Search results for: malware classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2222

Search results for: malware classification

1772 Cybersecurity Protection Structures: The Case of Lesotho

Authors: N. N. Mosola, K. F. Moeketsi, R. Sehobai, N. Pule

Abstract:

The Internet brings increasing use of Information and Communications Technology (ICT) services and facilities. Consequently, new computing paradigms emerge to provide services over the Internet. Although there are several benefits stemming from these services, they pose several risks inherited from the Internet. For example, cybercrime, identity theft, malware etc. To thwart these risks, this paper proposes a holistic approach. This approach involves multidisciplinary interactions. The paper proposes a top-down and bottom-up approach to deal with cyber security concerns in developing countries. These concerns range from regulatory and legislative areas, cyber awareness, research and development, technical dimensions etc. The main focus areas are highlighted and a cybersecurity model solution is proposed. The paper concludes by combining all relevant solutions into a proposed cybersecurity model to assist developing countries in enhancing a cyber-safe environment to instill and promote a culture of cybersecurity.

Keywords: cybercrime, cybersecurity, computer emergency response team, computer security incident response team

Procedia PDF Downloads 157
1771 Spectral Mixture Model Applied to Cannabis Parcel Determination

Authors: Levent Basayigit, Sinan Demir, Yusuf Ucar, Burhan Kara

Abstract:

Many research projects require accurate delineation of the different land cover type of the agricultural area. Especially it is critically important for the definition of specific plants like cannabis. However, the complexity of vegetation stands structure, abundant vegetation species, and the smooth transition between different seconder section stages make vegetation classification difficult when using traditional approaches such as the maximum likelihood classifier. Most of the time, classification distinguishes only between trees/annual or grain. It has been difficult to accurately determine the cannabis mixed with other plants. In this paper, a mixed distribution models approach is applied to classify pure and mix cannabis parcels using Worldview-2 imagery in the Lakes region of Turkey. Five different land use types (i.e. sunflower, maize, bare soil, and cannabis) were identified in the image. A constrained Gaussian mixture discriminant analysis (GMDA) was used to unmix the image. In the study, 255 reflectance ratios derived from spectral signatures of seven bands (Blue-Green-Yellow-Red-Rededge-NIR1-NIR2) were randomly arranged as 80% for training and 20% for test data. Gaussian mixed distribution model approach is proved to be an effective and convenient way to combine very high spatial resolution imagery for distinguishing cannabis vegetation. Based on the overall accuracies of the classification, the Gaussian mixed distribution model was found to be very successful to achieve image classification tasks. This approach is sensitive to capture the illegal cannabis planting areas in the large plain. This approach can also be used for monitoring and determination with spectral reflections in illegal cannabis planting areas.

Keywords: Gaussian mixture discriminant analysis, spectral mixture model, Worldview-2, land parcels

Procedia PDF Downloads 197
1770 The Spatial Classification of China near Sea for Marine Biodiversity Conservation Based on Bio-Geographical Factors

Authors: Huang Hao, Li Weiwen

Abstract:

Global biodiversity continues to decline as a result of global climate change and various human activities, such as habitat destruction, pollution, introduction of alien species and overfishing. Although there are connections between global marine organisms more or less, it is better to have clear geographical boundaries in order to facilitate the assessment and management of different biogeographical zones. And so area based management tools (ABMT) are considered as the most effective means for the conservation and sustainable use of marine biodiversity. On a large scale, the geographical gap (or barrier) is the main factor to influence the connectivity, diffusion, ecological and evolutionary process of marine organisms, which results in different distribution patterns. On a small scale, these factors include geographical location, geology, and geomorphology, water depth, current, temperature, salinity, etc. Therefore, the analysis on geographic and environmental factors is of great significance in the study of biodiversity characteristics. This paper summarizes the marine spatial classification and ABMTs used in coastal area, open oceans and deep sea. And analysis principles and methods of marine spatial classification based on biogeographic related factors, and take China Near Sea (CNS) area as case study, and select key biogeographic related factors, carry out marine spatial classification at biological region scale, ecological regionals scale and biogeographical scale. The research shows that CNS is divided into 5 biological regions by climate and geographical differences, the Yellow Sea, the Bohai Sea, the East China Sea, the Taiwan Straits, and the South China Sea. And the bioregions are then divided into 12 ecological regions according to the typical ecological and administrative factors, and finally the eco-regions are divided into 98 biogeographical units according to the benthic substrate types, depth, coastal types, water temperature, and salinity, given the integrity of biological and ecological process, the area of the biogeographical units is not less than 1,000 km². This research is of great use to the coastal management and biodiversity conservation for local and central government, and provide important scientific support for future spatial planning and management of coastal waters and sustainable use of marine biodiversity.

Keywords: spatial classification, marine biodiversity, bio-geographical, conservation

Procedia PDF Downloads 152
1769 Classifying Blog Texts Based on the Psycholinguistic Features of the Texts

Authors: Hyung Jun Ahn

Abstract:

With the growing importance of social media, it is imperative to analyze it to understand the users. Users share useful information and their experience through social media, where much of what is shared is in the form of texts. This study focused on blogs and aimed to test whether the psycho-linguistic characteristics of blog texts vary with the subject or the type of experience of the texts. For this goal, blog texts about four different types of experience, Go, skiing, reading, and musical were collected through the search API of the Tistory blog service. The analysis of the texts showed that various psycholinguistic characteristics of the texts are different across the four categories of the texts. Moreover, the machine learning experiment using the characteristics for automatic text classification showed significant performance. Specifically, the ensemble method, based on functional tree and bagging appeared to be most effective in classification.

Keywords: blog, social media, text analysis, psycholinguistics

Procedia PDF Downloads 279
1768 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification

Authors: Rujia Chen, Ajit Narayanan

Abstract:

Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.

Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels

Procedia PDF Downloads 187
1767 Spermiogram Values of Fertile Men in Malatya Region

Authors: Aliseydi Bozkurt, Ugur Yılmaz

Abstract:

Objective: It was aimed to evaluate the current status of semen parameters in fertile males with one or more children and whose wife having a pregnancy for the last 1-12 months in Malatya region. Methods: Sperm samples were obtained from 131 voluntary fertile men. In each analysis, sperm volume (ml), number of sperm (sperm/ml), sperm motility and sperm viscosity were examined with Makler device. Classification was made according to World Health Organization (WHO) criteria. Results: Mean ejaculate volume ranged from 1.5 ml to 5.5 ml, sperm count ranged from 27 to 180 million/ml and motility ranged from 35 to 90%. Sperm motility was found to be on average; 69.9% in A, 7.6% in B, 8.7% in C, 13.3% in D category. Conclusion: The mean spermiogram values of fertile males in Malatya region were found to be similar to those in fertile males determined by the WHO. This study has a regional classification value in terms of spermiogram values.

Keywords: fertile men, infertility, spermiogram, sperm motility

Procedia PDF Downloads 353
1766 Classification Using Worldview-2 Imagery of Giant Panda Habitat in Wolong, Sichuan Province, China

Authors: Yunwei Tang, Linhai Jing, Hui Li, Qingjie Liu, Xiuxia Li, Qi Yan, Haifeng Ding

Abstract:

The giant panda (Ailuropoda melanoleuca) is an endangered species, mainly live in central China, where bamboos act as the main food source of wild giant pandas. Knowledge of spatial distribution of bamboos therefore becomes important for identifying the habitat of giant pandas. There have been ongoing studies for mapping bamboos and other tree species using remote sensing. WorldView-2 (WV-2) is the first high resolution commercial satellite with eight Multi-Spectral (MS) bands. Recent studies demonstrated that WV-2 imagery has a high potential in classification of tree species. The advanced classification techniques are important for utilising high spatial resolution imagery. It is generally agreed that object-based image analysis is a more desirable method than pixel-based analysis in processing high spatial resolution remotely sensed data. Classifiers that use spatial information combined with spectral information are known as contextual classifiers. It is suggested that contextual classifiers can achieve greater accuracy than non-contextual classifiers. Thus, spatial correlation can be incorporated into classifiers to improve classification results. The study area is located at Wuyipeng area in Wolong, Sichuan Province. The complex environment makes it difficult for information extraction since bamboos are sparsely distributed, mixed with brushes, and covered by other trees. Extensive fieldworks in Wuyingpeng were carried out twice. The first one was on 11th June, 2014, aiming at sampling feature locations for geometric correction and collecting training samples for classification. The second fieldwork was on 11th September, 2014, for the purposes of testing the classification results. In this study, spectral separability analysis was first performed to select appropriate MS bands for classification. Also, the reflectance analysis provided information for expanding sample points under the circumstance of knowing only a few. Then, a spatially weighted object-based k-nearest neighbour (k-NN) classifier was applied to the selected MS bands to identify seven land cover types (bamboo, conifer, broadleaf, mixed forest, brush, bare land, and shadow), accounting for spatial correlation within classes using geostatistical modelling. The spatially weighted k-NN method was compared with three alternatives: the traditional k-NN classifier, the Support Vector Machine (SVM) method and the Classification and Regression Tree (CART). Through field validation, it was proved that the classification result obtained using the spatially weighted k-NN method has the highest overall classification accuracy (77.61%) and Kappa coefficient (0.729); the producer’s accuracy and user’s accuracy achieve 81.25% and 95.12% for the bamboo class, respectively, also higher than the other methods. Photos of tree crowns were taken at sample locations using a fisheye camera, so the canopy density could be estimated. It is found that it is difficult to identify bamboo in the areas with a large canopy density (over 0.70); it is possible to extract bamboos in the areas with a median canopy density (from 0.2 to 0.7) and in a sparse forest (canopy density is less than 0.2). In summary, this study explores the ability of WV-2 imagery for bamboo extraction in a mountainous region in Sichuan. The study successfully identified the bamboo distribution, providing supporting knowledge for assessing the habitats of giant pandas.

Keywords: bamboo mapping, classification, geostatistics, k-NN, worldview-2

Procedia PDF Downloads 313
1765 sing Eye Tracking to Measure the Impact of Persuasion Principles in Phishing Emails

Authors: Laura Bishop, Isabel Jones, Linn Halvorsen, Angela Smith

Abstract:

Phishing emails are a form of social engineering where attackers deceive email users into revealing sensitive information or installing malware such as ransomware. Scammers often use persuasion techniques to influence email users to interact with malicious content. This study will use eye-tracking equipment to analyze how participants respond to and process Cialdini’s persuasion principles when utilized within phishing emails. Eye tracking provides insights into what is happening on the subconscious level of the brain that the participant may not be aware of. An experiment is conducted to track participant eye movements, whilst interacting with and then filing a series of persuasive emails delivered at random. Eye tracking metrics will be analyzed in relation to whether a malicious email has been identified as phishing (filed as ‘suspicious’) or not phishing (filed in any other folder). This will help determine the most influential persuasion techniques and those 'areas of interest' within an email that require intervention. The results will aid further research on how to reduce the effects of persuasion on human decision-making when interacting with phishing emails.

Keywords: cybersecurity, human-centric, phishing, psychology

Procedia PDF Downloads 85
1764 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences

Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng

Abstract:

Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).

Keywords: motion detection, motion tracking, trajectory analysis, video surveillance

Procedia PDF Downloads 548
1763 Concentric Circle Detection based on Edge Pre-Classification and Extended RANSAC

Authors: Zhongjie Yu, Hancheng Yu

Abstract:

In this paper, we propose an effective method to detect concentric circles with imperfect edges. First, the gradient of edge pixel is coded and a 2-D lookup table is built to speed up normal generation. Then we take an accumulator to estimate the rough center and collect plausible edges of concentric circles through gradient and distance. Later, we take the contour-based method, which takes the contour and edge intersection, to pre-classify the edges. Finally, we use the extended RANSAC method to find all the candidate circles. The center of concentric circles is determined by the two circles with the highest concentricity. Experimental results demonstrate that the proposed method has both good performance and accuracy for the detection of concentric circles.

Keywords: concentric circle detection, gradient, contour, edge pre-classification, RANSAC

Procedia PDF Downloads 131
1762 Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy

Authors: İsmail Kavdır, M. Burak Büyükcan, Ferhat Kurtulmuş

Abstract:

Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%.

Keywords: artificial neural networks, statistical classifiers, NIR spectroscopy, reflectance, transmittance

Procedia PDF Downloads 248
1761 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 169
1760 Curvelet Features with Mouth and Face Edge Ratios for Facial Expression Identification

Authors: S. Kherchaoui, A. Houacine

Abstract:

This paper presents a facial expression recognition system. It performs identification and classification of the seven basic expressions; happy, surprise, fear, disgust, sadness, anger, and neutral states. It consists of three main parts. The first one is the detection of a face and the corresponding facial features to extract the most expressive portion of the face, followed by a normalization of the region of interest. Then calculus of curvelet coefficients is performed with dimensionality reduction through principal component analysis. The resulting coefficients are combined with two ratios; mouth ratio and face edge ratio to constitute the whole feature vector. The third step is the classification of the emotional state using the SVM method in the feature space.

Keywords: facial expression identification, curvelet coefficient, support vector machine (SVM), recognition system

Procedia PDF Downloads 232
1759 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: fuzzy C-means clustering, fuzzy C-means clustering based attribute weighting, Pima Indians diabetes, SVM

Procedia PDF Downloads 416
1758 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks

Authors: Naghmeh Moradpoor Sheykhkanloo

Abstract:

Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.

Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection

Procedia PDF Downloads 470
1757 Slice Bispectrogram Analysis-Based Classification of Environmental Sounds Using Convolutional Neural Network

Authors: Katsumi Hirata

Abstract:

Certain systems can function well only if they recognize the sound environment as humans do. In this research, we focus on sound classification by adopting a convolutional neural network and aim to develop a method that automatically classifies various environmental sounds. Although the neural network is a powerful technique, the performance depends on the type of input data. Therefore, we propose an approach via a slice bispectrogram, which is a third-order spectrogram and is a slice version of the amplitude for the short-time bispectrum. This paper explains the slice bispectrogram and discusses the effectiveness of the derived method by evaluating the experimental results using the ESC‑50 sound dataset. As a result, the proposed scheme gives high accuracy and stability. Furthermore, some relationship between the accuracy and non-Gaussianity of sound signals was confirmed.

Keywords: environmental sound, bispectrum, spectrogram, slice bispectrogram, convolutional neural network

Procedia PDF Downloads 127
1756 Assessment of the Landscaped Biodiversity in the National Park of Tlemcen (Algeria) Using Per-Object Analysis of Landsat Imagery

Authors: Bencherif Kada

Abstract:

In the forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape, and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification, that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction, and area of an object, etc.), and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify of the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak, and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants, and bare soils. Texture attributes seem to provide no useful information, while spatial attributes of shape and compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.

Keywords: forest, oaks, remote sensing, diversity, shrublands

Procedia PDF Downloads 128
1755 Audio Information Retrieval in Mobile Environment with Fast Audio Classifier

Authors: Bruno T. Gomes, José A. Menezes, Giordano Cabral

Abstract:

With the popularity of smartphones, mobile apps emerge to meet the diverse needs, however the resources at the disposal are limited, either by the hardware, due to the low computing power, or the software, that does not have the same robustness of desktop environment. For example, in automatic audio classification (AC) tasks, musical information retrieval (MIR) subarea, is required a fast processing and a good success rate. However the mobile platform has limited computing power and the best AC tools are only available for desktop. To solve these problems the fast classifier suits, to mobile environments, the most widespread MIR technologies, seeking a balance in terms of speed and robustness. At the end we found that it is possible to enjoy the best of MIR for mobile environments. This paper presents the results obtained and the difficulties encountered.

Keywords: audio classification, audio extraction, environment mobile, musical information retrieval

Procedia PDF Downloads 547
1754 Development of a Classification Model for Value-Added and Non-Value-Added Operations in Retail Logistics: Insights from a Supermarket Case Study

Authors: Helena Macedo, Larissa Tomaz, Levi Guimarães, Luís Cerqueira-Pinto, José Dinis-Carvalho

Abstract:

In the context of retail logistics, the pursuit of operational efficiency and cost optimization involves a rigorous distinction between value-added and non-value-added activities. In today's competitive market, optimizing efficiency and reducing operational costs are paramount for retail businesses. This research paper focuses on the development of a classification model adapted to the retail sector, specifically examining internal logistics processes. Based on a comprehensive analysis conducted in a retail supermarket located in the north of Portugal, which covered various aspects of internal retail logistics, this study questions the concept of value and the definition of wastes traditionally applied in a manufacturing context and proposes a new way to assess activities in the context of internal logistics. This study combines quantitative data analysis with qualitative evaluations. The proposed classification model offers a systematic approach to categorize operations within the retail logistics chain, providing actionable insights for decision-makers to streamline processes, enhance productivity, and allocate resources more effectively. This model contributes not only to academic discourse but also serves as a practical tool for retail businesses, aiding in the enhancement of their internal logistics dynamics.

Keywords: lean retail, lean logisitcs, retail logistics, value-added and non-value-added

Procedia PDF Downloads 67
1753 Multi Biomertric Personal Identification System Based On Hybird Intellegence Method

Authors: Laheeb M. Ibrahim, Ibrahim A. Salih

Abstract:

Biometrics is a technology that has been widely used in many official and commercial identification applications. The increased concerns in security during recent years (especially during the last decades) have essentially resulted in more attention being given to biometric-based verification techniques. Here, a novel fusion approach of palmprint, dental traits has been suggested. These traits which are authentication techniques have been employed in a range of biometric applications that can identify any postmortem PM person and antemortem AM. Besides improving the accuracy, the fusion of biometrics has several advantages such as increasing, deterring spoofing activities and reducing enrolment failure. In this paper, a first unimodel biometric system has been made by using (palmprint and dental) traits, for each one classification applying an artificial neural network and a hybrid technique that combines swarm intelligence and neural network together, then attempt has been made to combine palmprint and dental biometrics. Principally, the fusion of palmprint and dental biometrics and their potential application has been explored as biometric identifiers. To address this issue, investigations have been carried out about the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. Also the results of the multimodal approach have been compared with each one of these two traits authentication approaches. This paper studies the features and decision fusion levels in multimodal biometrics. To determine the accuracy of GAR to parallel system decision-fusion including (AND, OR, Majority fating) has been used. The backpropagation method has been used for classification and has come out with result (92%, 99%, 97%) respectively for GAR, while the GAR) for this algorithm using hybrid technique for classification (95%, 99%, 98%) respectively. To determine the accuracy of the multibiometric system for feature level fusion has been used, while the same preceding methods have been used for classification. The results have been (98%, 99%) respectively while to determine the GAR of feature level different methods have been used and have come out with (98%).

Keywords: back propagation neural network BP ANN, multibiometric system, parallel system decision-fusion, practical swarm intelligent PSO

Procedia PDF Downloads 534
1752 Mapping Forest Biodiversity Using Remote Sensing and Field Data in the National Park of Tlemcen (Algeria)

Authors: Bencherif Kada

Abstract:

In forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects, and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction and area of an object, etc.) and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants and bare soils. Texture attributes seem to provide no useful information while spatial attributes of shape, compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.

Keywords: forest, oaks, remote sensing, biodiversity, shrublands

Procedia PDF Downloads 33
1751 Maxillofacial Trauma: A Case of Diacapitular Condylar Fracture

Authors: Krishna Prasad Regmi, Jun-Bo Tu, Cheng-Qun Hou, Li-Feng Li

Abstract:

Maxillofacial trauma in a pediatric group of patients is particularly challenging, as these patients have significant differences from adults as far as the facial skeleton is concerned. Mandibular condylar fractures are common presentations to hospitals across the globe and remain the most important cause of temporomandibular joint (TMJ) ankylosis. The etiology and epidemiology of pediatric trauma involving the diacapitular condylar fractures (DFs) have been reported in a large series of patients. Nevertheless, little is known about treatment protocols for DFs in children. Accordingly, the treatment modalities for the management of pediatric fractures also differ. We suggest following the PDA and intracapsular ABC classification of condylar fracture to increase the overall postoperative satisfaction level that bypasses the change of subjective feelings of patients’ from preoperative to the postoperative condition. At the same time, use of 3-D technology and surgical navigation may also increase treatment accuracy.

Keywords: maxillofacial trauma, diacapitular fracture, condylar fracture, PDA classification

Procedia PDF Downloads 271
1750 An Automated R-Peak Detection Method Using Common Vector Approach

Authors: Ali Kirkbas

Abstract:

R peaks in an electrocardiogram (ECG) are signs of cardiac activity in individuals that reveal valuable information about cardiac abnormalities, which can lead to mortalities in some cases. This paper examines the problem of detecting R-peaks in ECG signals, which is a two-class pattern classification problem in fact. To handle this problem with a reliable high accuracy, we propose to use the common vector approach which is a successful machine learning algorithm. The dataset used in the proposed method is obtained from MIT-BIH, which is publicly available. The results are compared with the other popular methods under the performance metrics. The obtained results show that the proposed method shows good performance than that of the other. methods compared in the meaning of diagnosis accuracy and simplicity which can be operated on wearable devices.

Keywords: ECG, R-peak classification, common vector approach, machine learning

Procedia PDF Downloads 64
1749 Heritage Tree Expert Assessment and Classification: Malaysian Perspective

Authors: B.-Y.-S. Lau, Y.-C.-T. Jonathan, M.-S. Alias

Abstract:

Heritage trees are natural large, individual trees with exceptionally value due to association with age or event or distinguished people. In Malaysia, there is an abundance of tropical heritage trees throughout the country. It is essential to set up a repository of heritage trees to prevent valuable trees from being cut down. In this cross domain study, a web-based online expert system namely the Heritage Tree Expert Assessment and Classification (HTEAC) is developed and deployed for public to nominate potential heritage trees. Based on the nomination, tree care experts or arborists would evaluate and verify the nominated trees as heritage trees. The expert system automatically rates the approved heritage trees according to pre-defined grades via Delphi technique. Features and usability test of the expert system are presented. Preliminary result is promising for the system to be used as a full scale public system.

Keywords: arboriculture, Delphi, expert system, heritage tree, urban forestry

Procedia PDF Downloads 314
1748 The Employment of Unmanned Aircraft Systems for Identification and Classification of Helicopter Landing Zones and Airdrop Zones in Calamity Situations

Authors: Marielcio Lacerda, Angelo Paulino, Elcio Shiguemori, Alvaro Damiao, Lamartine Guimaraes, Camila Anjos

Abstract:

Accurate information about the terrain is extremely important in disaster management activities or conflict. This paper proposes the use of the Unmanned Aircraft Systems (UAS) at the identification of Airdrop Zones (AZs) and Helicopter Landing Zones (HLZs). In this paper we consider the AZs the zones where troops or supplies are dropped by parachute, and HLZs areas where victims can be rescued. The use of digital image processing enables the automatic generation of an orthorectified mosaic and an actual Digital Surface Model (DSM). This methodology allows obtaining this fundamental information to the terrain’s comprehension post-disaster in a short amount of time and with good accuracy. In order to get the identification and classification of AZs and HLZs images from DJI drone, model Phantom 4 have been used. The images were obtained with the knowledge and authorization of the responsible sectors and were duly registered in the control agencies. The flight was performed on May 24, 2017, and approximately 1,300 images were obtained during approximately 1 hour of flight. Afterward, new attributes were generated by Feature Extraction (FE) from the original images. The use of multispectral images and complementary attributes generated independently from them increases the accuracy of classification. The attributes of this work include the Declivity Map and Principal Component Analysis (PCA). For the classification four distinct classes were considered: HLZ 1 – small size (18m x 18m); HLZ 2 – medium size (23m x 23m); HLZ 3 – large size (28m x 28m); AZ (100m x 100m). The Decision Tree method Random Forest (RF) was used in this work. RF is a classification method that uses a large collection of de-correlated decision trees. Different random sets of samples are used as sampled objects. The results of classification from each tree and for each object is called a class vote. The resulting classification is decided by a majority of class votes. In this case, we used 200 trees for the execution of RF in the software WEKA 3.8. The classification result was visualized on QGIS Desktop 2.12.3. Through the methodology used, it was possible to classify in the study area: 6 areas as HLZ 1, 6 areas as HLZ 2, 4 areas as HLZ 3; and 2 areas as AZ. It should be noted that an area classified as AZ covers the classifications of the other classes, and may be used as AZ, HLZ of large size (HLZ3), medium size (HLZ2) and small size helicopters (HLZ1). Likewise, an area classified as HLZ for large rotary wing aircraft (HLZ3) covers the smaller area classifications, and so on. It was concluded that images obtained through small UAV are of great use in calamity situations since they can provide data with high accuracy, with low cost, low risk and ease and agility in obtaining aerial photographs. This allows the generation, in a short time, of information about the features of the terrain in order to serve as an important decision support tool.

Keywords: disaster management, unmanned aircraft systems, helicopter landing zones, airdrop zones, random forest

Procedia PDF Downloads 177
1747 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models

Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara

Abstract:

In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.

Keywords: general metric, unsupervised learning, classification, intersection over union

Procedia PDF Downloads 50
1746 Supervised Learning for Cyber Threat Intelligence

Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk

Abstract:

The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.

Keywords: threat information sharing, supervised learning, data classification, performance evaluation

Procedia PDF Downloads 150
1745 Using Scale Invariant Feature Transform Features to Recognize Characters in Natural Scene Images

Authors: Belaynesh Chekol, Numan Çelebi

Abstract:

The main purpose of this work is to recognize individual characters extracted from natural scene images using scale invariant feature transform (SIFT) features as an input to K-nearest neighbor (KNN); a classification learner algorithm. For this task, 1,068 and 78 images of English alphabet characters taken from Chars74k data set is used to train and test the classifier respectively. For each character image, We have generated describing features by using SIFT algorithm. This set of features is fed to the learner so that it can recognize and label new images of English characters. Two types of KNN (fine KNN and weighted KNN) were trained and the resulted classification accuracy is 56.9% and 56.5% respectively. The training time taken was the same for both fine and weighted KNN.

Keywords: character recognition, KNN, natural scene image, SIFT

Procedia PDF Downloads 281
1744 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data

Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin

Abstract:

Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.

Keywords: honey, fluorescence, PARAFAC, artificial neural networks

Procedia PDF Downloads 956
1743 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient

Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart

Abstract:

Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.

Keywords: data mining, information retrieval system, multi-label, problem transformation, histogram of gradients

Procedia PDF Downloads 375