Search results for: force convection
2102 Development of a New Polymeric Material with Controlled Surface Micro-Morphology Aimed for Biosensors Applications
Authors: Elham Farahmand, Fatimah Ibrahim, Samira Hosseini, Ivan Djordjevic, Leo. H. Koole
Abstract:
Compositions of different molar ratios of polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA) were synthesized via free- radical polymerization. Polymer coated surfaces have been produced on silicon wafers. Coated samples were analyzed by atomic force microscopy (AFM). The results have shown that the roughness of the surfaces have increased by increasing the molar ratio of monomer methacrylic acid (MAA). This study reveals that the gradual increase in surface roughness is due to the fact that carboxylic functional groups have been generated by MAA segments. Such surfaces can be desirable platforms for fabrication of the biosensors for detection of the viruses and diseases.Keywords: polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA), polymeric material, atomic force microscopy, roughness, carboxylic functional groups
Procedia PDF Downloads 5952101 The Nigeria Police Force: Human Resources Management Issues and the Community Policing Policy Transfer
Authors: Aminu Musa Audu
Abstract:
This paper examines the human resources management issues of the Nigeria Police and how it is impacting the community policing policy transfer. Nigeria Police Force is the organisation in the country with the constitutional responsibility of maintaining law and order. The high level of crime and other forms of insecurity called for the introduction of ‘police-community partnership’ strategy in 2003. The trend of events has suggested that the effort is not yielding result, partly because the police in Nigeria are facing human resources management challenges. For instance, the prospective candidates for the police jobs are usually not vetted a situation which provides the possibility of recruiting persons of low academic background and questionable character, or even criminal records. Moreover, the existing training, development infrastructure and other logistics for the job of policing are not in good condition. Consequently, the implementation of the ‘community policing’ policy for crime prevention and control in Nigeria stands to suffer setbacks. Adopting qualitative methods and with focus groups discussions and individual in-depth interviews for data collections, the findings from the views and perspectives of the participants were suggestive of poor handlings of human resources management of the Nigeria police organisation and with negative effect on the implementation of community policing policy. The paper therefore recommends that a total overhaul of the human resources component of the police organisation is necessary in the community policing policy transfer process for crime prevention and control in Nigeria.Keywords: Nigeria Police Force, community policing policy transfer, human resources management, police-community partnership
Procedia PDF Downloads 5082100 Movable Airfoil Arm (MAA) and Ducting Effect to Increase the Efficiency of a Helical Turbine
Authors: Abdi Ismail, Zain Amarta, Riza Rifaldy Argaputra
Abstract:
The Helical Turbine has the highest efficiency in comparison with the other hydrokinetic turbines. However, the potential of the Helical Turbine efficiency can be further improved so that the kinetic energy of a water current can be converted into mechanical energy as much as possible. This paper explains the effects by adding a Movable Airfoil Arm (MAA) and ducting on a Helical Turbine. The first research conducted an analysis of the efficiency comparison between a Plate Arm Helical Turbine (PAHT) versus a Movable Arm Helical Turbine Airfoil (MAAHT) at various water current velocities. The first step is manufacturing a PAHT and MAAHT. The PAHT and MAAHT has these specifications (as a fixed variable): 80 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, a 10 cm blade chord and a 60o inclination angle. The MAAHT uses a NACA 0012 airfoil arm that can move downward 20o, the PAHT uses a 5 mm plate arm. At the current velocity of 0.8, 0.85 and 0.9 m/s, the PAHT respectively generates a mechanical power of 92, 117 and 91 watts (a consecutive efficiency of 16%, 17% and 11%). At the same current velocity variation, the MAAHT respectively generates 74, 60 and 43 watts (a consecutive efficiency of 13%, 9% and 5%). Therefore, PAHT has a better performance than the MAAHT. Using analysis from CFD (Computational Fluid Dynamics), the drag force of MAA is greater than the one generated by the plate arm. By using CFD analysis, the drag force that occurs on the MAA is more dominant than the lift force, therefore the MAA can be called a drag device, whereas the lift force that occurs on the helical blade is more dominant than the drag force, therefore it can be called a lift device. Thus, the lift device cannot be combined with the drag device, because the drag device will become a hindrance to the lift device rotation. The second research conducted an analysis of the efficiency comparison between a Ducted Helical Turbine (DHT) versus a Helical Turbine (HT) through experimental studies. The first step is manufacturing the DHT and HT. The Helical turbine specifications (as a fixed variable) are: 40 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, 10 cm blade chord and a 60o inclination angle. At the current speed of 0.7, 0.8, 0.9 and 1.1 m/s, the HT respectively generates a mechanical power of 72, 85, 93 and 98 watts (a consecutive efficiency of 38%, 30%, 23% and 13%). At the same current speed variation, the DHT generates a mechanical power of 82, 98, 110 and 134 watts (a consecutive efficiency of 43%, 34%, 27% and 18%), respectively. The usage of ducting causes the water current speed around the turbine to increase.Keywords: hydrokinetic turbine, helical turbine, movable airfoil arm, ducting
Procedia PDF Downloads 3712099 Characteristics of Interaction Forces Acting on a Newly-Design Rotary Blade for Thai Walking Tractor
Authors: Sirisak Choedkiatphon, Tanya Niyamapa
Abstract:
This research aimed to indeed understand the soil-rotary blade interaction of the newly-design rotary blade for Thai walking tractor. Therefore, this study was carried out to clarify the characteristics of the horizontal and the vertical forces and the moment around a rotary shaft of prototype rotary blade 15 lengthwise slice angle. It was set up and tested in laboratory soil bin at Kasetsart University under sandy loam and clay soil at soil dry bulk density and soil specific weight of 9.81 kN/m3 and 11.3% (d.b.), respectively. The tests were conducted at travel speeds of 0.069 and 0.142 m/s and rotational speeds of 150, 250 and 350 rpm. The characteristic of pushing-forward and lifting-up forces and moment around a rotor shaft were obtained by using the EOR transducer. Also, the acting point of resultant force of these soil-blade reaction forces was determined. The pushing-forward and lifting-up forces, moment around a rotor shaft and resultant force increased at higher travel speed and higher soil moisture content. In tilling stage, the acting points of resultant force located inside the circumstance of the blade locus. The results showed that the variation of magnitude and direction of pushing-forward, lifting-up and resultant forces corresponded to soil-blade interaction of the newly-design in tilling stage.Keywords: rotary blde, soil-blade interaction, walking tractor, clay, sandy loam
Procedia PDF Downloads 2092098 Stress Evaluation at Lower Extremity during Walking with Unstable Shoe
Authors: Sangbaek Park, Seungju Lee, Soo-Won Chae
Abstract:
Unstable shoes are known to strengthen lower extremity muscles and improve gait ability and to change the user’s gait pattern. The change in gait pattern affects human body enormously because the walking is repetitive and steady locomotion in daily life. It is possible to estimate the joint motion including joint moment, force and inertia effect using kinematic and kinetic analysis. However, the change of internal stress at the articular cartilage has not been possible to estimate. The purpose of this research is to evaluate the internal stress of human body during gait with unstable shoes. In this study, FE analysis was combined with motion capture experiment to obtain the boundary condition and loading condition during walking. Motion capture experiments were performed with a participant during walking with normal shoes and with unstable shoes. Inverse kinematics and inverse kinetic analysis was performed with OpenSim. The joint angle and muscle forces were estimated as results of inverse kinematics and kinetics analysis. A detailed finite element (FE) lower extremity model was constructed. The joint coordinate system was added to the FE model and the joint coordinate system was coincided with OpenSim model’s coordinate system. Finally, the joint angles at each phase of gait were used to transform the FE model’s posture according to actual posture from motion capture. The FE model was transformed into the postures of three major phases (1st peak of ground reaction force, mid stance and 2nd peak of ground reaction force). The direction and magnitude of muscle force were estimated by OpenSim and were applied to the FE model’s attachment point of each muscle. Then FE analysis was performed to compare the stress at knee cartilage during gait with normal shoes and unstable shoes.Keywords: finite element analysis, gait analysis, human model, motion capture
Procedia PDF Downloads 3232097 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames
Authors: H. Katkhuda
Abstract:
A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.Keywords: dynamic force identification, dynamic responses, sub-structure, time domain
Procedia PDF Downloads 3612096 Water Injection in One of the Southern Iranian Oil Field, a Case Study
Authors: Hooman Fallah
Abstract:
Seawater injection and produced water re-injection are presently the most commonly used approach to enhanced recovery. The dominant factors for total oil recovery are the reservoir temperature, reservoir pressure, crude oil and water composition. In this study, the production under water injection in Soroosh, one of the southern Iranian heavy oil field has been simulated (the fluid properties are focused). In order to reveal the dominant factors in this production process, the sensitivity analysis has been done for the following effective factors, fluid viscosity, initial water saturation, gravity force and injection well strategy. It is crystal clear that the study of the dominant factors in production processes will help the engineers to design the best production mechanisms in our numerous hydrocarbon reservoirs.Keywords: water injection, initial water saturation, oil viscosity, gravity force, injection well strategy
Procedia PDF Downloads 4202095 Using Atomic Force Microscope to Investigate the Influence of UVA Radiation and HA on Cell Behaviour and Elasticity of Dermal Fibroblasts
Authors: Pei-Hsiu Chiang, Ling Hong Huang, Hsin-I Chang
Abstract:
In this research, we used UVA irradiation, which can penetrate into dermis and fibroblasts, the most abundant cells in dermis, to investigate the effect of UV light on dermis, such as inflammation, ECM degradation and elasticity loss. Moreover, this research is focused on the influence of hyaluronic acid (HA) on UVA treated dermal fibroblasts. We aim to establish whether HA can effectively relief ECM degradation, and restore the elasticity of UVA-damaged fibroblasts. Prolonged exposure to UVA radiation can damage fibroblasts and led variation in cell morphology and reduction in cell viability. Besides, UVA radiation can induce IL-1β expression on fibroblasts and then promote MMP-1 and MMP-3 expression, which can accelerate ECM degradation. On the other hand, prolonged exposure to UVA radiation reduced collagen and elastin synthesis on fibroblasts. Due to the acceleration of ECM degradation and the reduction of ECM synthesis, Atomic force microscope (AFM) was used to analyze the elasticity reduction on UVA-damaged fibroblasts. UVA irradiation causes photoaging on fibroblasts. UVA damaged fibroblasts with HA treatment can down-regulate the gene expression of MMP-1, MMP-3, and then slow down ECM degradation. On the other hand, HA may restore elastin and collagen synthesis in UV-damaged fibroblasts. Based on the slowdown of ECM degradation, UVA-damaged fibroblast elasticity can be effectively restored by HA treatment. In summary, HA can relief the photoaging conditions on fibroblasts, but may not be able to return fibroblasts to normal, healthy state. Although HA cannot fully recover UVA-damaged fibroblasts, HA is still potential for repairing photoaging skin.Keywords: atomic force microscope, hyaluronic acid, UVA radiation, dermal fibroblasts
Procedia PDF Downloads 3912094 Development of Hydrodynamic Drag Calculation and Cavity Shape Generation for Supercavitating Torpedoes
Authors: Sertac Arslan, Sezer Kefeli
Abstract:
In this paper, firstly supercavitating phenomenon and supercavity shape design parameters are explained and then drag force calculation methods of high speed supercavitating torpedoes are investigated with numerical techniques and verified with empirical studies. In order to reach huge speeds such as 200, 300 knots for underwater vehicles, hydrodynamic hull drag force which is proportional to density of water (ρ) and square of speed should be reduced. Conventional heavy weight torpedoes could reach up to ~50 knots by classic underwater hydrodynamic techniques. However, to exceed 50 knots and reach about 200 knots speeds, hydrodynamic viscous forces must be reduced or eliminated completely. This requirement revives supercavitation phenomena that could be implemented to conventional torpedoes. Supercavitation is the use of cavitation effects to create a gas bubble, allowing the torpedo to move at huge speed through the water by being fully developed cavitation bubble. When the torpedo moves in a cavitation envelope due to cavitator in nose section and solid fuel rocket engine in rear section, this kind of torpedoes could be entitled as Supercavitating Torpedoes. There are two types of cavitation; first one is natural cavitation, and second one is ventilated cavitation. In this study, disk cavitator is modeled with natural cavitation and supercavitation phenomenon parameters are studied. Moreover, drag force calculation is performed for disk shape cavitator with numerical techniques and compared via empirical studies. Drag forces are calculated with computational fluid dynamics methods and different empirical methods. Numerical calculation method is developed by comparing with empirical results. In verification study cavitation number (σ), drag coefficient (CD) and drag force (D), cavity wall velocity (UKeywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavity flows
Procedia PDF Downloads 1882093 Impact of Social Media in Shaping Perceptions on Filipino Muslim Identity
Authors: Anna Rhodora A. Solar, Jan Emil N. Langomez
Abstract:
Social Media plays a crucial role in influencing Philippine public opinion with regard to a variety of socio-political issues. This became evident in the massacre of 44 members of the Special Action Force (SAF 44) tasked by the Philippine government to capture one of the US Federal Bureau of Investigation’s most wanted terrorists. The incident was said to be perpetrated by members of the Moro Islamic Liberation Front and the Bangsamoro Islamic Freedom Fighters. Part of the online discourse within Philippine cyberspace sparked intense debates on Filipino Muslim identity, with several Facebook viral posts linking Islam as a factor to the tragic event. Facebook is considered to be the most popular social media platform in the Philippines. As such, this begs the question of the extent to which social media, specifically Facebook, shape the perceptions of Filipinos on Filipino Muslims. This study utilizes Habermas’ theory of communicative action as it offers an explanation on how public sphere such as social media could be a network for communicating information and points of view through free and open dialogue among equal citizens to come to an understanding or common perception. However, the paper argues that communicative action which is aimed at reaching understanding free from force, and strategic action which is aimed at convincing someone through argumentation may not necessarily be mutually exclusive since reaching an understanding can also be considered as a result of convincing someone through argumentation. Moreover, actors may clash one another in their ideas before reaching common understanding, hence the presence of force. Utilizing content analysis on the Facebook posts with Islamic component that went viral after the massacre of the SAF 44, this paper argues that framing the image of Filipino Muslims through Facebook reflects both communicative and strategic actions. Moreover, comment threads on viral posts manifest force albeit implicit.Keywords: communication, Muslim, Philippines, social media
Procedia PDF Downloads 4022092 A Study on Temperature and Drawing Speed for Diffusion Bonding Enhancement in Drawing of Hot Lined Pipes by FEM Analysis
Authors: M. T. Ahn, J. H. Park, S. H. Park, S. H. Ha
Abstract:
Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in hot drawing even if the reduction in the section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.Keywords: diffusion bonding, temperature, pressure, drawing speed
Procedia PDF Downloads 3732091 Aerodynamics of Nature Inspired Turbine Blade Using Computational Simulation
Authors: Seung Ki Lee, Richard Kyung
Abstract:
In the airfoil analysis, as the camber is greater, the minimal angle of attack causing the stall and maximum lift force increases. The shape of the turbine blades is similar to the shape of the wings of planes. After major wars, many remarkable blade shapes are made through researches about optimal blade shape. The blade shapes developed by National Advisory Committee for Aeronautics, NACA, is well known. In this paper, using computational and numerical analysis, the NACA airfoils are analyzed. This research shows that the blades vary with their thickness, which thinner blades are expected to be better. There is no significant difference of coefficient of lift due to the difference in thickness, but the coefficient of drag increases as the thickness increases.Keywords: blades, drag force, national advisory committee for aeronautics airfoils, turbine
Procedia PDF Downloads 2262090 Importance of Health and Social Capital to Employment Status of Indigenous Peoples in Canada
Authors: Belayet Hossain, Laura Lamb
Abstract:
The study investigates the importance of health and social capital in determining the labour force status of Canada’s Indigenous population using data from 2006 Aboriginal Peoples Survey. An instrumental variable ordered probit model has been specified and estimated. The study finds that health status and social capital are important in determining Indigenous peoples’ employment status along with other factors. The results of the study imply that human resource development initiatives of Indigenous Peoples need to be broadened by including health status and social capital. Poor health and low degree of inclusion of the Indigenous Peoples need to be addressed in order to improve employment status of Canada’s Indigenous Peoples.Keywords: labour force, human capital, social capital, aboriginal people, Canada
Procedia PDF Downloads 3002089 Analysis of the Engineering Judgement Influence on the Selection of Geotechnical Parameters Characteristic Values
Authors: K. Ivandic, F. Dodigovic, D. Stuhec, S. Strelec
Abstract:
A characteristic value of certain geotechnical parameter results from an engineering assessment. Its selection has to be based on technical principles and standards of engineering practice. It has been shown that the results of engineering assessment of different authors for the same problem and input data are significantly dispersed. A survey was conducted in which participants had to estimate the force that causes a 10 cm displacement at the top of a axially in-situ compressed pile. Fifty experts from all over the world took part in it. The lowest estimated force value was 42% and the highest was 133% of measured force resulting from a mentioned static pile load test. These extreme values result in significantly different technical solutions to the same engineering task. In case of selecting a characteristic value of a geotechnical parameter the importance of the influence of an engineering assessment can be reduced by using statistical methods. An informative annex of Eurocode 1 prescribes the method of selecting the characteristic values of material properties. This is followed by Eurocode 7 with certain specificities linked to selecting characteristic values of geotechnical parameters. The paper shows the procedure of selecting characteristic values of a geotechnical parameter by using a statistical method with different initial conditions. The aim of the paper is to quantify an engineering assessment in the example of determining a characteristic value of a specific geotechnical parameter. It is assumed that this assessment is a random variable and that its statistical features will be determined. For this purpose, a survey research was conducted among relevant experts from the field of geotechnical engineering. Conclusively, the results of the survey and the application of statistical method were compared.Keywords: characteristic values, engineering judgement, Eurocode 7, statistical methods
Procedia PDF Downloads 2962088 The Curvature of Bending Analysis and Motion of Soft Robotic Fingers by Full 3D Printing with MC-Cells Technique for Hand Rehabilitation
Authors: Chaiyawat Musikapan, Ratchatin Chancharoen, Saknan Bongsebandhu-Phubhakdi
Abstract:
For many recent years, soft robotic fingers were used for supporting the patients who had survived the neurological diseases that resulted in muscular disorders and neural network damages, such as stroke and Parkinson’s disease, and inflammatory symptoms such as De Quervain and trigger finger. Generally, the major hand function is significant to manipulate objects in activities of daily living (ADL). In this work, we proposed the model of soft actuator that manufactured by full 3D printing without the molding process and one material for use. Furthermore, we designed the model with a technique of multi cavitation cells (MC-Cells). Then, we demonstrated the curvature bending, fluidic pressure and force that generated to the model for assistive finger flexor and hand grasping. Also, the soft actuators were characterized in mathematics solving by the length of chord and arc length. In addition, we used an adaptive push-button switch machine to measure the force in our experiment. Consequently, we evaluated biomechanics efficiency by the range of motion (ROM) that affected to metacarpophalangeal joint (MCP), proximal interphalangeal joint (PIP) and distal interphalangeal joint (DIP). Finally, the model achieved to exhibit the corresponding fluidic pressure with force and ROM to assist the finger flexor and hand grasping.Keywords: biomechanics efficiency, curvature bending, hand functional assistance, multi cavitation cells (MC-Cells), range of motion (ROM)
Procedia PDF Downloads 2602087 Multi-Size Continuous Particle Separation on a Dielectrophoresis-Based Microfluidics Chip
Authors: Arash Dalili, Hamed Tahmouressi, Mina Hoorfar
Abstract:
Advances in lab-on-a-chip (LOC) devices have led to significant advances in the manipulation, separation, and isolation of particles and cells. Among the different active and passive particle manipulation methods, dielectrophoresis (DEP) has been proven to be a versatile mechanism as it is label-free, cost-effective, simple to operate, and has high manipulation efficiency. DEP has been applied for a wide range of biological and environmental applications. A popular form of DEP devices is the continuous manipulation of particles by using co-planar slanted electrodes, which utilizes a sheath flow to focus the particles into one side of the microchannel. When particles enter the DEP manipulation zone, the negative DEP (nDEP) force generated by the slanted electrodes deflects the particles laterally towards the opposite side of the microchannel. The lateral displacement of the particles is dependent on multiple parameters including the geometry of the electrodes, the width, length and height of the microchannel, the size of the particles and the throughput. In this study, COMSOL Multiphysics® modeling along with experimental studies are used to investigate the effect of the aforementioned parameters. The electric field between the electrodes and the induced DEP force on the particles are modelled by COMSOL Multiphysics®. The simulation model is used to show the effect of the DEP force on the particles, and how the geometry of the electrodes (width of the electrodes and the gap between them) plays a role in the manipulation of polystyrene microparticles. The simulation results show that increasing the electrode width to a certain limit, which depends on the height of the channel, increases the induced DEP force. Also, decreasing the gap between the electrodes leads to a stronger DEP force. Based on these results, criteria for the fabrication of the electrodes were found, and soft lithography was used to fabricate interdigitated slanted electrodes and microchannels. Experimental studies were run to find the effect of the flow rate, geometrical parameters of the microchannel such as length, width, and height as well as the electrodes’ angle on the displacement of 5 um, 10 um and 15 um polystyrene particles. An empirical equation is developed to predict the displacement of the particles under different conditions. It is shown that the displacement of the particles is more for longer and lower height channels, lower flow rates, and bigger particles. On the other hand, the effect of the angle of the electrodes on the displacement of the particles was negligible. Based on the results, we have developed an optimum design (in terms of efficiency and throughput) for three size separation of particles.Keywords: COMSOL Multiphysics, Dielectrophoresis, Microfluidics, Particle separation
Procedia PDF Downloads 1862086 Assessment of the Effect of Wind Turbulence on the Aero-Hydrodynamic Behavior of Offshore Wind Turbines
Authors: Reza Dezvareh
Abstract:
The aim of this study is to investigate the amount of wind turbulence on the aero hydrodynamic behavior of offshore wind turbines with a monopile holder platform. Since in the sea, the wind turbine structures are under water and structures interactions, the dynamic analysis has been conducted under combined wind and wave loading. The offshore wind turbines have been investigated undertow models of normal and severe wind turbulence, and the results of this study show that the amplitude of fluctuation of dynamic response of structures including thrust force and base shear force of structures is increased with increasing the amount of wind turbulence, and this increase is not necessarily observed in the mean values of responses. Therefore, conducting the dynamic analysis is inevitable in order to observe the effect of wind turbulence on the structures' response.Keywords: offshore wind turbine, wind turbulence, structural vibration, aero-hydro dynamic
Procedia PDF Downloads 2092085 A Numerical Study of Seismic Effects on Slope Stability Using Node-Based Smooth Finite Element Method
Authors: H. C. Nguyen
Abstract:
This contribution considers seismic effects on the stability of slope and footing resting on a slope. The seismic force is simply treated as static inertial force through the values of acceleration factor. All domains are assumed to be plasticity deformations approximated using node-based smoothed finite element method (NS-FEM). The failure mechanism and safety factor were then explored using numerical procedure based on upper bound approach in which optimization problem was formed as second order cone programming (SOCP). The data obtained confirm that upper bound procedure using NS-FEM and SOCP can give stable and rapid convergence results of seismic stability factors.Keywords: upper bound analysis, safety factor, slope stability, footing resting on slope
Procedia PDF Downloads 1172084 A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow
Authors: Ruquan You, Haiwang Li, Zhi Tao
Abstract:
A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024×1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed.Keywords: rotating facility, PIV, boundary layer flow, spatial and temporal resolution
Procedia PDF Downloads 1802083 Dependence of Shaft Stiffness on the Crack Location
Authors: H. M. Mobarak, Helen Wu, Chunhui Yang
Abstract:
In this study, an analytical model is developed to study crack breathing behavior under the effect of crack location and unbalance force. Crack breathing behavior is determined using effectual bending angle by studying the transient change in closed area of the crack. The status of the crack of a balanced shaft is symmetrical about shaft rotational angle and the duration of each crack status remains unchanged. The global stiffness of the balanced shaft is independent of crack location. Different crack breathing behavior for the unbalanced shaft has been observed. The influence of crack location on the unbalanced shaft stiffness can be divided into three regions. When the crack is located between 0.3L and 0.8335L, where L is the total length of the shaft, the unbalanced shaft is less stiff and when located outside this region it is stiffer than the balanced shaft. It was also found that unbalanced shaft stiffness has a maximum value with a crack at 0.1946L, a minimum value at 0.8053L and same value as balanced shaft at 0.3L and 0.8335L.Keywords: cracked shaft, crack location, shaft stiffness, unbalanced force
Procedia PDF Downloads 3072082 Numerical Study of the Breakdown of Surface Divergence Based Models for Interfacial Gas Transfer Velocity at Large Contamination Levels
Authors: Yasemin Akar, Jan G. Wissink, Herlina Herlina
Abstract:
The effect of various levels of contamination on the interfacial air–water gas transfer velocity is studied by Direct Numerical Simulation (DNS). The interfacial gas transfer is driven by isotropic turbulence, introduced at the bottom of the computational domain, diffusing upwards. The isotropic turbulence is generated in a separate, concurrently running the large-eddy simulation (LES). The flow fields in the main DNS and the LES are solved using fourth-order discretisations of convection and diffusion. To solve the transport of dissolved gases in water, a fifth-order-accurate WENO scheme is used for scalar convection combined with a fourth-order central discretisation for scalar diffusion. The damping effect of the surfactant contamination on the near surface (horizontal) velocities in the DNS is modelled using horizontal gradients of the surfactant concentration. An important parameter in this model, which corresponds to the level of contamination, is ReMa⁄We, where Re is the Reynolds number, Ma is the Marangoni number, and We is the Weber number. It was previously found that even small levels of contamination (ReMa⁄We small) lead to a significant drop in the interfacial gas transfer velocity KL. It is known that KL depends on both the Schmidt number Sc (ratio of the kinematic viscosity and the gas diffusivity in water) and the surface divergence β, i.e. K_L∝√(β⁄Sc). Previously it has been shown that this relation works well for surfaces with low to moderate contamination. However, it will break down for β close to zero. To study the validity of this dependence in the presence of surface contamination, simulations were carried out for ReMa⁄We=0,0.12,0.6,1.2,6,30 and Sc = 2, 4, 8, 16, 32. First, it will be shown that the scaling of KL with Sc remains valid also for larger ReMa⁄We. This is an important result that indicates that - for various levels of contamination - the numerical results obtained at low Schmidt numbers are also valid for significantly higher and more realistic Sc. Subsequently, it will be shown that - with increasing levels of ReMa⁄We - the dependency of KL on β begins to break down as the increased damping of near surface fluctuations results in an increased damping of β. Especially for large levels of contamination, this damping is so severe that KL is found to be underestimated significantly.Keywords: contamination, gas transfer, surfactants, turbulence
Procedia PDF Downloads 3002081 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics
Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni
Abstract:
The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection
Procedia PDF Downloads 2902080 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform
Authors: Xie Kefeng, Zhang He
Abstract:
For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.Keywords: 2-HUS/U platform, dynamics, Lagrange, parallel platform
Procedia PDF Downloads 3452079 A Study of Rapid Replication of Square-Microlens Structures
Authors: Ting-Ting Wen, Jung-Ruey Tsai
Abstract:
This paper reports a method for the replication of micro-scale structures. By using electromagnetic force-assisted imprinting system with magnetic soft stamp written square-microlens cavity, a photopolymer square-microlens structures can be rapidly fabricated. Under the proper processing conditions, the polymeric square-microlens structures with feature size of width 100.3um and height 15.2um across a large area can be successfully fabricated. Scanning electron microscopy (SEM) and surface profiler observations confirm that the micro-scale polymer structures are produced without defects or distortion and with good pattern fidelity over a 60x60mm2 area. This technique shows great potential for the efficient replication of the micro-scale structure array at room temperature and with high productivity and low cost.Keywords: square-microlens structures, electromagnetic force-assisted imprinting, magnetic soft stamp
Procedia PDF Downloads 3352078 Rapid Processing Techniques Applied to Sintered Nickel Battery Technologies for Utility Scale Applications
Authors: J. D. Marinaccio, I. Mabbett, C. Glover, D. Worsley
Abstract:
Through use of novel modern/rapid processing techniques such as screen printing and Near-Infrared (NIR) radiative curing, process time for the sintering of sintered nickel plaques, applicable to alkaline nickel battery chemistries, has been drastically reduced from in excess of 200 minutes with conventional convection methods to below 2 minutes using NIR curing methods. Steps have also been taken to remove the need for forming gas as a reducing agent by implementing carbon as an in-situ reducing agent, within the ink formulation.Keywords: batteries, energy, iron, nickel, storage
Procedia PDF Downloads 4402077 Pipeline Construction in Oil and Gas Fields as per Kuwait Oil Company Procedures
Authors: Jasem Al-Safran
Abstract:
Nowadays Oil and Gas industry considered as one of the biggest industries around the world although it caused a lot of pollution to the world and it caused many damages to the mankind and the other creatures around the globe it still one of the biggest industries, it create millions of careers around the globe which reduced the poorness level and make the mankind life’s much more comfortable you may compare the humans life before the exploration of the oil and after the oil industries development. Construction project’s consist of 3 major sections also we call them EPC projects the first section is the detailed engineering, the second section is the procurements section and finally is the Construction section, each section required a specialized work force with a different skills in order to handle the work load for example in the oil sector and depending on the nature of the project and the project size the Construction team required mechanical engineer, civil engineer, electrical engineer and instrumentation engineer, also a work site supervisor for each disciplines also a huge number of labors, technicians and many equipment’s.Keywords: Construction, EPC, Project, Work force
Procedia PDF Downloads 1062076 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander
Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas
Abstract:
Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link
Procedia PDF Downloads 3512075 Understanding Human Rights Violations in the Fight against Boko Haram: A Historical Perspective
Authors: Anthony Mpiani
Abstract:
Recent media and NGO reports suggest that human rights violations have been a salient characteristic of the government Joint Task Force (JTF) in the war on Boko Haram. However, there has been relatively scant scholarly engagement with the forms of abuses committed by the JTF against civilians and why such human rights violations occur. The focus of this paper is to analyse the various human rights violations committed by JTF in the war against Boko Haram. Employing a historical approach, it argues that the JTF's human rights violations is shaped by the philosophy of colonial policing in Nigeria. Consequently, the failure of successive post-colonial governments to ideologically transform policing is accountable for the human rights abuses being witnessed in Nigeria today. A philosophical transformation in Nigeria's security forces especially the police and military is a prerequisite for ending human rights abuses in the fight against Boko Haram.Keywords: colonialism, policing, joint task force, counterinsurgency, Boko Haram, human rights violations
Procedia PDF Downloads 1642074 Investigating the Thermal Comfort Properties of Mohair Fabrics
Authors: Adine Gericke, Jiri Militky, Mohanapriya Venkataraman
Abstract:
Mohair, obtained from the Angora goat, is a luxury fiber and recognized as one of the best quality natural fibers. Expansion of the use of mohair into technical and functional textile products necessitates the need for a better understanding of how the use of mohair in fabrics will impact on its thermo-physiological comfort related properties. Despite its popularity, very little information is available on the quantification of the thermal and moisture management properties of mohair fabrics. This study investigated the effect of fibrous matter composition and fabric structural parameters on conductive and convective heat transfers to attain more information on the thermal comfort properties of mohair fabrics. Dry heat transfer through textiles may involve conduction through the fibrous phase, radiation through fabric interstices and convection of air within the structure. Factors that play a major role in heat transfer by conduction are fabric areal density (g/m2) and derived quantities such as cover factor and porosity. Convective heat transfer through fabrics is found in environmental conditions where there is wind-flow or the object is moving (e.g. running or walking). The thermal comfort properties of mohair fibers were objectively evaluated firstly in comparison with other textile fibers and secondly in a variety of fabric structures. Two sample sets were developed for this purpose, with fibre content, yarn structure and fabric design as main variables. SEM and microscopic images were obtained to closely examine the physical structures of the fibers and fabrics. Thermal comfort properties such as thermal resistance and thermal conductivity, as well as fabric thickness, were measured on the well-known Alambeta test instrument. Clothing insulation (clo) was calculated from the above. The thermal properties of fabrics under heat convection was evaluated using a laboratory model device developed at the Technical University of Liberec (referred to as the TP2-instrument). The effects of the different variables on fabric thermal comfort properties were analyzed statistically using TIBCO Statistica Software. The results showed that fabric structural properties, specifically sample thickness, played a significant role in determining the thermal comfort properties of the fabrics tested. It was found that regarding thermal resistance related to conductive heat flow, the effect of fiber type was not always statistically significant, probably as a result of the amount of trapped air within the fabric structure. The very low thermal conductivity of air, compared to that of the fibers, had a significant influence on the total conductivity and thermal resistance of the samples. This was confirmed by the high correlation of these factors with sample thickness. Regarding convective heat flow, the most important factor influencing the ability of the fabric to allow dry heat to move through the structure, was again fabric thickness. However, it would be wrong to totally disregard the effect of fiber composition on the thermal resistance of textile fabrics. In this study, the samples containing mohair or mohair/wool were consistently thicker than the others even though weaving parameters were kept constant. This can be ascribed to the physical properties of the mohair fibers that renders it exceptionally well towards trapping air among fibers (in a yarn) as well as among yarns (inside a fabric structure). The thicker structures trap more air to provide higher thermal insulation, but also prevent the free flow of air that allow thermal convection.Keywords: mohair fabrics, convective heat transfer, thermal comfort properties, thermal resistance
Procedia PDF Downloads 1442073 Observation of the Orthodontic Tooth's Long-Term Movement Using Stereovision System
Authors: Hao-Yuan Tseng, Chuan-Yang Chang, Ying-Hui Chen, Sheng-Che Chen, Chih-Han Chang
Abstract:
Orthodontic tooth treatment has demonstrated a high success rate in clinical studies. It has been agreed upon that orthodontic tooth movement is based on the ability of surrounding bone and periodontal ligament (PDL) to react to a mechanical stimulus with remodeling processes. However, the mechanism of the tooth movement is still unclear. Recent studies focus on the simple principle compression-tension theory while rare studies directly measure tooth movement. Therefore, tracking tooth movement information during orthodontic treatment is very important in clinical practice. The aim of this study is to investigate the mechanism responses of the tooth movement during the orthodontic treatments. A stereovision system applied to track the tooth movement of the patient with the stamp brackets. The system was established by two cameras with their relative position calibrate. And the orthodontic force measured by 3D printing model with the six-axis load cell to determine the initial force application. The result shows that the stereovision system accuracy revealed the measurement presents a maximum error less than 2%. For the study on patient tracking, the incisor moved about 0.9 mm during 60 days tracking, and half of movement occurred in the first few hours. After removing the orthodontic force in 100 hours, the distance between before and after position incisor tooth decrease 0.5 mm consisted with the release of the phenomenon. Using the stereovision system can accurately locate the three-dimensional position of the teeth and superposition of 3D coordinate system for all the data to integrate the complex tooth movement.Keywords: orthodontic treatment, tooth movement, stereovision system, long-term tracking
Procedia PDF Downloads 422