Search results for: computational fluid dynamics (CFD) model
20019 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.Keywords: base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis
Procedia PDF Downloads 38520018 Evaluation of Suspended Particles Impact on Condensation in Expanding Flow with Aerodynamics Waves
Authors: Piotr Wisniewski, Sławomir Dykas
Abstract:
Condensation has a negative impact on turbomachinery efficiency in many energy processes.In technical applications, it is often impossible to dry the working fluid at the nozzle inlet. One of the most popular working fluid is atmospheric air that always contains water in form of steam, liquid, or ice crystals. Moreover, it always contains some amount of suspended particles which influence the phase change process. It is known that the phenomena of evaporation or condensation are connected with release or absorption of latent heat, what influence the fluid physical properties and might affect the machinery efficiency therefore, the phase transition has to be taken under account. This researchpresents an attempt to evaluate the impact of solid and liquid particles suspended in the air on the expansion of moist air in a low expansion rate, i.e., with expansion rate, P≈1000s⁻¹. The numerical study supported by analytical and experimental research is presented in this work. The experimental study was carried out using an in-house experimental test rig, where nozzle was examined for different inlet air relative humidity values included in the range of 25 to 51%. The nozzle was tested for a supersonic flow as well as for flow with shock waves induced by elevated back pressure. The Schlieren photography technique and measurement of static pressure on the nozzle wall were used for qualitative identification of both condensation and shock waves. A numerical model validated against experimental data available in the literature was used for analysis of occurring flow phenomena. The analysis of the suspended particles number, diameter, and character (solid or liquid) revealed their connection with heterogeneous condensation importance. If the expansion of fluid without suspended particlesis considered, the condensation triggers so called condensation wave that appears downstream the nozzle throat. If the solid particles are considered, with increasing number of them, the condensation triggers upwind the nozzle throat, decreasing the condensation wave strength. Due to the release of latent heat during condensation, the fluid temperature and pressure increase, leading to the shift of normal shock upstream the flow. Owing relatively large diameters of the droplets created during heterogeneous condensation, they evaporate partially on the shock and continues to evaporate downstream the nozzle. If the liquid water particles are considered, due to their larger radius, their do not affect the expanding flow significantly, however might be in major importance while considering the compression phenomena as they will tend to evaporate on the shock wave. This research proves the need of further study of phase change phenomena in supersonic flow especially considering the interaction of droplets with the aerodynamic waves in the flow.Keywords: aerodynamics, computational fluid dynamics, condensation, moist air, multi-phase flows
Procedia PDF Downloads 11920017 Multiscale Computational Approach to Enhance the Understanding, Design and Development of CO₂ Catalytic Conversion Technologies
Authors: Agnieszka S. Dzielendziak, Lindsay-Marie Armstrong, Matthew E. Potter, Robert Raja, Pier J. A. Sazio
Abstract:
Reducing carbon dioxide, CO₂, is one of the greatest global challenges. Conversion of CO₂ for utilisation across synthetic fuel, pharmaceutical, and agrochemical industries offers a promising option, yet requires significant research to understanding the complex multiscale processes involved. To experimentally understand and optimize such processes at that catalytic sites and exploring the impact of the process at reactor scale, is too expensive. Computational methods offer significant insight and flexibility but require a more detailed multi-scale approach which is a significant challenge in itself. This work introduces a computational approach which incorporates detailed catalytic models, taken from experimental investigations, into a larger-scale computational flow dynamics framework. The reactor-scale species transport approach is modified near the catalytic walls to determine the influence of catalytic clustering regions. This coupling approach enables more accurate modelling of velocity, pressures, temperatures, species concentrations and near-wall surface characteristics which will ultimately enable the impact of overall reactor design on chemical conversion performance.Keywords: catalysis, CCU, CO₂, multi-scale model
Procedia PDF Downloads 25320016 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids
Authors: M. Wasy Akhtar
Abstract:
Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.Keywords: boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change
Procedia PDF Downloads 24620015 Advanced Analysis on Dissemination of Pollutant Caused by Flaring System Effect Using Computational Fluid Dynamics (CFD) Fluent Model with WRF Model Input in Transition Season
Authors: Benedictus Asriparusa
Abstract:
In the area of the oil industry, there is accompanied by associated natural gas. The thing shows that a large amount of energy is being wasted mostly in the developing countries by contributing to the global warming process. This research represents an overview of methods in Minas area employed by these researchers in PT. Chevron Pacific Indonesia to determine ways of measuring and reducing gas flaring and its emission drastically. It provides an approximation includes analytical studies, numerical studies, modeling, computer simulations, etc. Flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process will release emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the air and environment around the industrial area. Therefore, we need a simulation to create the pattern of the dissemination of pollutant. This research paper has being made to see trends in gas flaring model and current developments to predict dominant variable which gives impact to dissemination of pollutant. Fluent models used to simulate the distribution of pollutant gas coming out of the stack. While WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. This study condition focused on transition season in 2012 at Minas area. The goal of the simulation is looking for the exact time which is most influence towards dissemination of pollutants. The most influence factor divided into two main subjects. It is the quickest wind and the slowest wind. According to the simulation results, it can be seen that quickest wind moves to horizontal way and slowest wind moves to vertical way.Keywords: flaring system, fluent model, dissemination of pollutant, transition season
Procedia PDF Downloads 38220014 Robust ResNets for Chemically Reacting Flows
Authors: Randy Price, Harbir Antil, Rainald Löhner, Fumiya Togashi
Abstract:
Chemically reacting flows are common in engineering applications such as hypersonic flow, combustion, explosions, manufacturing process, and environmental assessments. The number of reactions in combustion simulations can exceed 100, making a large number of flow and combustion problems beyond the capabilities of current supercomputers. Motivated by this, deep neural networks (DNNs) will be introduced with the goal of eventually replacing the existing chemistry software packages with DNNs. The DNNs used in this paper are motivated by the Residual Neural Network (ResNet) architecture. In the continuum limit, ResNets become an optimization problem constrained by an ODE. Such a feature allows the use of ODE control techniques to enhance the DNNs. In this work, DNNs are constructed, which update the species un at the nᵗʰ timestep to uⁿ⁺¹ at the n+1ᵗʰ timestep. Parallel DNNs are trained for each species, taking in uⁿ as input and outputting one component of uⁿ⁺¹. These DNNs are applied to multiple species and reactions common in chemically reacting flows such as H₂-O₂ reactions. Experimental results show that the DNNs are able to accurately replicate the dynamics in various situations and in the presence of errors.Keywords: chemical reacting flows, computational fluid dynamics, ODEs, residual neural networks, ResNets
Procedia PDF Downloads 12120013 Experimental and Computational Fluid Dynamic Modeling of a Progressing Cavity Pump Handling Newtonian Fluids
Authors: Deisy Becerra, Edwar Perez, Nicolas Rios, Miguel Asuaje
Abstract:
Progressing Cavity Pump (PCP) is a type of positive displacement pump that is being awarded greater importance as capable artificial lift equipment in the heavy oil field. The most commonly PCP used is driven single lobe pump that consists of a single external helical rotor turning eccentrically inside a double internal helical stator. This type of pump was analyzed by the experimental and Computational Fluid Dynamic (CFD) approach from the DCAB031 model located in a closed-loop arrangement. Experimental measurements were taken to determine the pressure rise and flow rate with a flow control valve installed at the outlet of the pump. The flowrate handled was measured by a FLOMEC-OM025 oval gear flowmeter. For each flowrate considered, the pump’s rotational speed and power input were controlled using an Invertek Optidrive E3 frequency driver. Once a steady-state operation was attained, pressure rise measurements were taken with a Sper Scientific wide range digital pressure meter. In this study, water and three Newtonian oils of different viscosities were tested at different rotational speeds. The CFD model implementation was developed on Star- CCM+ using an Overset Mesh that includes the relative motion between rotor and stator, which is one of the main contributions of the present work. The simulations are capable of providing detailed information about the pressure and velocity fields inside the device in laminar and unsteady regimens. The simulations have a good agreement with the experimental data due to Mean Squared Error (MSE) in under 21%, and the Grid Convergence Index (GCI) was calculated for the validation of the mesh, obtaining a value of 2.5%. In this case, three different rotational speeds were evaluated (200, 300, 400 rpm), and it is possible to show a directly proportional relationship between the rotational speed of the rotor and the flow rate calculated. The maximum production rates for the different speeds for water were 3.8 GPM, 4.3 GPM, and 6.1 GPM; also, for the oil tested were 1.8 GPM, 2.5 GPM, 3.8 GPM, respectively. Likewise, an inversely proportional relationship between the viscosity of the fluid and pump performance was observed, since the viscous oils showed the lowest pressure increase and the lowest volumetric flow pumped, with a degradation around of 30% of the pressure rise, between performance curves. Finally, the Productivity Index (PI) remained approximately constant for the different speeds evaluated; however, between fluids exist a diminution due to the viscosity.Keywords: computational fluid dynamic, CFD, Newtonian fluids, overset mesh, PCP pressure rise
Procedia PDF Downloads 12820012 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor
Authors: D. Ramajo, S. Corzo, M. Nigro
Abstract:
A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.Keywords: PHWR, CFD, thermo-hydraulic, two-phase flow
Procedia PDF Downloads 46920011 Dynamics of a Reaction-Diffusion Problems Modeling Two Predators Competing for a Prey
Authors: Owolabi Kolade Matthew
Abstract:
In this work, we investigate both the analytical and numerical studies of the dynamical model comprising of three species system. We analyze the linear stability of stationary solutions in the one-dimensional multi-system modeling the interactions of two predators and one prey species. The stability analysis has a lot of implications for understanding the various spatiotemporal and chaotic behaviors of the species in the spatial domain. The analysis results presented have established the possibility of the three interacting species to coexist harmoniously, this feat is achieved by combining the local and global analyzes to determine the global dynamics of the system. In the presence of diffusion, a viable exponential time differencing method is applied to multi-species nonlinear time-dependent partial differential equation to address the points and queries that may naturally arise. The scheme is described in detail, and justified by a number of computational experiments.Keywords: asymptotically stable, coexistence, exponential time differencing method, global and local stability, predator-prey model, nonlinear, reaction-diffusion system
Procedia PDF Downloads 41320010 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing
Authors: Fazl Ullah, Rahmat Ullah
Abstract:
This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.Keywords: fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation
Procedia PDF Downloads 7320009 Computational Study of Flow and Heat Transfer Characteristics of an Incompressible Fluid in a Channel Using Lattice Boltzmann Method
Authors: Imdat Taymaz, Erman Aslan, Kemal Cakir
Abstract:
The Lattice Boltzmann Method (LBM) is performed to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a 2D channel with a built-in triangular prism. Both momentum and energy transport is modelled by the LBM. A uniform lattice structure with a single time relaxation rule is used. Interpolation methods are applied for obtaining a higher flexibility on the computational grid, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is researched on for different Reynolds number, while Prandtl number is keeping constant as a 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an evaluation of the accuracy of the developed LBM code, the results are compared with those obtained by a commercial CFD code. It is observed that the present LBM code produces results that have similar accuracy with the well-established CFD code, as an additionally, LBM needs much smaller CPU time for the prediction of the unsteady phonema.Keywords: laminar forced convection, lbm, triangular prism
Procedia PDF Downloads 37620008 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model
Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi
Abstract:
Laminar mixed convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviours of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.Keywords: buoyancy force, laminar mixed convection, mixture model, nano-fluid, two-phase
Procedia PDF Downloads 47120007 Airflow Characteristics and Thermal Comfort of Air Diffusers: A Case Study
Authors: Tolga Arda Eraslan
Abstract:
The quality of the indoor environment is significant to occupants’ health, comfort, and productivity, as Covid-19 spread throughout the world, people started spending most of their time indoors. Since buildings are getting bigger, mechanical ventilation systems are widely used where natural ventilation is insufficient. Four primary tasks of a ventilation system have been identified indoor air quality, comfort, contamination control, and energy performance. To fulfill such requirements, air diffusers, which are a part of the ventilation system, have begun to enter our lives in different airflow distribution systems. Detailed observations are needed to assure that such devices provide high levels of comfort effectiveness and energy efficiency. This study addresses these needs. The objective of this article is to observe air characterizations of different air diffusers at different angles and their effect on people by the thermal comfort model in CFD simulation and to validate the outputs with the help of data results based on a simulated office room. Office room created to provide validation; Equipped with many thermal sensors, including head height, tabletop, and foot level. In addition, CFD simulations were carried out by measuring the temperature and velocity of the air coming out of the supply diffuser. The results considering the flow interaction between diffusers and surroundings showed good visual illustration.Keywords: computational fluid dynamics, fanger’s model, predicted mean vote, thermal comfort
Procedia PDF Downloads 11920006 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions
Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang
Abstract:
Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.Keywords: computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity
Procedia PDF Downloads 14020005 Numerical Analysis of Various V- rib Cross-section to Optimize Thermal Performance of the Rocket Engine
Authors: Hisham Elmouazen, Xiaobing Zhang
Abstract:
In regenerative-cooled rocket engines, understanding the coolant behaviour within cooling channels is essential to enhance engine performance and maintain chamber walls at low temperatures. However, modelling and testing the rocket engine's cooling channels is challenging due to the high temperature of the chamber walls, supercritical flow, and high Reynolds number. Therefore, a numerical analysis of five different V-rib cross-sections to optimize rocket engine cooling channels' performance is developed and validated in this work. Three-dimensional CFD simulations are employed by the Shear Stress Transport (k- ω) turbulent model at Reynolds number 42,500. The study findings illustrate that the V-ribbed channel performance is optimized by 59.5% relative to the plain/flat channel. Additionally, the chamber wall temperature is decreased to 726.4 K, and the right-angle trapezoidal V-rib (Case 4) improves thermal augmentation up to 74.3 % with a slightly high friction factor.Keywords: computational fluid dynamics CFD, regenerative-cooled system, thermal performance, V-rib cross-sections
Procedia PDF Downloads 7520004 A Simple Fluid Dynamic Model for Slippery Pulse Pattern in Traditional Chinese Pulse Diagnosis
Authors: Yifang Gong
Abstract:
Pulse diagnosis is one of the most important diagnosis methods in traditional Chinese medicine. It is also the trickiest method to learn. It is known as that it can only to be sensed not explained. This becomes a serious threat to the survival of this diagnostic method. However, there are a large amount of experiences accumulated during the several thousand years of practice of Chinese doctors. A pulse pattern called 'Slippery pulse' is one of the indications of pregnancy. A simple fluid dynamic model is proposed to simulate the effects of the existence of a placenta. The placenta is modeled as an extra plenum in an extremely simplified fluid network model. It is found that because of the existence of the extra plenum, indeed the pulse pattern shows a secondary peak in one pulse period. As for the author’s knowledge, this work is the first time to show the link between Pulse diagnoses and basic physical principle. Key parameters which might affect the pattern are also investigated.Keywords: Chinese medicine, flow network, pregnancy, pulse
Procedia PDF Downloads 38620003 Spatio-Temporal Properties of p53 States Raised by Glucose
Authors: Md. Jahoor Alam
Abstract:
Recent studies suggest that Glucose controls several lifesaving pathways. Glucose molecule is reported to be responsible for the production of ROS (reactive oxygen species). In the present work, a p53-MDM2-Glucose model is developed in order to study spatiotemporal properties of the p53 pathway. The systematic model is mathematically described. The model is numerically simulated using high computational facility. It is observed that the variation in glucose concentration level triggers the system at different states, namely, oscillation death (stabilized), sustain and damped oscillations which correspond to various cellular states. The transition of these states induced by glucose is phase transition-like behaviour. Further, the amplitude of p53 dynamics with the variation of glucose concentration level follows power law behaviour, As(k) ~ kϒ, where, ϒ is a constant. Further Stochastic approach is needed for understanding of realistic behaviour of the model. The present model predicts the variation of p53 states under the influence of glucose molecule which is also supported by experimental facts reported by various research articles.Keywords: oscillation, temporal behavior, p53, glucose
Procedia PDF Downloads 30420002 Thermal Comfort Investigation Based on Predicted Mean Vote (PMV) Index Using Computation Fluid Dynamic (CFD) Simulation: Case Study of University of Brawijaya, Malang-Indonesia
Authors: Dewi Hardiningtyas Sugiono
Abstract:
Concerning towards the quality of air comfort and safety to pedestrians in the University area should be increased as Indonesia economics booming. Hence, the University management needs guidelines of thermal comfort to innovate a new layout building. The objectives of this study is to investigate and then to evaluate the distribution of thermal comfort which is indicated by predicted mean vote (PMV) index at the University of Brawijaya (UB), Malang. The PMV figures are used to evaluate and to redesign the UB layout. The research is started with study literature and early survey to collect all information of building layout and building shape at the University of Brawijaya. The information is used to create a 3D model in CAD software. The model is simulated by Computational Fluid Dynamic (CFD) software to measure the PMV factors of air temperature, relative humidity and air speed in some locations. Validation is done by comparing between PMV value from observation and PMV value from simulation. The resuls of the research shows the most sensitive of microclimatic factors is air temperature surrounding the UB building. Finally, the research is successfully figure out the UB layout and provides further actions to increase the thermal comfort.Keywords: thermal comfort, heat index (HI), CFD, layout
Procedia PDF Downloads 30520001 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation
Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda
Abstract:
A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation
Procedia PDF Downloads 43220000 Computational Model of Human Cardiopulmonary System
Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek
Abstract:
The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine
Procedia PDF Downloads 18319999 3D Numerical Study of Tsunami Loading and Inundation in a Model Urban Area
Authors: A. Bahmanpour, I. Eames, C. Klettner, A. Dimakopoulos
Abstract:
We develop a new set of diagnostic tools to analyze inundation into a model district using three-dimensional CFD simulations, with a view to generating a database against which to test simpler models. A three-dimensional model of Oregon city with different-sized groups of building next to the coastline is used to run calculations of the movement of a long period wave on the shore. The initial and boundary conditions of the off-shore water are set using a nonlinear inverse method based on Eulerian spatial information matching experimental Eulerian time series measurements of water height. The water movement is followed in time, and this enables the pressure distribution on every surface of each building to be followed in a temporal manner. The three-dimensional numerical data set is validated against published experimental work. In the first instance, we use the dataset as a basis to understand the success of reduced models - including 2D shallow water model and reduced 1D models - to predict water heights, flow velocity and forces. This is because models based on the shallow water equations are known to underestimate drag forces after the initial surge of water. The second component is to identify critical flow features, such as hydraulic jumps and choked states, which are flow regions where dissipation occurs and drag forces are large. Finally, we describe how future tsunami inundation models should be modified to account for the complex effects of buildings through drag and blocking.Financial support from UCL and HR Wallingford is greatly appreciated. The authors would like to thank Professor Daniel Cox and Dr. Hyoungsu Park for providing the data on the Seaside Oregon experiment.Keywords: computational fluid dynamics, extreme events, loading, tsunami
Procedia PDF Downloads 11619998 Numerical Simulation of Flow and Particle Motion in Liquid – Solid Hydrocyclone
Authors: Seyed Roozbeh Pishva, Alireza Aboudi Asl
Abstract:
In this investigation a hydrocyclone by using for separation particles from fluid in oil and gas, mining and other industries is simulated. Case study is cone – cylindrical and solid - liquid hydrocyclone. The fluid is water and the solid is a type of silis having diameters of 53, 75, 106, 150, 212, 250, and 300 micron. In this investigation CFD method used for analysis flow and movement of particles in hydrocyclone. In this modeling flow is three-dimention, turbulence and RSM model have been used for solving. Particles are three dimensional, spherical and non rotating and for tracking them Lagrangian model is used. The results of this study in addition to analyzing flowfield, obtaining efficiency of hydrocyclone in 5, 7, 12, and 15 percent concentrations and compare them with experimental result that both of them had suitable agreement with each other.Keywords: hydrocyclone, RSM Model, CFD, copper industry
Procedia PDF Downloads 57419997 Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing
Authors: Mehdi Behbahani, Sebastian Rible, Charles Moulinec, Yvan Fournier, Mike Nicolai, Paolo Crosetto
Abstract:
Computational Fluid Dynamics blood-flow simulations are increasingly used to develop and validate blood-contacting medical devices. This study shows that numerical simulations can provide additional and accurate estimates of relevant hemodynamic indicators (e.g., recirculation zones or wall shear stresses), which may be difficult and expensive to obtain from in-vivo or in-vitro experiments. The most recent FDA (Food and Drug Administration) benchmark consisted of a simplified centrifugal blood pump model that contains fluid flow features as they are commonly found in these devices with a clear focus on highly turbulent phenomena. The FDA centrifugal blood pump study is composed of six test cases with different volumetric flow rates ranging from 2.5 to 7.0 liters per minute, pump speeds, and Reynolds numbers ranging from 210,000 to 293,000. Within the frame of this study different turbulence models were tested including RANS models, e.g. k-omega, k-epsilon and a Reynolds Stress Model (RSM) and, LES. The partitioners Hilbert, METIS, ParMETIS and SCOTCH were used to create an unstructured mesh of 76 million elements and compared in their efficiency. Computations were performed on the JUQUEEN BG/Q architecture applying the highly parallel flow solver Code SATURNE and typically using 32768 or more processors in parallel. Visualisations were performed by means of PARAVIEW. Different turbulence models including all six flow situations could be successfully analysed and validated against analytical considerations and from comparison to other data-bases. It showed that an RSM represents an appropriate choice with respect to modeling high-Reynolds number flow cases. Especially, the Rij-SSG (Speziale, Sarkar, Gatzki) variant turned out to be a good approach. Visualisation of complex flow features could be obtained and the flow situation inside the pump could be characterized.Keywords: blood flow, centrifugal blood pump, high performance computing, scalability, turbulence
Procedia PDF Downloads 38219996 Interaction between Unsteady Supersonic Jet and Vortex Rings
Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya
Abstract:
The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.Keywords: computational fluid dynamics, shock-wave, unsteady jet, vortex ring
Procedia PDF Downloads 47119995 Diffusion Dynamics of Leech-Heart Inter-Neuron Model
Authors: Arnab Mondal, Sanjeev Kumar Sharma, Ranjit Kumar Upadhyay
Abstract:
We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network.Keywords: bifurcation, pattern formation, spatio-temporal dynamics, stability analysis
Procedia PDF Downloads 22519994 Long Term Love Relationships Analyzed as a Dynamic System with Random Variations
Authors: Nini Johana Marín Rodríguez, William Fernando Oquendo Patino
Abstract:
In this work, we model a coupled system where we explore the effects of steady and random behavior on a linear system like an extension of the classic Strogatz model. This is exemplified by modeling a couple love dynamics as a linear system of two coupled differential equations and studying its stability for four types of lovers chosen as CC='Cautious- Cautious', OO='Only other feelings', OP='Opposites' and RR='Romeo the Robot'. We explore the effects of, first, introducing saturation, and second, adding a random variation to one of the CC-type lover, which will shape his character by trying to model how its variability influences the dynamics between love and hate in couple in a long run relationship. This work could also be useful to model other kind of systems where interactions can be modeled as linear systems with external or internal random influence. We found the final results are not easy to predict and a strong dependence on initial conditions appear, which a signature of chaos.Keywords: differential equations, dynamical systems, linear system, love dynamics
Procedia PDF Downloads 35419993 Two-Dimensional Analysis and Numerical Simulation of the Navier-Stokes Equations for Principles of Turbulence around Isothermal Bodies Immersed in Incompressible Newtonian Fluids
Authors: Romulo D. C. Santos, Silvio M. A. Gama, Ramiro G. R. Camacho
Abstract:
In this present paper, the thermos-fluid dynamics considering the mixed convection (natural and forced convections) and the principles of turbulence flow around complex geometries have been studied. In these applications, it was necessary to analyze the influence between the flow field and the heated immersed body with constant temperature on its surface. This paper presents a study about the Newtonian incompressible two-dimensional fluid around isothermal geometry using the immersed boundary method (IBM) with the virtual physical model (VPM). The numerical code proposed for all simulations satisfy the calculation of temperature considering Dirichlet boundary conditions. Important dimensionless numbers such as Strouhal number is calculated using the Fast Fourier Transform (FFT), Nusselt number, drag and lift coefficients, velocity and pressure. Streamlines and isothermal lines are presented for each simulation showing the flow dynamics and patterns. The Navier-Stokes and energy equations for mixed convection were discretized using the finite difference method for space and a second order Adams-Bashforth and Runge-Kuta 4th order methods for time considering the fractional step method to couple the calculation of pressure, velocity, and temperature. This work used for simulation of turbulence, the Smagorinsky, and Spalart-Allmaras models. The first model is based on the local equilibrium hypothesis for small scales and hypothesis of Boussinesq, such that the energy is injected into spectrum of the turbulence, being equal to the energy dissipated by the convective effects. The Spalart-Allmaras model, use only one transport equation for turbulent viscosity. The results were compared with numerical data, validating the effect of heat-transfer together with turbulence models. The IBM/VPM is a powerful tool to simulate flow around complex geometries. The results showed a good numerical convergence in relation the references adopted.Keywords: immersed boundary method, mixed convection, turbulence methods, virtual physical model
Procedia PDF Downloads 11719992 Fluid Flow in Roughened Square Tube for Internal Blade Cooling
Authors: M. H. Alhajeri, Hamad M. Alhajeri, A. H. Alenezi, Abdulrahman Almutairi, Ayedh Alajmi
Abstract:
A computational investigation has been undertaken to study fluid flow through roughened tube with turbulators. Such flows are of particular interest in cooling internally high pressure turbine blades. Turbulators are fixed in each side of the passage (tube) to promote turbulence and enhance heat transfer. The tube had an aspect ratio of 1 and the position of the ribs closest to the bend are at 0.45d from the entrance and exit of the bend. The aim of this study is to examine the tube roughened by turbulator by studying some flow parameters upstream and downstream of the turbulator. It is cleared that the eddies sizes are decreased downstream in the first two turbulators and increased after the turbulators increases the turbulence in the tube and enhanced the heat transfer in the blade.Keywords: fluid flow, turbulator, computation, blade
Procedia PDF Downloads 42719991 Characterization of the Dispersion Phenomenon in an Optical Biosensor
Authors: An-Shik Yang, Chin-Ting Kuo, Yung-Chun Yang, Wen-Hsin Hsieh, Chiang-Ho Cheng
Abstract:
Optical biosensors have become a powerful detection and analysis tool for wide-ranging applications in biomedical research, pharmaceuticals and environmental monitoring. This study carried out the computational fluid dynamics (CFD)-based simulations to explore the dispersion phenomenon in the microchannel of a optical biosensor. The predicted time sequences of concentration contours were utilized to better understand the dispersion development occurred in different geometric shapes of microchannels. The simulation results showed the surface concentrations at the sensing probe (with the best performance of a grating coupler) in respect of time to appraise the dispersion effect and therefore identify the design configurations resulting in minimum dispersion.Keywords: CFD simulations, dispersion, microfluidic, optical waveguide sensors
Procedia PDF Downloads 54519990 Simulation of a Three-Link, Six-Muscle Musculoskeletal Arm Activated by Hill Muscle Model
Authors: Nafiseh Ebrahimi, Amir Jafari
Abstract:
The study of humanoid character is of great interest to researchers in the field of robotics and biomechanics. One might want to know the forces and torques required to move a limb from an initial position to the desired destination position. Inverse dynamics is a helpful method to compute the force and torques for an articulated body limb. It enables us to know the joint torques required to rotate a link between two positions. Our goal in this study was to control a human-like articulated manipulator for a specific task of path tracking. For this purpose, the human arm was modeled with a three-link planar manipulator activated by Hill muscle model. Applying a proportional controller, values of force and torques applied to the joints were calculated by inverse dynamics, and then joints and muscle forces trajectories were computed and presented. To be more accurate to say, the kinematics of the muscle-joint space was formulated by which we defined the relationship between the muscle lengths and the geometry of the links and joints. Secondary, the kinematic of the links was introduced to calculate the position of the end-effector in terms of geometry. Then, we considered the modeling of Hill muscle dynamics, and after calculation of joint torques, finally, we applied them to the dynamics of the three-link manipulator obtained from the inverse dynamics to calculate the joint states, find and control the location of manipulator’s end-effector. The results show that the human arm model was successfully controlled to take the designated path of an ellipse precisely.Keywords: arm manipulator, hill muscle model, six-muscle model, three-link lodel
Procedia PDF Downloads 142