Search results for: ensemble Kalman filter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1031

Search results for: ensemble Kalman filter

581 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 262
580 Quasiperiodic Magnetic Chains as Spin Filters

Authors: Arunava Chakrabarti

Abstract:

A one-dimensional chain of magnetic atoms, representative of a quantum gas in an artificial quasi-periodic potential and modeled by the well-known Aubry-Andre function and its variants are studied in respect of its capability of working as a spin filter for arbitrary spins. The basic formulation is explained in terms of a perfectly periodic chain first, where it is shown that a definite correlation between the spin S of the incoming particles and the magnetic moment h of the substrate atoms can open up a gap in the energy spectrum. This is crucial for a spin filtering action. The simple one-dimensional chain is shown to be equivalent to a 2S+1 strand ladder network. This equivalence is exploited to work out the condition for the opening of gaps. The formulation is then applied for a one-dimensional chain with quasi-periodic variation in the site potentials, the magnetic moments and their orientations following an Aubry-Andre modulation and its variants. In addition, we show that a certain correlation between the system parameters can generate absolutely continuous bands in such systems populated by Bloch like extended wave functions only, signaling the possibility of a metal-insulator transition. This is a case of correlated disorder (a deterministic one), and the results provide a non-trivial variation to the famous Anderson localization problem. We have worked within a tight binding formalism and have presented explicit results for the spin half, spin one, three halves and spin five half particles incident on the magnetic chain to explain our scheme and the central results.

Keywords: Aubry-Andre model, correlated disorder, localization, spin filter

Procedia PDF Downloads 356
579 Unified Power Quality Conditioner Presentation and Dimensioning

Authors: Abderrahmane Kechich, Othmane Abdelkhalek

Abstract:

Static converters behave as nonlinear loads that inject harmonic currents into the grid and increase the consumption of the inactive power. On the other hand, the increased use of sensitive equipment requires the application of sinusoidal voltages. As a result, the electrical power quality control has become a major concern in the field of power electronics. In this context, the active power conditioner (UPQC) was developed. It combines both serial and parallel structures; the series filter can protect sensitive loads and compensate for voltage disturbances such as voltage harmonics, voltage dips or flicker when the shunt filter compensates for current disturbances such as current harmonics, reactive currents and imbalance. This double feature is that it is one of the most appropriate devices. Calculating parameters is an important step and in the same time it’s not easy for that reason several researchers based on trial and error method for calculating parameters but this method is not easy for beginners researchers especially what about the controller’s parameters, for that reason this paper gives a mathematical way to calculate of almost all of UPQC parameters away from trial and error method. This paper gives also a new approach for calculating of PI regulators parameters for purpose to have a stable UPQC able to compensate for disturbances acting on the waveform of line voltage and load current in order to improve the electrical power quality.

Keywords: UPQC, Shunt active filer, series active filer, PI controller, PWM control, dual-loop control

Procedia PDF Downloads 403
578 Time Parameter Based for the Detection of Catastrophic Faults in Analog Circuits

Authors: Arabi Abderrazak, Bourouba Nacerdine, Ayad Mouloud, Belaout Abdeslam

Abstract:

In this paper, a new test technique of analog circuits using time mode simulation is proposed for the single catastrophic faults detection in analog circuits. This test process is performed to overcome the problem of catastrophic faults being escaped in a DC mode test applied to the inverter amplifier in previous research works. The circuit under test is a second-order low pass filter constructed around this type of amplifier but performing a function that differs from that of the previous test. The test approach performed in this work is based on two key- elements where the first one concerns the unique square pulse signal selected as an input vector test signal to stimulate the fault effect at the circuit output response. The second element is the filter response conversion to a square pulses sequence obtained from an analog comparator. This signal conversion is achieved through a fixed reference threshold voltage of this comparison circuit. The measurement of the three first response signal pulses durations is regarded as fault effect detection parameter on one hand, and as a fault signature helping to hence fully establish an analog circuit fault diagnosis on another hand. The results obtained so far are very promising since the approach has lifted up the fault coverage ratio in both modes to over 90% and has revealed the harmful side of faults that has been masked in a DC mode test.

Keywords: analog circuits, analog faults diagnosis, catastrophic faults, fault detection

Procedia PDF Downloads 441
577 Knowledge Management for Competitiveness and Performances in Higher Educational Institutes

Authors: Jeyarajan Sivapathasundram

Abstract:

Knowledge management has been recognised as an emerging factor for being competitive among institutions and performances in firms. As such, being recognised as knowledge rich institution, higher education institutes have to be recognised knowledge management based resources for achieving competitive advantages. Present research picked result out of postgraduate research conducted in knowledge management at non-state higher educational institutes of Sri Lanka. Besides, the present research aimed to discover knowledge management for competition and firm performances of higher educational institutes out of the result produced by the postgraduate study. Besides, the results are found in a pair that developed out of knowledge management practices and the reason behind the existence of the practices. As such, the present research has developed a filter to pick the pairs that satisfy its condition of competition and performance of the firm. As such, the pair, such as benchmarking is practised to be ethically competing through conducting courses. As the postgraduate research tested results of foreign researches in a qualitative paradigm, the finding of the present research are generalise fact for knowledge management for competitiveness and performances in higher educational institutes. Further, the presented research method used attributes which explain competition and performance in its filter to discover the pairs relevant to competition and performances. As such, the fact in regards to knowledge management for competition and performances in higher educational institutes are presented in the publication that the presentation is out of the generalised result. Therefore, knowledge management for competition and performance in higher educational institutes are generalised.

Keywords: competition in and among higher educational institutes, performances of higher educational institutes, noun based filtering, production out of generalisation of a research

Procedia PDF Downloads 136
576 Effect of Thermal Energy on Inorganic Coagulation for the Treatment of Industrial Wastewater

Authors: Abhishek Singh, Rajlakshmi Barman, Tanmay Shah

Abstract:

Coagulation is considered to be one of the predominant water treatment processes which improve the cost effectiveness of wastewater. The sole purpose of this experiment on thermal coagulation is to increase the efficiency and the rate of reaction. The process uses renewable sources of energy which comprises of improved and minimized time method in order to eradicate the water scarcity of the regions which are on the brink of depletion. This paper includes the various effects of temperature on the standard coagulation treatment of wastewater and their effect on water quality. In addition, the coagulation is done with the mix of bottom/fly-ash that will act as an adsorbent and removes most of the minor and macro particles by means of adsorption which not only helps to reduce the environmental burden of fly ash but also enhance economic benefit. Also, the method of sand filtration is amalgamated in the process. The sand filter is an environmentally-friendly wastewater treatment method, which is relatively simple and inexpensive. The existing parameters were satisfied with the experimental results obtained in this study and were found satisfactory. The initial turbidity of the wastewater is 162 NTU. The initial temperature of the wastewater is 27 C. The temperature variation of the entire process is 50 C-80 C. The concentration of alum in wastewater is 60mg/L-320mg/L. The turbidity range is 8.31-28.1 NTU after treatment. pH variation is 7.73-8.29. The effective time taken is 10 minutes for thermal mixing and sedimentation. The results indicate that the presence of thermal energy affects the coagulation treatment process. The influence of thermal energy on turbidity is assessed along with renewable energy sources and increase of the rate of reaction of the treatment process.

Keywords: adsorbent, sand filter, temperature, thermal coagulation

Procedia PDF Downloads 321
575 Classifying Blog Texts Based on the Psycholinguistic Features of the Texts

Authors: Hyung Jun Ahn

Abstract:

With the growing importance of social media, it is imperative to analyze it to understand the users. Users share useful information and their experience through social media, where much of what is shared is in the form of texts. This study focused on blogs and aimed to test whether the psycho-linguistic characteristics of blog texts vary with the subject or the type of experience of the texts. For this goal, blog texts about four different types of experience, Go, skiing, reading, and musical were collected through the search API of the Tistory blog service. The analysis of the texts showed that various psycholinguistic characteristics of the texts are different across the four categories of the texts. Moreover, the machine learning experiment using the characteristics for automatic text classification showed significant performance. Specifically, the ensemble method, based on functional tree and bagging appeared to be most effective in classification.

Keywords: blog, social media, text analysis, psycholinguistics

Procedia PDF Downloads 279
574 Optimal Harmonic Filters Design of Taiwan High Speed Rail Traction System

Authors: Ying-Pin Chang

Abstract:

This paper presents a method for combining a particle swarm optimization with nonlinear time-varying evolution and orthogonal arrays (PSO-NTVEOA) in the planning of harmonic filters for the high speed railway traction system with specially connected transformers in unbalanced three-phase power systems. The objective is to minimize the cost of the filter, the filters loss, the total harmonic distortion of currents and voltages at each bus simultaneously. An orthogonal array is first conducted to obtain the initial solution set. The set is then treated as the initial training sample. Next, the PSO-NTVEOA method parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of experiments would have an effect that approximates the full factorial experiments. This PSO-NTVEOA method is then applied to design optimal harmonic filters in Taiwan High Speed Rail (THSR) traction system, where both rectifiers and inverters with IGBT are used. From the results of the illustrative examples, the feasibility of the PSO-NTVEOA to design an optimal passive harmonic filter of THSR system is verified and the design approach can greatly reduce the harmonic distortion. Three design schemes are compared that V-V connection suppressing the 3rd order harmonic, and Scott and Le Blanc connection for the harmonic improvement is better than the V-V connection.

Keywords: harmonic filters, particle swarm optimization, nonlinear time-varying evolution, orthogonal arrays, specially connected transformers

Procedia PDF Downloads 392
573 Coding Considerations for Standalone Molecular Dynamics Simulations of Atomistic Structures

Authors: R. O. Ocaya, J. J. Terblans

Abstract:

The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

Keywords: C language, molecular dynamics, simulation, embedded atom method

Procedia PDF Downloads 305
572 Using Swarm Intelligence to Forecast Outcomes of English Premier League Matches

Authors: Hans Schumann, Colin Domnauer, Louis Rosenberg

Abstract:

In this study, machine learning techniques were deployed on real-time human swarm data to forecast the likelihood of outcomes for English Premier League matches in the 2020/21 season. These techniques included ensemble models in combination with neural networks and were tested against an industry standard of Vegas Oddsmakers. Predictions made from the collective intelligence of human swarm participants managed to achieve a positive return on investment over a full season on matches, empirically proving the usefulness of a new artificial intelligence valuing human instinct and intelligence.

Keywords: artificial intelligence, data science, English Premier League, human swarming, machine learning, sports betting, swarm intelligence

Procedia PDF Downloads 213
571 On Paranorm Zweier I-Convergent Sequence Spaces

Authors: Nazneen Khan, Vakeel A. Khan

Abstract:

In this article we introduce the Paranorm Zweier I-convergent sequence spaces, for a sequence of positive real numbers. We study some topological properties, prove the decomposition theorem and study some inclusion relations on these spaces.

Keywords: ideal, filter, I-convergence, I-nullity, paranorm

Procedia PDF Downloads 481
570 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.

Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis

Procedia PDF Downloads 388
569 Simulation of Complex-Shaped Particle Breakage with a Bonded Particle Model Using the Discrete Element Method

Authors: Felix Platzer, Eric Fimbinger

Abstract:

In Discrete Element Method (DEM) simulations, the breakage behavior of particles can be simulated based on different principles. In the case of large, complex-shaped particles that show various breakage patterns depending on the scenario leading to the failure and often only break locally instead of fracturing completely, some of these principles do not lead to realistic results. The reason for this is that in said cases, the methods in question, such as the Particle Replacement Method (PRM) or Voronoi Fracture, replace the initial particle (that is intended to break) into several sub-particles when certain breakage criteria are reached, such as exceeding the fracture energy. That is why those methods are commonly used for the simulation of materials that fracture completely instead of breaking locally. That being the case, when simulating local failure, it is advisable to pre-build the initial particle from sub-particles that are bonded together. The dimensions of these sub-particles consequently define the minimum size of the fracture results. This structure of bonded sub-particles enables the initial particle to break at the location of the highest local loads – due to the failure of the bonds in those areas – with several sub-particle clusters being the result of the fracture, which can again also break locally. In this project, different methods for the generation and calibration of complex-shaped particle conglomerates using bonded particle modeling (BPM) to enable the ability to depict more realistic fracture behavior were evaluated based on the example of filter cake. The method that proved suitable for this purpose and which furthermore allows efficient and realistic simulation of breakage behavior of complex-shaped particles applicable to industrial-sized simulations is presented in this paper.

Keywords: bonded particle model, DEM, filter cake, particle breakage

Procedia PDF Downloads 210
568 LiDAR Based Real Time Multiple Vehicle Detection and Tracking

Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt

Abstract:

Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.

Keywords: lidar, segmentation, clustering, tracking

Procedia PDF Downloads 423
567 Engineering of Filtration Systems in Egyptian Cement Plants: Industrial Case Study

Authors: Mohamed. A. Saad

Abstract:

The paper represents a case study regarding the conversion of Electro-Static Precipitators (ESP`s) into Fabric Filters (FF). Seven cement production companies were established in Egypt during the period 1927 to 1980 and 6 new companies were established to cope with the increasing cement demand in 1980's. The cement production market shares in Egypt indicate that there are six multinational companies in the local market, they are interested in the environmental conditions improving and so decided to achieve emission reduction project. The experimental work in the present study is divided into two main parts: (I) Measuring Efficiency of Filter Fabrics with detailed description of a designed apparatus. The paper also reveals the factors that should be optimized in order to assist problem diagnosis, solving and increasing the life of bag filters. (II) Methods to mitigate dust emissions in Egyptian cement plants with a special focus on converting the Electrostatic Precipitators (ESP`s) into Fabric Filters (FF) using the same ESP casing, bottom hoppers, dust transportation system, and ESP ductwork. Only the fan system for the higher pressure drop with the fabric filter was replaced. The proper selection of bag material was a prime factor with regard to gas composition, temperature and particle size. Fiberglass with PTFE membrane coated bags was selected. This fabric is rated for a continuous temperature of 250 C and a surge temperature of 280C. The dust emission recorded was less than 20 mg/m3 from the production line fitted with fabric filters which is super compared with the ESP`s working lines stack.

Keywords: Engineering Electrostatic Precipitator, filtration, dust collectors, cement

Procedia PDF Downloads 253
566 Scalable Learning of Tree-Based Models on Sparsely Representable Data

Authors: Fares Hedayatit, Arnauld Joly, Panagiotis Papadimitriou

Abstract:

Many machine learning tasks such as text annotation usually require training over very big datasets, e.g., millions of web documents, that can be represented in a sparse input space. State-of the-art tree-based ensemble algorithms cannot scale to such datasets, since they include operations whose running time is a function of the input space size rather than a function of the non-zero input elements. In this paper, we propose an efficient splitting algorithm to leverage input sparsity within decision tree methods. Our algorithm improves training time over sparse datasets by more than two orders of magnitude and it has been incorporated in the current version of scikit-learn.org, the most popular open source Python machine learning library.

Keywords: big data, sparsely representable data, tree-based models, scalable learning

Procedia PDF Downloads 263
565 Event Related Potentials in Terms of Visual and Auditory Stimuli

Authors: Seokbeen Lim, KyeongSeok Sim, DaKyeong Shin, Gilwon Yoon

Abstract:

Event-related potential (ERP) is one of the useful tools for investigating cognitive reactions. In this study, the potential of ERP components detected after auditory and visual stimuli was examined. Subjects were asked to respond upon stimuli that were of three categories; Target, Non-Target and Standard stimuli. The ERP after stimulus was measured. In the experiment of visual evoked potentials (VEPs), the subjects were asked to gaze at a center point on the monitor screen where the stimuli were provided by the reversal pattern of the checkerboard. In consequence of the VEP experiments, we observed consistent reactions. Each peak voltage could be measured when the ensemble average was applied. Visual stimuli had smaller amplitude and a longer latency compared to that of auditory stimuli. The amplitude was the highest with Target and the smallest with Standard in both stimuli.

Keywords: auditory stimulus, EEG, event related potential, oddball task, visual stimulus

Procedia PDF Downloads 283
564 Retail Strategy to Reduce Waste Keeping High Profit Utilizing Taylor's Law in Point-of-Sales Data

Authors: Gen Sakoda, Hideki Takayasu, Misako Takayasu

Abstract:

Waste reduction is a fundamental problem for sustainability. Methods for waste reduction with point-of-sales (POS) data are proposed, utilizing the knowledge of a recent econophysics study on a statistical property of POS data. Concretely, the non-stationary time series analysis method based on the Particle Filter is developed, which considers abnormal fluctuation scaling known as Taylor's law. This method is extended for handling incomplete sales data because of stock-outs by introducing maximum likelihood estimation for censored data. The way for optimal stock determination with pricing the cost of waste reduction is also proposed. This study focuses on the examination of the methods for large sales numbers where Taylor's law is obvious. Numerical analysis using aggregated POS data shows the effectiveness of the methods to reduce food waste maintaining a high profit for large sales numbers. Moreover, the way of pricing the cost of waste reduction reveals that a small profit loss realizes substantial waste reduction, especially in the case that the proportionality constant  of Taylor’s law is small. Specifically, around 1% profit loss realizes half disposal at =0.12, which is the actual  value of processed food items used in this research. The methods provide practical and effective solutions for waste reduction keeping a high profit, especially with large sales numbers.

Keywords: food waste reduction, particle filter, point-of-sales, sustainable development goals, Taylor's law, time series analysis

Procedia PDF Downloads 131
563 Precoding-Assisted Frequency Division Multiple Access Transmission Scheme: A Cyclic Prefixes- Available Modulation-Based Filter Bank Multi-Carrier Technique

Authors: Ying Wang, Jianhong Xiang, Yu Zhong

Abstract:

The offset Quadrature Amplitude Modulation-based Filter Bank Multi-Carrier (FBMC) system provides superior spectral properties over Orthogonal Frequency Division Multiplexing. However, seriously affected by imaginary interference, its performances are hampered in many areas. In this paper, we propose a Precoding-Assisted Frequency Division Multiple Access (PA-FDMA) modulation scheme. By spreading FBMC symbols into the frequency domain and transmitting them with a precoding matrix, the impact of imaginary interference can be eliminated. Specifically, we first generate the coding pre-solution matrix with a nonuniform Fast Fourier Transform and pick the best columns by introducing auxiliary factors. Secondly, according to the column indexes, we obtain the precoding matrix for one symbol and impose scaling factors to ensure that the power is approximately constant throughout the transmission time. Finally, we map the precoding matrix of one symbol to multiple symbols and transmit multiple data frames, thus achieving frequency-division multiple access. Additionally, observing the interference between adjacent frames, we mitigate them by adding frequency Cyclic Prefixes (CP) and evaluating them with a signal-to-interference ratio. Note that PA-FDMA can be considered a CP-available FBMC technique because the underlying strategy is FBMC. Simulation results show that the proposed scheme has better performance compared to Single Carrier Frequency Division Multiple Access (SC-FDMA), etc.

Keywords: PA-FDMA, SC-FDMA, FBMC, non-uniform fast fourier transform

Procedia PDF Downloads 64
562 Seed Quality Aspects of Nightshade (Solanum Nigrum) as Influenced by Gibberellins (GA3) on Seed

Authors: Muga Moses

Abstract:

Plant growth regulators are actively involved in the growth and yield of plants. However, limited information is available on the combined effect of gibberellic acid (GA3) on growth attributes and yield of African nightshade. This experiment will be designed to fill this gap by studying the performance of African nightshade under the application of hormones. Gibberellic acid is a plant growth hormone that promotes cell expansion and division. A greenhouse and laboratory experiment will be conducted at the University of Sussex biotechnology greenhouse and Agriculture laboratory using a growth chamber to study the effect of GA3 on the growth and development attributes of African nightshade. The experiment consists of three replications and 5 treatments and is laid out in a randomized complete block design consisting of various concentrations of GA3. 0ppm, 50ppm, 100ppm, 150ppm and 200ppm. local farmer seed was grown in plastic pots, 6 seeds then hardening off to remain with four plants per pot at the greenhouse to attain purity of germplasm, proper management until maturity of berries then harvesting and squeezing to get seeds, paper dry on the sun for 7 days. In a laboratory, place 5 Whatman filter paper on glass petri-dish subject to different concentrations of stock solution, count 50 certified and clean, healthy seeds, then arrange on the moist filter paper and mark respectively. Spray with the stock solution twice a day and protrusion of radicle termed as germination count and discard to increase the accuracy of precision. Data will be collected on the application of GA3 to compare synergistic effects on the growth, yield, and nutrient contents on African nightshade.

Keywords: African nightshade, growth, yield, shoot, gibberellins

Procedia PDF Downloads 88
561 Comparison of an Upflow Anaerobic Sludge Blanket and an Anaerobic Filter for Treating Wheat Straw Wash Water

Authors: Syazwani Idrus, Charles Banks, Sonia Heaven

Abstract:

The effect of osmotic stress was carried out to determine the ability for biogas production in two types of digesters; anaerobic sludge blanket and anaerobic filters in treating wheat straw washed water. Two anaerobic filters (AF1 and 2) and two UASB reactors (U1 and 2) with working volumes of 1.5 L were employed at mesophilic temperatures (37°C). Digesters AF1 and two were seeded with an inoculum which had previously been fed on with a synthetic wastewater includingSodium Chloride and Potassium Chloride. Digesters U1 and two were seeded with 1 kg wet weight of granular sludge which had previously been treating paper mill effluent. During the first 48 days, all digesters were successfully acclimated with synthetic wastewater (SW) to organic loading rate (OLR) of 6 g COD l^-1 day-1. Specific methane production (SMP) of 0.333 l CH4 g-1 COD). The feed was then changed to wash water from a washing operation to reduce the salt content of wheat straw (wheat straw wash water, WSW) at the same OLR. SMP fell sharply in all reactors to less than 0.1 l CH4 g^-1 COD, with the AF affected more than the UASB. The OLR was reduced to 2.5 g COD l^-1 day^-1 to allow adaptation to WSW, and both the UASB and the AF reactors achieved an SMP of 0.21 l CH4 g^-1 COD added at 82% of COD removal. This study also revealed the accumulation of potassium (K) inside the UASB granules to a concentration of 4.5 mg K g^-1 wet weight of granular sludge. The phenomenon of lower SMP and accumulation of K indicates the effect of osmotic stress when fed on WSW. This finding is consistent with the theory that methanogenic organisms operate a Potassium pump to maintain ionic equilibrium, and as this is an energy-driven process, it will, therefore, reduce the overall methane yield.

Keywords: wheat straw wash water, upflow anaerobic sludge blanket, anaerobic filter, specific methane production, osmotic stress

Procedia PDF Downloads 372
560 Classifying Students for E-Learning in Information Technology Course Using ANN

Authors: Sirilak Areerachakul, Nat Ployong, Supayothin Na Songkla

Abstract:

This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.

Keywords: artificial neural network, classification, students, e-learning

Procedia PDF Downloads 426
559 Determination of the Water Needs of Some Crops Irrigated with Treated Water from the Sidi Khouiled Wastewater Treatment Plant in Ouargla, Algeria

Authors: Dalila Oulhaci, Mehdi Benlarbi, Mohammed Zahaf

Abstract:

The irrigation method is fundamental for maintaining a wet bulb around the roots of the crop. This is the case with localized irrigation, where soil moisture can be maintained permanently around the root system between the two water content extremes. Also, one of the oldest methods used since Roman times throughout North Africa and the Near East is based on the frequent dumping of water into porous pottery vases buried in the ground. In this context, these two techniques have been combined by replacing the pottery vase with plastic bottles filled with sand that discharge water through their perforated walls into the surrounding soil. The first objective of this work is the theoretical determination using CLIMWAT and CROPWAT software of the irrigation doses of some crops (palm, wheat, and onion) and experimental by measuring the humidity of the soil before and after watering. The second objective is to determine the purifying power of the sand filter in the bottle. Based on the CROPWAT software results, the date palm needs 18.5 mm in the third decade of December, 57.2 mm in January, and 73.7 mm in February, whereas the doses received by experimentally determined by means of soil moisture before and after irrigation are 19.5 mm respectively, 79.66 mm and 95.66 mm. The onion needs 14.3 mm in the third decade of December of, 59.1 mm in January, and 80 mm in February, whereas the experimental dose received is 15.07 mm, respectively, 64.54 and 86.8 mm. The total requirements for the vegetative period are estimated at 1642.6 mm for date palms, 277.4 mm for wheat, and 193.5 mm for onions. The removal rate of the majority of pollutants from the bottle is 80%. This work covers, on the one hand, the context of water conservation, sustainable development, and protection of the environment, and on the other, the agricultural field.

Keywords: irrigation, sand, filter, humidity, bottle

Procedia PDF Downloads 66
558 The Part of Dido in Purcell’s Opera ‘Dido and Aeneas’: Problems of Performing Baroque Opera

Authors: Feng Ke

Abstract:

Henry Purcell's opera ‘Dido and Aeneas’ is still highly appreciated by music critics and occupies an important place in the repertoire of theaters around the world. Presented for the first time in 1689 by pupils of a boarding school in Chelsea, it turned out to be the only one of its kind not only in English but also in world opera music. Up-to-date data on the first productions of the opera are available in the Paxton article. The composer, for whom English masks served as examples of his first works in this genre, departed in ‘Dido’ from the so-called seven-opera with spoken dialogues and created a work that corresponded to his understanding of opera as ‘singing accompanied by an appropriate action’, ‘Dido and Aeneas’ differs from the Italian operas of that time in its chamber, stylistic rigor, it is full, on the one hand, of elegiac languor and subtle feelings, on the other – of genre ensemble and choral scenes saturated with lively energy.

Keywords: Henry Purcell, baroque opera, vocal part of the area, genuine virtuosity from the performer

Procedia PDF Downloads 54
557 Enhancing Air Quality: Investigating Filter Lifespan and Byproducts in Air Purification Solutions

Authors: Freja Rydahl Rasmussen, Naja Villadsen, Stig Koust

Abstract:

Air purifiers have become widely implemented in a wide range of settings, including households, schools, institutions, and hospitals, as they tackle the pressing issue of indoor air pollution. With their ability to enhance indoor air quality and create healthier environments, air purifiers are particularly vital when ventilation options are limited. These devices incorporate a diverse array of technologies, including HEPA filters, active carbon filters, UV-C light, photocatalytic oxidation, and ionizers, each designed to combat specific pollutants and improve air quality within enclosed spaces. However, the safety of air purifiers has not been investigated thoroughly, and many questions still arise when applying them. Certain air purification technologies, such as UV-C light or ionization, can unintentionally generate undesirable byproducts that can negatively affect indoor air quality and health. It is well-established that these technologies can inadvertently generate nanoparticles or convert common gaseous compounds into harmful ones, thus exacerbating air pollution. However, the formation of byproducts can vary across products, necessitating further investigation. There is a particular concern about the formation of the carcinogenic substance formaldehyde from common gases like acetone. Many air purifiers use mechanical filtration to remove particles, dust, and pollen from the air. Filters need to be replaced periodically for optimal efficiency, resulting in an additional cost for end-users. Currently, there are no guidelines for filter lifespan, and replacement recommendations solely rely on manufacturers. A market screening revealed that manufacturers' recommended lifespans vary greatly (from 1 month to 10 years), and there is a need for general recommendations to guide consumers. Activated carbon filters are used to adsorb various types of chemicals that can pose health risks or cause unwanted odors. These filters have a certain capacity before becoming saturated. If not replaced in a timely manner, the adsorbed substances are likely to be released from the filter through off-gassing or losing adsorption efficiency. The goal of this study is to investigate the lifespan of filters as well as investigate the potentially harmful effects of air purifiers. Understanding the lifespan of filters used in air purifiers and the potential formation of harmful byproducts is essential for ensuring their optimal performance, guiding consumers in their purchasing decisions, and establishing industry standards for safer and more effective air purification solutions. At this time, a selection of air purifiers has been chosen, and test methods have been established. In the following 3 months, the tests will be conducted, and the results will be ready for presentation later.

Keywords: air purifiers, activated carbon filters, byproducts, clean air, indoor air quality

Procedia PDF Downloads 72
556 Greywater Treatment Using Activated Biochar Produced from Agricultural Waste

Authors: Pascal Mwenge, Tumisang Seodigeng

Abstract:

The increase in urbanisation in South Africa has led to an increase in water demand and a decline in freshwater supply. Despite this, poor water usage is still a major challenge in South Africa, for instance, freshwater is still used for non-drinking applications. The freshwater shortage can be alleviated by using other sources of water for non-portable purposes such as greywater treated with activated biochar produced from agricultural waste. The success of activated biochar produced from agricultural waste to treat greywater can be both economically and environmentally beneficial. Greywater treated with activated biochar produced from agricultural waste is considered a cost-effective wastewater treatment.  This work was aimed at determining the ability of activated biochar to remove Total Suspended Solids (TSS), Ammonium (NH4-N), Nitrate (NO3-N), and Chemical Oxygen Demand (COD) from greywater. The experiments were carried out in 800 ml laboratory plastic cylinders used as filter columns. 2.5 cm layer of gravel was used at the bottom and top of the column to sandwich the activated biochar material. Activated biochar (200 g and 400 g) was loaded in a column and used as a filter medium for greywater. Samples were collected after a week and sent for analysis. Four types of greywater were treated: Kitchen, floor cleaning water, shower and laundry water. The findings showed: 95% removal of TSS, 76% of NO3-N and 63% of COD on kitchen greywater and 85% removal of NH4-N on bathroom greywater, as highest removal of efficiency of the studied pollutants. The results showed that activated biochar produced from agricultural waste reduces a certain amount of pollutants from greywater. The results also indicated the ability of activated biochar to treat greywater for onsite non-potable reuse purposes.

Keywords: activated biochar produced from agriculture waste, ammonium, NH₄-N, chemical oxygen demand, COD, greywater, nitrate, NO₃-N, total suspended solids, TSS

Procedia PDF Downloads 202
555 Effective Water Purification by Impregnated Carbon Nanotubes

Authors: Raviteja Chintala

Abstract:

Water shortage in many areas of the world have predominantly increased the demand for efficient methods involved in the production of drinking water, So purification of water invoking cost effective and efficient methods is a challenging field of research. In this regard, Reverse osmosis membrane desalination of both seawater and inland brackish water is currently being deployed in various locations around the world. In the present work an attempt is made to integrate these existing technologies with novel method, Wherein carbon nanotubes at the lab scale are prepared which further replace activated carbon tubes being used traditionally. This has proven to enhance the efficiency of the water filter, Effectively neutralising most of the organic impurities. Furthermore, This ensures the reduction in TDS. Carbon nanotubes have wide range in scope of applications such as composite reinforcements, Field emitters, Sensors, Energy storage and energy conversion devices and catalysts support phases, Because of their unusual mechanical, Electrical, Thermal and structural properties. In particular, The large specific surface area, as well as the high chemical and thermal stability, Makes carbon nanotube an attractive adsorbent in waste water treatment. Carbon nanotubes are effective in eliminating these harmful media from water as an adsorbent. In this work, Candle soot method has been incorporated for the preparation of carbon nanotubes and mixed with activated charcoal in different compositions. The effect of composition change is monitored by using TDS measuring meter. As the composition of Nano carbon increases, The TDS of the water gradually decreases. In order to enhance the life time for carbon filter, Nano tubes are provided with larger surface area.

Keywords: TDS (Total Dissolved Solids), carbon nanotubes, water, candle soot

Procedia PDF Downloads 338
554 Orchestra Course Outcomes in Terms of Values Education

Authors: Z. Kurtaslan, H. Hakan Okay, E. Can Dönmez, I. Kuçukdoğan

Abstract:

Music education aims to bring up individuals most appropriately and to advanced levels as a balanced whole physically, cognitively, affectively, and kinesthetically while making a major contribution to the physical and spiritual development of the individual. The most crucial aim of music education, an influential education medium per se, is to make music be loved; yet, among its educational aims are concepts such as affinity, friendship, goodness, philanthropy, responsibility, and respect all extremely crucial bringing up individuals as a balanced whole. One of the most essential assets of the music education is the training of making music together, solidifying musical knowledge and enabling the acquisition of cooperation. This habit requires internalization of values like responsibility, patience, cooperativeness, respect, self-control, friendship, and fairness. If musicians lack these values, the ensemble will become after some certain time a cacophony. In this qualitative research, the attitudes of music teacher candidates in orchestra/chamber music classes will be examined in terms of values.

Keywords: education, music, orchestra/chamber music, values

Procedia PDF Downloads 503
553 Calpoly Autonomous Transportation Experience: Software for Driverless Vehicle Operating on Campus

Authors: F. Tang, S. Boskovich, A. Raheja, Z. Aliyazicioglu, S. Bhandari, N. Tsuchiya

Abstract:

Calpoly Autonomous Transportation Experience (CATE) is a driverless vehicle that we are developing to provide safe, accessible, and efficient transportation of passengers throughout the Cal Poly Pomona campus for events such as orientation tours. Unlike the other self-driving vehicles that are usually developed to operate with other vehicles and reside only on the road networks, CATE will operate exclusively on walk-paths of the campus (potentially narrow passages) with pedestrians traveling from multiple locations. Safety becomes paramount as CATE operates within the same environment as pedestrians. As driverless vehicles assume greater roles in today’s transportation, this project will contribute to autonomous driving with pedestrian traffic in a highly dynamic environment. The CATE project requires significant interdisciplinary work. Researchers from mechanical engineering, electrical engineering and computer science are working together to attack the problem from different perspectives (hardware, software and system). In this abstract, we describe the software aspects of the project, with a focus on the requirements and the major components. CATE shall provide a GUI interface for the average user to interact with the car and access its available functionalities, such as selecting a destination from any origin on campus. We have developed an interface that provides an aerial view of the campus map, the current car location, routes, and the goal location. Users can interact with CATE through audio or manual inputs. CATE shall plan routes from the origin to the selected destination for the vehicle to travel. We will use an existing aerial map for the campus and convert it to a spatial graph configuration where the vertices represent the landmarks and edges represent paths that the car should follow with some designated behaviors (such as stay on the right side of the lane or follow an edge). Graph search algorithms such as A* will be implemented as the default path planning algorithm. D* Lite will be explored to efficiently recompute the path when there are any changes to the map. CATE shall avoid any static obstacles and walking pedestrians within some safe distance. Unlike traveling along traditional roadways, CATE’s route directly coexists with pedestrians. To ensure the safety of the pedestrians, we will use sensor fusion techniques that combine data from both lidar and stereo vision for obstacle avoidance while also allowing CATE to operate along its intended route. We will also build prediction models for pedestrian traffic patterns. CATE shall improve its location and work under a GPS-denied situation. CATE relies on its GPS to give its current location, which has a precision of a few meters. We have implemented an Unscented Kalman Filter (UKF) that allows the fusion of data from multiple sensors (such as GPS, IMU, odometry) in order to increase the confidence of localization. We also noticed that GPS signals can easily get degraded or blocked on campus due to high-rise buildings or trees. UKF can also help here to generate a better state estimate. In summary, CATE will provide on-campus transportation experience that coexists with dynamic pedestrian traffic. In future work, we will extend it to multi-vehicle scenarios.

Keywords: driverless vehicle, path planning, sensor fusion, state estimate

Procedia PDF Downloads 144
552 Analysis of Real Time Seismic Signal Dataset Using Machine Learning

Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.

Abstract:

Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.

Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection

Procedia PDF Downloads 124