeshma, V. Ashvini, P. Jayarekha
Abstract:
Project based learning (PBL) is a student-driven educational framework and offers the student an opportunity for in-depth investigations of courses. This paper presents the need of PBL in engineering education for the student to graduate with a capacity to design and implement complex problems. The implementation strategy of PBL and its related challenges are presented. The case study that energizes the engineering curriculum with a relevance to the real-world of technology along with its benefits to the students is also included.Keywords: PBL, engineering education, curriculum, implement complex
Procedia PDF Downloads 47331766 The Potentials of Online Learning and the Challenges towards Its Adoption in Nigeria's Higher Institutions of Learning
Authors: Kuliya Muhammed
Abstract:
This paper examines the potentials of online learning and the challenges to its adoption in Nigeria’s higher institutions of learning. The research would assist in tackling the challenges of online learning adoption and enlighten institutions on the numerous benefits of online learning in Nigeria. The researcher used survey method for the study and questionnaires were used to obtain the needed data from 230 respondents cut across 20 higher institutions in the country. The findings revealed that online learning has the prospect to boost access to learning tools, assist students’ to learn from the comfort of their offices or homes, reduce the cost of learning, and enable individuals to gain self-knowledge. The major challenges in the adoption of e-learning are poor Information and Communication Technology infrastructures, poor internet connectivity where available, lack of Information and Communication Technology background, problem of power supply, lack of commitment by institutions, poor maintenance of Information and Communication Technology tools, inadequate facilities, lack of government funding and fraud. Recommendations were also made at the end of the research work.Keywords: electronic, ICT, institution, internet, learning, technology
Procedia PDF Downloads 38831765 The Role of Video in Teaching and Learning Pronunciation: A Case Study
Authors: Kafi Razzaq Ahmed
Abstract:
Speaking fluently in a second language requires vocabulary, grammar, and pronunciation skills. Teaching the English language entails teaching pronunciation. In professional literature, there have been a lot of attempts to integrate technology into improving the pronunciation of learners. The technique is also neglected in Kurdish contexts, Salahaddin University – Erbil included. Thus, the main aim of the research is to point out the efficiency of using video materials for both language teachers and learners within and beyond classroom learning and teaching environments to enhance student's pronunciation. To collect practical data, a research project has been designed. In subsequent research, a posttest will be administered after each lesson to 100 first-year students at Salahaddin University-Erbil English departments. All students will be taught the same material using different methods, one based on video materials and the other based on the traditional approach to teaching pronunciation. Finally, the results of both tests will be analyzed (also knowing the attitudes of both the teachers and the students about both lessons) to indicate the impact of using video in the process of teaching and learning pronunciation.Keywords: video, pronunciation, teaching, learning
Procedia PDF Downloads 10831764 Explaining E-Learning Systems Usage in Higher Education Institutions: UTAUT Model
Authors: Muneer Abbad
Abstract:
This research explains the e-learning usage in a university in Jordan. Unified theory of acceptance and use of technology (UTAUT) model has been used as a base model to explain the usage. UTAUT is a model of individual acceptance that is compiled mainly from different models of technology acceptance. This research is the initial part from full explanations of the users' acceptance model that use Structural Equation Modelling (SEM) method to explain the users' acceptance of the e-learning systems based on UTAUT model. In this part data has been collected and prepared for further analysis. The main factors of UTAUT model has been tested as different factors using exploratory factor analysis (EFA). The second phase will be confirmatory factor analysis (CFA) and SEM to explain the users' acceptance of e-learning systems.Keywords: e-learning, moodle, adoption, Unified Theory of Acceptance and Use of Technology (UTAUT)
Procedia PDF Downloads 40731763 LORA: A Learning Outcome Modelling Approach for Higher Education
Authors: Aqeel Zeid, Hasna Anees, Mohamed Adheeb, Mohamed Rifan, Kalpani Manathunga
Abstract:
To achieve constructive alignment in a higher education program, a clear set of learning outcomes must be defined. Traditional learning outcome definition techniques such as Bloom’s taxonomy are not written to be utilized by the student. This might be disadvantageous for students in student-centric learning settings where the students are expected to formulate their own learning strategies. To solve the problem, we propose the learning outcome relation and aggregation (LORA) model. To achieve alignment, we developed learning outcome, assessment, and resource authoring tools which help teachers to tag learning outcomes during creation. A pilot study was conducted with an expert panel consisting of experienced professionals in the education domain to evaluate whether the LORA model and tools present an improvement over the traditional methods. The panel unanimously agreed that the model and tools are beneficial and effective. Moreover, it helped them model learning outcomes in a more student centric and descriptive way.Keywords: learning design, constructive alignment, Bloom’s taxonomy, learning outcome modelling
Procedia PDF Downloads 18631762 Innovative Teaching Learning Techniques and Learning Difficulties of Adult Learners in Literacy Education Programmes in Calabar Metropolis, Cross River State, Nigeria
Authors: Simon Ibor Akpama
Abstract:
The study investigated the extent to which innovative teaching-learning techniques can influence and attenuate learning difficulties among adult learners participating in different literacy education programmes in Calabar Metropolis, Cross River State, Nigeria. A quasi-experimental design was adopted to collect data from a sample size of 150 participants of the programme. The sample was drawn using the simple random sampling method. As an experimental study, the 150 participants were divided into two equal groups –the first was the experimental group while the second was the control. A pre-test was administered to the two groups which were later exposed to a post-test after treatment. Two instruments were used for data collection. The first was the guide for the Literacy Learning Difficulties Inventory (LLDI). Three hypotheses were postulated and tested as .05 level of significance using Analysis of Covariance (ANOVA) test statistics. Results of the analysis firstly showed that the two groups (treatment and control) did not differ in the pre-test regarding their literacy learning difficulties. Secondly, the result showed that for each hypothesis, innovative teaching-learning techniques significantly influenced adult learners’ (participants) literacy learning difficulties. Based on these findings, the study recommends the use of innovative teaching-learning techniques in adult literacy education centres to mitigate the learning difficulties of adult learners in literacy education programmes in Calabar Metropolis.Keywords: teaching, learning, techniques, innovative, difficulties, programme
Procedia PDF Downloads 12131761 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning
Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie
Abstract:
This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network
Procedia PDF Downloads 14331760 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning
Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang
Abstract:
Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning
Procedia PDF Downloads 11931759 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning
Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah
Abstract:
Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning
Procedia PDF Downloads 3231758 Cooperative Learning: A Case Study on Teamwork through Community Service Project
Authors: Priyadharshini Ahrumugam
Abstract:
Cooperative groups through much research have been recognized to churn remarkable achievements instead of solitary or individualistic efforts. Based on Johnson and Johnson’s model of cooperative learning, the five key components of cooperation are positive interdependence, face-to-face promotive interaction, individual accountability, social skills and group processing. In 2011, the Malaysian Ministry of Higher Education (MOHE) introduced the Holistic Student Development policy with the aim to develop morally sound individuals equipped with lifelong learning skills. The Community Service project was included in the improvement initiative. The purpose of this study is to assess the relationship of team-based learning in facilitating particularly students’ positive interdependence and face-to-face promotive interaction. The research methods involve in-depth interviews with the team leaders and selected team members, and a content analysis of the undergraduate students’ reflective journals. A significant positive relationship was found between students’ progressive outlook towards teamwork and the highlighted two components. The key findings show that students have gained in their individual learning and work results through teamwork and interaction with other students. The inclusion of Community Service as a MOHE subject resonates with cooperative learning methods that enhances supportive relationships and develops students’ social skills together with their professional skills.Keywords: community service, cooperative learning, positive interdependence, teamwork
Procedia PDF Downloads 30931757 Effectiveness of a Traits Cooperative Learning on Developing Writing Achievement and Composition among Teacher Candidates
Authors: Abdelaziz Hussien
Abstract:
This article reports investigations of a study into the effectiveness of a traits cooperative learning (TCL) on teacher candidates’ writing achievement, composition, and attitudes towards traits of writing approach and small group learning. Mixed methodologies were used with the participants in a repeated measures quasi-experimental design. Forty-two class teacher candidates, enrolled in the Bahrain Teachers College, completed the pre and post author-developed measures. The results suggest that TCL has a positive effect on the participants’ writing achievement, composition, and attitudes towards traits of writing approach, but not on the attitudes towards small group learning. Further implications to teacher education are presented.Keywords: trait-based language education, cooperative learning, writing achievement, writing composition, traits of writing, teacher education
Procedia PDF Downloads 16931756 Teaching Research Methods at the Graduate Level Utilizing Flipped Classroom Approach; An Action Research Study
Authors: Munirah Alaboudi
Abstract:
This paper discusses a research project carried out with 12 first-year graduate students enrolled in research methods course prior to undertaking a graduate thesis during the academic year 2019. The research was designed for the objective of creating research methods course structure that embraces an individualized and activity-based approach to learning in a highly engaging group environment. This approach targeted innovating the traditional research methods lecture-based, theoretical format where students reported less engagement and limited learning. This study utilized action research methodology in developing a different approach to research methods course instruction where student performance indicators and feedback were periodically collected to assess the new teaching method. Student learning was achieved through utilizing the flipped classroom approach where students learned the material at home and classroom activities were designed to implement and experiment with the newly acquired information, with the guidance of the course instructor. Student learning in class was practiced through a series of activities based on different research methods. With the goal of encouraging student engagement, a wide range of activities was utilized including workshops, role play, mind-mapping, presentations, peer evaluations. Data was collected through an open-ended qualitative questionnaire to establish whether students were engaged in the material they were learning, and to what degree were they engaged, and to test their mastery level of the concepts discussed. Analysis of the data presented positive results as around 91% of the students reported feeling more engaged with the active learning experience and learning research by “actually doing research, not just reading about it”. The students expressed feeling invested in the process of their learning as they saw their research “gradually come to life” through peer learning and practice during workshops. Based on the results of this study, the research methods course structure was successfully remodeled and continues to be delivered.Keywords: research methods, higher education instruction, flipped classroom, graduate education
Procedia PDF Downloads 10331755 Evolving Knowledge Extraction from Online Resources
Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao
Abstract:
In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.Keywords: evolving learning, knowledge extraction, knowledge graph, text mining
Procedia PDF Downloads 45831754 Creating Gameful Experience as an Innovative Approach in the Digital Era: A Double-Mediation Model of Instructional Support, Group Engagement and Flow
Authors: Mona Hoyng
Abstract:
In times of digitalization nowadays, the use of games became a crucial new way for digital game-based learning (DGBL) in higher education. In this regard, the development of a gameful experience (GE) among students is decisive when examining DGBL as the GE is a necessary precondition determining the effectiveness of games. In this regard, the purpose of this study is to provide deeper insights into the GE and to empirically investigate whether and how these meaningful learning experiences within games, i.e., GE, among students are created. Based on the theory of experience and flow theory, a double-mediation model was developed considering instructional support, group engagement, and flow as determinants of students’ GE. Based on data of 337 students taking part in a business simulation game at two different universities in Germany, regression-based statistical mediation analysis revealed that instructional support promoted students’ GE. This relationship was further sequentially double mediated by group engagement and flow. Consequently, in the context of DGBL, meaningful learning experiences within games in terms of GE are created and promoted through appropriate instructional support, as well as high levels of group engagement and flow among students.Keywords: gameful experience, instructional support, group engagement, flow, education, learning
Procedia PDF Downloads 13631753 Semi-Supervised Learning Using Pseudo F Measure
Authors: Mahesh Balan U, Rohith Srinivaas Mohanakrishnan, Venkat Subramanian
Abstract:
Positive and unlabeled learning (PU) has gained more attention in both academic and industry research literature recently because of its relevance to existing business problems today. Yet, there still seems to be some existing challenges in terms of validating the performance of PU learning, as the actual truth of unlabeled data points is still unknown in contrast to a binary classification where we know the truth. In this study, we propose a novel PU learning technique based on the Pseudo-F measure, where we address this research gap. In this approach, we train the PU model to discriminate the probability distribution of the positive and unlabeled in the validation and spy data. The predicted probabilities of the PU model have a two-fold validation – (a) the predicted probabilities of reliable positives and predicted positives should be from the same distribution; (b) the predicted probabilities of predicted positives and predicted unlabeled should be from a different distribution. We experimented with this approach on a credit marketing case study in one of the world’s biggest fintech platforms and found evidence for benchmarking performance and backtested using historical data. This study contributes to the existing literature on semi-supervised learning.Keywords: PU learning, semi-supervised learning, pseudo f measure, classification
Procedia PDF Downloads 23531752 Educators’ Perceived Capacity to Create Inclusive Learning Environments: Exploring Individual Competencies and District Policy
Authors: Thuy Phan, Stephanie Luallin
Abstract:
Inclusive education policies have demonstrated benefits for students with and without disabilities in the US. There are several laws that relate to inclusive education, such as 'No Child Left Behind', 'The Individuals with Disabilities Education Act'. However, the application of these inclusive education laws and policies vary per state and school district. Classroom teachers in an inclusive classroom often experience confusion as to how to apply these policies in order to create appropriate inclusive learning environments that meet the abilities and needs of their diverse student population. The study aims to investigate teachers’ perspective of their capacities to create an appropriate learning environment for their diverse student population including students with disabilities. Qualitative method is implemented in this study, using open-end interview questions to investigate teachers’ perspective of their capacities to create an appropriate inclusive learning environment for all students based on current inclusive education laws and district policies in the state of Colorado, USA. These findings may indicate a lack of confidence in teachers’ capacity to create appropriate inclusive learning environments based on laws and district policies; including challenges that classroom teachers may experience in creating inclusive learning environments. The purpose of this study is to examine the adequate preparation of classroom teachers in creating inclusive classrooms with the intent of determining implications for developing policies in inclusive education.Keywords: educator’s capacity, inclusive education, inclusive learning environment, policy
Procedia PDF Downloads 17031751 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R
Procedia PDF Downloads 37831750 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach
Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip
Abstract:
The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method
Procedia PDF Downloads 12931749 Integrating Student Engagement Activities into the Learning Process
Authors: Yingjin Cui, Xue Bai, Serena Reese
Abstract:
Student engagement and student interest during class instruction are important conditions for active learning. Engagement, which has an important relationship with learning motivation, influences students' levels of persistence in overcoming challenges. Lack of student engagement and absence from face-to-face lectures and tutorials, in turn, can lead to poor academic performance. However, keeping students motivated and engaged in the learning process in different instructional modes poses a significant challenge; students can easily become discouraged from attending lectures and tutorials across both online and face-to-face settings. Many factors impact students’ engagement in the learning process. If you want to keep students focused on learning, you have to invite them into the process of helping themselves by providing an active learning environment. Active learning is an excellent technique for enhancing student engagement and participation in the learning process because it provides means to motivate the student to engage themselves in the learning process through reflection, analyzing, applying, and synthesizing the material they learn during class. In this study, we discussed how to create an active learning class (both face-to-face and synchronous online) through engagement activities, including reflection, collaboration, screen messages, open poll, tournament, and transferring editing roles. These activities will provide an uncommon interactive learning environment that can result in improved learning outcomes. To evaluate the effectiveness of those engagement activities in the learning process, an experimental group and a control group will be explored in the study.Keywords: active learning, academic performance, engagement activities, learning motivation
Procedia PDF Downloads 14931748 E-Learning Platform for School Kids
Authors: Gihan Thilakarathna, Fernando Ishara, Rathnayake Yasith, Bandara A. M. R. Y.
Abstract:
E-learning is a crucial component of intelligent education. Even in the midst of a pandemic, E-learning is becoming increasingly important in the educational system. Several e-learning programs are accessible for students. Here, we decided to create an e-learning framework for children. We've found a few issues that teachers are having with their online classes. When there are numerous students in an online classroom, how does a teacher recognize a student's focus on academics and below-the-surface behaviors? Some kids are not paying attention in class, and others are napping. The teacher is unable to keep track of each and every student. Key challenge in e-learning is online exams. Because students can cheat easily during online exams. Hence there is need of exam proctoring is occurred. In here we propose an automated online exam cheating detection method using a web camera. The purpose of this project is to present an E-learning platform for math education and include games for kids as an alternative teaching method for math students. The game will be accessible via a web browser. The imagery in the game is drawn in a cartoonish style. This will help students learn math through games. Everything in this day and age is moving towards automation. However, automatic answer evaluation is only available for MCQ-based questions. As a result, the checker has a difficult time evaluating the theory solution. The current system requires more manpower and takes a long time to evaluate responses. It's also possible to mark two identical responses differently and receive two different grades. As a result, this application employs machine learning techniques to provide an automatic evaluation of subjective responses based on the keyword provided to the computer as student input, resulting in a fair distribution of marks. In addition, it will save time and manpower. We used deep learning, machine learning, image processing and natural language technologies to develop these research components.Keywords: math, education games, e-learning platform, artificial intelligence
Procedia PDF Downloads 15631747 A Study of Permission-Based Malware Detection Using Machine Learning
Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud
Abstract:
Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.Keywords: android malware detection, machine learning, malware, malware analysis
Procedia PDF Downloads 16731746 Enhancing Communicative Skills for Students in Automatics
Authors: Adrian Florin Busu
Abstract:
The communicative approach, or communicative language teaching, used for enhancing communicative skills in students in automatics is a modern teaching approach based on the concept of learning a language through having to communicate real meaning. In the communicative approach, real communication is both the objective of learning and the means through which it takes place. This approach was initiated during the 1970’s and quickly became prominent, as it proposed an alternative to the previous systems-oriented approaches. In other words, instead of focusing on the acquisition of grammar and vocabulary, the communicative approach aims at developing students’ competence to communicate in the target language with an enhanced focus on real-life situations. To put it in an nutshell, CLT considers using the language to be just as important as actually learning the language.Keywords: communication, approach, objective, learning
Procedia PDF Downloads 16031745 Avatar Creation for E-Learning
Authors: M. Najib Osman, Hanafizan Hussain, Sri Kusuma Wati Mohd Daud
Abstract:
Avatar was used as user’s symbol of identity in online communications such as Facebook, Twitter, online game, and portal community between unknown people. The development of this symbol is the use of animated character or avatar, which can engage learners in a way that draws them into the e-Learning experience. Immersive learning is one of the most effective learning techniques, and animated characters can help create an immersive environment. E-learning is an ideal learning environment using modern means of information technology, through the effective integration of information technology and the curriculum to achieve, a new learning style which can fully reflect the main role of the students to reform the traditional teaching structure thoroughly. Essential in any e-learning is the degree of interactivity for the learner, and whether the learner is able to study at any time, or whether there is a need for the learner to be online or in a classroom with other learners at the same time (synchronous learning). Ideally, e-learning should engage the learners, allowing them to interact with the course materials, obtaining feedback on their progress and assistance whenever it is required. However, the degree of interactivity in e-learning depends on how the course has been developed and is dependent on the software used for its development, and the way the material is delivered to the learner. Therefore, users’ accessibility that allows access to information at any time and places and their positive attitude towards e-learning such as having interacting with a good teacher and the creation of a more natural and friendly environment for e-learning should be enhanced. This is to motivate their learning enthusiasm and it has been the responsibility of educators to incorporate new technology into their ways of teaching.Keywords: avatar, e-learning, higher education, students' perception
Procedia PDF Downloads 41031744 Intelligent Adaptive Learning in a Changing Environment
Authors: G. Valentis, Q. Berthelot
Abstract:
Nowadays the trend to develop ever more intelligent and autonomous systems often takes its inspiration in the living beings on Earth. Some simple isolated systems are able, once brought together, to form a strong and reliable system. When trying to adapt the idea to man-made systems it is not possible to include in their program everything the system may encounter during its life cycle. It is, thus, necessary to make the system able to take decisions based on other criteria such as its past experience, i.e. to make the system learn on its own. However, at some point the acquired knowledge depends also on environment. So the question is: if system environment is modified, how could the system respond to it quickly and appropriately enough? Here, starting from reinforcement learning to rate its decisions, and using adaptive learning algorithms for gain and loss reward, the system is made able to respond to changing environment and to adapt its knowledge as time passes. Application is made to a robot finding an exit in a labyrinth.Keywords: reinforcement learning, neural network, autonomous systems, adaptive learning, changing environment
Procedia PDF Downloads 42431743 Nurturing of Children with Results from Their Nature (DNA) Using DNA-MILE
Authors: Tan Lay Cheng (Cheryl), Low Huiqi
Abstract:
Background: All children learn at different pace. Individualized learning is an approach that tailors to the individual learning needs of each child. When implementing this approach, educators have to base their lessons on the understanding that all students learn differently and that what works for one student may not work for another. In the current early childhood environment, individualized learning is for children with diverse needs. However, a typical developing child is also able to benefit from individualized learning. This research abstract explores the concept of utilizing DNA-MILE, a patented (in Singapore) DNA-based assessment tool that can be used to measure a variety of factors that can impact learning. The assessment report includes the dominant intelligence of the user or, in this case, the child. From the result, a personalized learning plan that is tailored to each individual student's needs. Methods: A study will be conducted to investigate the effectiveness of DNA-MILE in supporting individualized learning. The study will involve a group of 20 preschoolers who were randomly assigned to either a DNA-MILE-assessed group (experimental group) or a control group. 10 children in each group. The experimental group will receive DNA Mile assessments and personalized learning plans, while the control group will not. The children in the experimental group will be taught using the dominant intelligence (as shown in the DNA-MILE report) to enhance their learning in other domains. The children in the control group will be taught using the curriculum and lesson plan set by their teacher for the whole class. Parents’ and teachers’ interviews will be conducted to provide information about the children before the study and after the study. Results: The results of the study will show the difference in the outcome of the learning, which received DNA Mile assessments and personalized learning plans, significantly outperformed the control group on a variety of measures, including standardized tests, grades, and motivation. Conclusion: The results of this study suggest that DNA Mile can be an effective tool for supporting individualized learning. By providing personalized learning plans, DNA Mile can help to improve learning outcomes for all students.Keywords: individualized, DNA-MILE, learning, preschool, DNA, multiple intelligence
Procedia PDF Downloads 11831742 Prediction of Disability-Adjustment Mental Illness Using Machine Learning
Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad
Abstract:
Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population. Procedia PDF Downloads 36