Search results for: TD-DFT calculations
500 The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider
Authors: Ilkay Turk Cakir, Murat Altinli, Zekeriya Uysal, Abdulkadir Senol, Olcay Bolukbasi Yalcinkaya, Ali Yilmaz
Abstract:
The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson’s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous Hγγ, HγZ and HZZ couplings in e− p → e− q H process are obtained. Detector simulations are also taken into account in the calculations.Keywords: anomalos couplings, FCC-eh, Higgs, Z boson
Procedia PDF Downloads 210499 Hydrogen Storage in Salt Caverns: Rock Mechanical Design
Authors: Dirk Zapf, Bastian Leuger
Abstract:
For several years, natural gas and crude oil have been stored in salt caverns in Germany and also worldwide. The dimensioning concepts have been continuously developed from a rock mechanics point of view. In addition to the possibilities of realizing large numerical calculation models based on real survey data nowadays, especially the consideration of mechanical processes such as damage and healing played a role in the development of adequate material laws. In addition, thermodynamic aspects have had to be considered for some years in the operation of a gas storage cavern since temperature changes have a significant influence on the stress states in the vicinity of a storage cavern. The possibility of thermally induced fracturing processes is also investigated in the context of rock mechanics dimensioning. In recent years, the energy crisis and the finite nature of fossil fuel use have led to increased discussion of the use of salt caverns for hydrogen storage. In this paper, state of the art is presented, the current research work is described, and an outlook is given as to which questions still need to be answered from a rock mechanics point of view in connection with large-scale storage of hydrogen in salt caverns.Keywords: cavern design, hydrogen, rock salt, thermomechanical coupled calculations
Procedia PDF Downloads 120498 Mechanism of Charge Transport in the Interface of CsSnI₃-FASnI₃ Perovskite Based Solar Cell
Authors: Seyedeh Mozhgan Seyed-Talebi, Weng-Kent Chan, Hsin-Yi Tiffany Chen
Abstract:
Lead-free perovskite photovoltaic (PV) technology employing non-toxic tin halide perovskite absorbers is pivotal for advancing perovskite solar cell (PSC) commercialization. Despite challenges posed by perovskite sensitivity to oxygen and humidity, our study utilizes DFT calculations using VASP and NanoDCAL software and SCAPS-1D simulations to elucidate the charge transport mechanism at the interface of CsSnI₃-FASnI₃ heterojunction. Results reveal how inherent electric fields facilitate efficient carrier transport, reducing recombination losses. We predict optimized power conversion efficiencies (PCEs) and highlight the potential of CsSnI3-FASnI3 heterojunctions for cost-effective and efficient charge transport layer-free (CTLF) photovoltaic devices. Our study provides insights into the future direction of recognizing more efficient, nontoxic heterojunction perovskite devices.Keywords: charge transport layer free, CsSnI₃-FASnI₃ heterojunction, lead-free perovskite solar cell, tin halide perovskite., Charge transport layer free
Procedia PDF Downloads 45497 Survey of Corrosion and Scaling of Urban Drinking Water Supply Reservoirs (Case Study: Ilam City)
Authors: Ehsan Derikvand, Hamid Kaykha, Rooholah Mansoori Yekta, Taleb Javanmard, Mohsen Mehdi Zadeh
Abstract:
Corrosion and scaling are one of the most complicated and costly problems of drinking water supply. Corrosion has adverse effect on general health and public acceptance of water source and drinking water supply costs. The present study aimed to determine the potentials of corrosion and scaling of potable water supply reservoirs of Ilam city in June 2013 and August 2014 by Langelier Index (LI) and Reynar. The results of experiments and calculations show that the mean index of LSI in the first and second sampling stages is 0.34, 0.2, respectively and the mean index RSI in the first and second stages of sampling is 7.15 and 7.22, respectively. Based on LSI index of reservoirs water in the first phase, none of stations are corrosive and only one station in the second sampling phase has corrosive tendency. According to RSI index, there is no corrosive tendency in two phases. Based on the results, the water of drinking water reservoirs in Ilam city has no corrosion tendency and the analyses and results of Langelier Index (LI) and Ryznar are in relatively good condition.Keywords: corrosion, scaling, water reservoirs, langelier and ryznar indices, Ilam city
Procedia PDF Downloads 409496 Thermal Neutron Detection Efficiency as a Function of Film Thickness for Front and Back Irradiation Detector Devices Coated with ¹⁰B, ⁶LiF, and Pure Li Thin Films
Authors: Vedant Subhash
Abstract:
This paper discusses the physics of the detection of thermal neutrons using thin-film coated semiconductor detectors. The thermal neutron detection efficiency as a function of film thickness is calculated for the front and back irradiation detector devices coated with ¹⁰B, ⁶LiF, and pure Li thin films. The detection efficiency for back irradiation devices is 4.15% that is slightly higher than that for front irradiation detectors, 4.0% for ¹⁰B films of thickness 2.4μm. The theoretically calculated thermal neutron detection efficiency using ¹⁰B film thickness of 1.1 μm for the back irradiation device is 3.0367%, which has an offset of 0.0367% from the experimental value of 3.0%. The detection efficiency values are compared and proved consistent with the given calculations.Keywords: detection efficiency, neutron detection, semiconductor detectors, thermal neutrons
Procedia PDF Downloads 132495 Market Competition and the Adoption of Clean Technology: Evidence from the Taxi Industry
Authors: Raúl Bajo-Buenestado
Abstract:
This paper studies the impact of the intensity of market competition on firms' willingness to adopt green technologies —which has become particularly relevant in the light of the debate on whether competition policies should be relaxed to achieve certain environmental targets. We exploit the staggered rollout of different rail-hailing platforms (most notably, Uber) across different metropolitan areas in Spain as a natural experiment that provides time and city-specific exogenous variation in the intensity of competition to study the impact on taxi drivers' decisions to purchase “green” or “dirty” vehicles. It was shown that the entry of these platforms significantly increased the takeout of green vehicles among professional drivers in incumbent (dominant) conventional taxi companies and decreased that of dirty vehicles. The exact opposite effect is observed in the cities where these platforms were extremely unlikely to enter. Back of the envelope calculations suggest that the entry of Uber is associated with an extra green vehicle purchase in every four among taxi drivers, resulting in a substantial drop in the level of emissions from the taxi fleet —still mostly dominated diesel vehicles.Keywords: technological change, green technology adoption, market competition, diffusion of technology, environmental externalities
Procedia PDF Downloads 138494 Corrosion Inhibition of AA2024 Alloy with Graphene Oxide Derivative: Electrochemical and Surface Analysis
Authors: Nisrine Benzbiria, Abderrahmane Thoume, Mustapha Zertoubi
Abstract:
The goal of this research is to investigate the corrosion inhibition potential of functionalized graphene oxide (GO) with oxime derivative on AA2024-T3 surface in synthetic seawater. The utilization of functionalized graphene oxide is creating a category of corrosion inhibitors known as organically modified nanomaterials. In our work, the functionalization of GO by chalcone oxime enables graphene oxide to have enhanced water solubility and a good corrosion mitigation capacity. Fourier-transform infrared (FT-IR) spectroscopy was utilized to evaluate the main functional groups of the inhibitor. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves (PDP) showed that the inhibitor acts as a mixed-type inhibitor. The inhibitory efficiency (IE) improved as the concentration increased to a value of 96% after one hour of exposure to a medium containing 60 mg/L ppm of the inhibitor. According to thermodynamic calculations, the adsorption of the inhibitor on the AA2024-T3 surface in 3% NaCl followed the Langmuir isotherm. The formation of a barrier layer was further confirmed by surface analysis. The protective film prevented the alloy dissolution and limited the accessibility of attacking ions, as evinced by solution analysis techniques.Keywords: AA2024-T3, NaCl, electrochemical methods, FT-IR, SEM/AFM, DFT, MC simulation
Procedia PDF Downloads 60493 Iterative Solver for Solving Large-Scale Frictional Contact Problems
Authors: Thierno Diop, Michel Fortin, Jean Deteix
Abstract:
Since the precise formulation of the elastic part is irrelevant for the description of the algorithm, we shall consider a generic case. In practice, however, we will have to deal with a non linear material (for instance a Mooney-Rivlin model). We are interested in solving a finite element approximation of the problem, leading to large-scale non linear discrete problems and, after linearization, to large linear systems and ultimately to calculations needing iterative methods. This also implies that penalty method, and therefore augmented Lagrangian method, are to be banned because of their negative effect on the condition number of the underlying discrete systems and thus on the convergence of iterative methods. This is in rupture to the mainstream of methods for contact in which augmented Lagrangian is the principal tool. We shall first present the problem and its discretization; this will lead us to describe a general solution algorithm relying on a preconditioner for saddle-point problems which we shall describe in some detail as it is not entirely standard. We will propose an iterative approach for solving three-dimensional frictional contact problems between elastic bodies, including contact with a rigid body, contact between two or more bodies and also self-contact.Keywords: frictional contact, three-dimensional, large-scale, iterative method
Procedia PDF Downloads 210492 Probabilistic Modeling of Post-Liquefaction Ground Deformation
Authors: Javad Sadoghi Yazdi, Robb Eric S. Moss
Abstract:
This paper utilizes a probabilistic liquefaction triggering method for modeling post-liquefaction ground deformation. This cone penetration test CPT-based liquefaction triggering is employed to estimate the factor of safety against liquefaction (FSL) and compute the maximum cyclic shear strain (γmax). The study identifies a maximum PL value of 90% across various relative densities, which challenges the decrease from 90% to 70% as relative density decreases. It reveals that PL ranges from 5% to 50% for volumetric strain (εvol) less than 1%, while for εvol values between 1% and 3.2%, PL spans from 50% to 90%. The application of the CPT-based simplified liquefaction triggering procedures has been employed in previous researches to estimate liquefaction ground-failure indices, such as the Liquefaction Potential Index (LPI) and Liquefaction Severity Number (LSN). However, several studies have been conducted to highlight the variability in liquefaction probability calculations, suggesting a more accurate depiction of liquefaction likelihood. Consequently, the utilization of these simplified methods may not offer practical efficiency. This paper further investigates the efficacy of various established liquefaction vulnerability parameters, including LPI and LSN, in explaining the observed liquefaction-induced damage within residential zones of Christchurch, New Zealand using results from CPT database.Keywords: cone penetration test (CPT), liquefaction, postliquefaction, ground failure
Procedia PDF Downloads 71491 Effectiveness of the Resistance to Irradiance Test on Sunglasses Standards
Authors: Mauro Masili, Liliane Ventura
Abstract:
It is still controversial in the literature the ultraviolet (UV) radiation effects on the ocular media, but the World Health Organization has established safe limits on the exposure of eyes to UV radiation based on reports in literature. Sunglasses play an important role in providing safety, and their lenses should provide adequate UV filters. Regarding UV protection for ocular media, the resistance-to-irradiance test for sunglasses under many national standards requires irradiating lenses for 50 uninterrupted hours with a 450 W solar simulator. This artificial aging test may provide a corresponding evaluation of exposure to the sun. Calculating the direct and diffuse solar irradiance at a vertical surface and the corresponding radiant exposure for the entire year, we compare the latter with the 50-hour radiant exposure of a 450 W xenon arc lamp from a solar simulator required by national standards. Our calculations indicate that this stress test is ineffective in its present form. We provide evidence of the need to re-evaluate the parameters of the tests to establish appropriate safe limits against UV radiation. This work is potentially significant for scientists and legislators in the field of sunglasses standards to improve the requirements of sunglasses quality and safety.Keywords: ISO 12312-1, solar simulator, sunglasses standards, UV protection
Procedia PDF Downloads 197490 Synthesis, Characterization, Computational Study, Antimicrobial Evaluation, in Vivo Toxicity Study of Manganese (II) and Copper (II) Complexes with Derivative Sulfa-drug
Authors: Afaf Bouchoucha, Karima Si Larbi, Mohamed Amine Bourouaia, Salah.Boulanouar, Safia.Djabbar
Abstract:
The synthesis, characterization and comparative biological study of manganese (II) and copper (II) complexes with an heterocyclic ligand used in pharmaceutical field (Scheme 1), were reported. Two kinds of complexes were obtained with derivative sulfonamide, [M (L)₂ (H₂O)₂].H₂O and [M (L)₂ (Cl)₂]3H₂O. These complexes have been prepared and characterized by elemental analysis, FAB mass, ESR magnetic measurements, FTIR, UV-Visible spectra and conductivity. Their stability constants have been determined by potentiometric methods in a water-ethanol (90:10 v/v) mixture at a 0.2 mol l-1 ionic strength (NaCl) and at 25.0 ± 0.1 ºC using Sirko program. DFT calculations were done using B3LYP/6-31G(d) and B3LYP/LanL2DZ. The antimicrobial activity of ligand and complexes against the species Escherichia coli, P. aeruginosa, Klebsiella pneumoniae, S. aureus, Bacillus subtilisan, Candida albicans, Candida tropicalis, Saccharomyces, Aspergillus fumigatus and Aspergillus terreus has been carried out and compared using agar-diffusion method. Also, the toxicity study was evaluated on synchesis complexes using Mice of NMRI strain.Keywords: hetterocyclic ligand, complex, stability constant, antimicrobial activity, DFT, acute and genotoxicity study
Procedia PDF Downloads 118489 Optimization of Oxygen Plant Parameters Simulating with MATLAB
Authors: B. J. Sonani, J. K. Ratnadhariya, Srinivas Palanki
Abstract:
Cryogenic engineering is the fast growing branch of the modern technology. There are various applications of the cryogenic engineering such as liquefaction in gas industries, metal industries, medical science, space technology, and transportation. The low-temperature technology developed superconducting materials which lead to reduce the friction and wear in various components of the systems. The liquid oxygen, hydrogen and helium play vital role in space application. The liquefaction process is produced very low temperature liquid for various application in research and modern application. The air liquefaction system for oxygen plants in gas industries is based on the Claude cycle. The effect of process parameters on the overall system is difficult to be analysed by manual calculations, and this provides the motivation to use process simulators for understanding the steady state and dynamic behaviour of such systems. The parametric study of this system via MATLAB simulations provide useful guidelines for preliminary design of air liquefaction system based on the Claude cycle. Every organization is always trying for reduce the cost and using the optimum performance of the plant for the staying in the competitive market.Keywords: cryogenic, liquefaction, low -temperature, oxygen, claude cycle, optimization, MATLAB
Procedia PDF Downloads 322488 Two-Photon-Exchange Effects in the Electromagnetic Production of Pions
Authors: Hui-Yun Cao, Hai-Qing Zhou
Abstract:
The high precision measurements and experiments play more and more important roles in particle physics and atomic physics. To analyse the precise experimental data sets, the corresponding precise and reliable theoretical calculations are necessary. Until now, the form factors of elemental constituents such as pion and proton are still attractive issues in current Quantum Chromodynamics (QCD). In this work, the two-photon-exchange (TPE) effects in ep→enπ⁺ at small -t are discussed within a hadronic model. Under the pion dominance approximation and the limit mₑ→0, the TPE contribution to the amplitude can be described by a scalar function. We calculate TPE contributions to the amplitude, and the unpolarized differential cross section with the only elastic intermediate state is considered. The results show that the TPE corrections to the unpolarized differential cross section are about from -4% to -20% at Q²=1-1.6 GeV². After considering the TPE corrections to the experimental data sets of unpolarized differential cross section, we analyze the TPE corrections to the separated cross sections σ(L,T,LT,TT). We find that the TPE corrections (at Q²=1-1.6 GeV²) to σL are about from -10% to -30%, to σT are about 20%, and to σ(LT,TT) are much larger. By these analyses, we conclude that the TPE contributions in ep→enπ⁺ at small -t are important to extract the separated cross sections σ(L,T,LT,TT) and the electromagnetic form factor of π⁺ in the experimental analysis.Keywords: differential cross section, form factor, hadronic, two-photon
Procedia PDF Downloads 133487 Modelling Ibuprofen with Human Albumin
Authors: U. L. Fulco, E. L. Albuquerque, José X. Lima Neto, L. R. Da Silva
Abstract:
The binding of the nonsteroidal anti-inflammatory drug ibuprofen (IBU) to human serum albumin (HSA) is investigated using density functional theory (DFT) calculations within a fragmentation strategy. Crystallographic data for the IBU–HSA supramolecular complex shows that the ligand is confined to a large cavity at the subdomain IIIA and at the interface between the subdomains IIA and IIB, whose binding sites are FA3/FA4 and FA6, respectively. The interaction energy between the IBU molecule and each amino acid residue of these HSA binding pockets was calculated using the Molecular Fractionation with Conjugate Caps (MFCC) approach employing a dispersion corrected exchange–correlation functional. Our investigation shows that the total interaction energy of IBU bound to HSA at binding sites of the fatty acids FA3/FA4 (FA6) converges only for a pocket radius of at least 8.5 °A, mainly due to the action of residues Arg410, Lys414 and Ser489 (Lys351, Ser480 and Leu481) and residues in nonhydrophobic domains, namely Ile388, Phe395, Phe403, Leu407, Leu430, Val433, and Leu453 (Phe206, Ala210, Ala213, and Leu327), which is unusual. Our simulations are valuable for a better understanding of the binding mechanism of IBU to albumin and can lead to the rational design and the development of novel IBU-derived drugs with improved potency.Keywords: ibuprofen, human serum albumin, density functional theory, binding energies
Procedia PDF Downloads 347486 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System
Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva
Abstract:
Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system
Procedia PDF Downloads 142485 First-Principles Calculations and Thermo-Calc Study of the Elastic and Thermodynamic Properties of Ti-Nb-ZR-Ta Alloy for Biomedical Applications
Authors: M. Madigoe, R. Modiba
Abstract:
High alloyed beta (β) phase-stabilized titanium alloys are known to have a low elastic modulus comparable to that of the human bone (≈30 GPa). The β phase in titanium alloys exhibits an elastic Young’s modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, a theoretical investigation of structural stability and thermodynamic stability, as well as the elastic properties of a quaternary Ti-Nb-Ta-Zr alloy, will be presented with an attempt to lower Young’s modulus. The structural stability and elastic properties of the alloy were evaluated using the first-principles approach within the density functional theory (DFT) framework implemented in the CASTEP code. The elastic properties include bulk modulus B, elastic Young’s modulus E, shear modulus cʹ and Poisson’s ratio v. Thermodynamic stability, as well as the fraction of β phase in the alloy, was evaluated using the Thermo-Calc software package. Thermodynamic properties such as Gibbs free energy (Δ?⁰?) and enthalpy of formation will be presented in addition to phase proportion diagrams. The stoichiometric compositions of the alloy is Ti-Nbx-Ta5-Zr5 (x = 5, 10, 20, 30, 40 at.%). An optimum alloy composition must satisfy the Born stability criteria and also possess low elastic Young’s modulus. In addition, the alloy must be thermodynamically stable, i.e., Δ?⁰? < 0.Keywords: elastic modulus, phase proportion diagram, thermo-calc, titanium alloys
Procedia PDF Downloads 186484 Numerical Calculation of Dynamic Response of Catamaran Vessels Based on 3D Green Function Method
Authors: Md. Moinul Islam, N. M. Golam Zakaria
Abstract:
Seakeeping analysis of catamaran vessels in the earlier stages of design has become an important issue as it dictates the seakeeping characteristics, and it ensures safe navigation during the voyage. In the present paper, a 3D numerical method for the seakeeping prediction of catamaran vessel is presented using the 3D Green Function method. Both steady and unsteady potential flow problem is dealt with here. Using 3D linearized potential theory, the dynamic wave loads and the subsequent response of the vessel is computed. For validation of the numerical procedure catamaran vessel composed of twin, Wigley form demi-hull is used. The results of the present calculation are compared with the available experimental data and also with other calculations. The numerical procedure is also carried out for NPL-based round bilge catamaran, and hydrodynamic coefficients along with heave and pitch motion responses are presented for various Froude number. The results obtained by the present numerical method are found to be in fairly good agreement with the available data. This can be used as a design tool for predicting the seakeeping behavior of catamaran ships in waves.Keywords: catamaran, hydrodynamic coefficients , motion response, 3D green function
Procedia PDF Downloads 220483 Impact of Facility Disruptions on Demand Allocation Strategies in Reliable Facility Location Models
Authors: Abdulrahman R. Alenezi
Abstract:
This research investigates the effects of facility disruptions on-demand allocation within the context of the Reliable Facility Location Problem (RFLP). We explore two distinct scenarios: one where primary and backup facilities can fail simultaneously and another where such simultaneous failures are not possible. The RFLP model is tailored to reflect these scenarios, incorporating different approaches to transportation cost calculations. Utilizing a Lagrange relaxation method, the model achieves high efficiency, yielding an average optimality gap of 0.1% within 12.2 seconds of CPU time. Findings indicate that primary facilities are typically sited closer to demand points than backup facilities. In cases where simultaneous failures are prohibited, demand points are predominantly assigned to the nearest available facility. Conversely, in scenarios permitting simultaneous failures, demand allocation may prioritize factors beyond mere proximity, such as failure rates. This study highlights the critical influence of facility reliability on strategic location decisions, providing insights for enhancing resilience in supply chain networks.Keywords: reliable supply chain network, facility location problem, reliable facility location model, LaGrange relaxation
Procedia PDF Downloads 25482 Using Electrical Impedance Tomography to Control a Robot
Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi
Abstract:
Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.Keywords: electrical impedance tomography, EIT, surgeon robot, image processing of electrical impedance tomography
Procedia PDF Downloads 272481 Electrochemical Studies of the Inhibition Effect of 2-Dimethylamine on the Corrosion of Austenitic Stainless Steel Type 304 in Dilute Hydrochloric Acid
Authors: Roland Tolulope Loto, Cleophas Akintoye Loto, Abimbola Patricia Popoola
Abstract:
The inhibiting action of 2-dimethylamine on the electrochemical behaviour of austenitic stainless steel (type 304) in dilute hydrochloric was evaluated through weight-loss method, open circuit potential measurement and potentiodynamic polarization tests at specific concentrations of the organic compound. Results obtained reveal that the compound performed effectively giving a maximum inhibition efficiency of 79% at 12.5% concentration from weight loss analysis and 80.9% at 12.5% concentration from polarization tests. The average corrosion potential of -321 mV was obtained the same concentration from other tests which is well within passivation potentials on the steel thus, providing good protection against corrosion in the acid solutions. 2-dimethylamine acted through physiochemical interaction at the steel/solution interface from thermodynamic calculations and obeyed the Langmuir adsorption isotherm. The values of the inhibition efficiency determined from the three methods are in reasonably good agreement. Polarization studies showed that the compounds behaved as cathodic type inhibitor.Keywords: corrosion, 2-dimethylamine, inhibition, adsorption, hydrochloric acid, steel
Procedia PDF Downloads 318480 Ethnicism and Nigeria's National Development Crisis
Authors: A. E. Agbogu
Abstract:
While scholars have predicted that identity politics (or what is euphemistically referred to as ethnic politics in Nigeria) were a dying phenomenon in other parts of the world, in Nigeria, it has remained the basis of political activity and has indeed become not only the unwritten law of all calculations in the political firmament of the country but also the ultimo ratio. We intend in the paper that follows to explore the reason for this unhealthy development. The paper seeks to offer explanations for the paradoxical reality of the upsurge of ethnic politics in Nigeria when in fact, the phenomenon is apparently on a downward spiral elsewhere in the world, particularly in countries that are at par with Nigeria in terms of national development. The paper is descriptive and qualitative and has relied on available data for its source of materials. Among other things, the paper locates identity politics as a tool in the hands of a national elite that has not transcended the limitations imposes by the shackles of the parsonian particularistic polar attributes which have tended to fixate their weltanschauung or world view on attachments that are unpardonably primordial. In the event, ethnicity becomes a veritable instrument not only for cheap sectional mobilization but also a means for seeking access to the so-called national cake. It is recommended that a way out of this socio-politico malady is the creation of a political arrangement that conduces to the gravitational tendency which will lead to the transfer of loyalties away from the extant ethno-nationalities to the centre.Keywords: ethnicism, development, crisis, identity politics
Procedia PDF Downloads 283479 A Supramolecular Cocrystal of 2-Amino-4-Chloro-6-Methylpyrimidine with 4-Methylbenzoic Acid: Synthesis, Structural Determinations and Quantum Chemical Investigations
Authors: Nuridayanti Che Khalib, Kaliyaperumal Thanigaimani, Suhana Arshad, Ibrahim Abdul Razak
Abstract:
The 1:1 co-crystal of 2-amino-4-chloro-6-methylpyrimidine (2A4C6MP) with 4-methylbenzoic acid (4MBA) (I) has been prepared by slow evaporation method in methanol, which was crystallized in monoclinic C2/c space group, Z = 8, a = 28.431 (2) Å, b = 7.3098 (5) Å, c = 14.2622 (10) Å, and β = 109.618 (3)°. The presence of unionized –COOH functional group in co-crystal I was identified both by spectral methods (1H and 13C NMR, FTIR) and X-ray diffraction structural analysis. The 2A4C6MP molecule interact with the carboxylic group of the respective 4MBA molecule through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen –bonded motif R22(8). The crystal structure was stabilized by Npyrimidine-H⋯O=C and C=O-H⋯Npyrimidine types hydrogen bonding interactions. Theoretical investigations have been computed by HF and density function (B3LYP) method with 6-311+G(d,p) basis set. The vibrational frequencies together with 1H and 13C NMR chemical shifts have been calculated on the fully optimized geometry of co-crystal I. Theoretical calculations are in good agreement with the experimental results. Solvent-free formation of this co-crystal I is confirmed by powder X-ray diffraction analysis.Keywords: supramolecular co-crystal, 2-amino-4-chloro-6-methylpyrimidine, Harthree-Fock and DFT studies, spectroscopic analysis
Procedia PDF Downloads 309478 Noninvasive Continuous Glucose Monitoring Device Using a Photon-Assisted Tunneling Photodetector Based on a Quantum Metal-Oxide-Semiconductor
Authors: Wannakorn Sangthongngam, Melissa Huerta, Jaewoo Kim, Doyeon Kim
Abstract:
Continuous glucose monitoring systems are essential for diabetics to avoid health complications but come at a costly price, especially when insurance does not fully cover the diabetic testing kits needed. This paper proposes a noninvasive continuous glucose monitoring system to provide an accessible, low-cost, and painless alternative method of accurate glucose measurements to help improve quality of life. Using a light source with a wavelength of 850nm illuminates the fingertip for the photodetector to detect the transmitted light. Utilizing SeeDevice’s photon-assisted tunneling photodetector (PAT-PD)-based QMOS™ sensor, fluctuations of voltage based on photon absorption in blood cells are comparable to traditional glucose measurements. The performance of the proposed method was validated using 4 test participants’ transmitted voltage readings compared with measurements obtained from the Accu-Chek glucometer. The proposed method was able to successfully measure concentrations from linear regression calculations.Keywords: continuous glucose monitoring, non-invasive continuous glucose monitoring, NIR, photon-assisted tunneling photodetector, QMOS™, wearable device
Procedia PDF Downloads 97477 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications
Authors: Ildar Akhmadullin, Mayank Tyagi
Abstract:
The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126℃, the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.Keywords: downhole heat exchangers, geothermal power generation, organic rankine cycle, refrigerants, working fluids
Procedia PDF Downloads 315476 Digitalization of Functional Safety - Increasing Productivity while Reducing Risks
Authors: Michael Scott, Phil Jarrell
Abstract:
Digitalization seems to be everywhere these days. So if one was to digitalize Functional Safety, what would that require: • Ability to directly use data from intelligent P&IDs / process design in a PHA / LOPA • Ability to directly use data from intelligent P&IDs in the SIS Design to support SIL Verification Calculations, SRS, C&Es, Functional Test Plans • Ability to create Unit Operation / SIF Libraries to radically reduce engineering manhours while ensuring consistency and improving quality of SIS designs • Ability to link data directly from a PHA / LOPA to SIS Designs • Ability to leverage reliability models and SRS details from SIS Designs to automatically program the Safety PLC • Ability to leverage SIS Test Plans to automatically create Safety PLC application logic Test Plans for a virtual FAT • Ability to tie real-time data from Process Historians / CMMS to assumptions in the PHA / LOPA and SIS Designs to generate leading indicators on protection layer health • Ability to flag SIS bad actors for proactive corrective actions prior to a near miss or loss of containment event What if I told you all of this was available today? This paper will highlight how the digital revolution has revolutionized the way Safety Instrumented Systems are designed, configured, operated and maintained.Keywords: IEC 61511, safety instrumented systems, functional safety, digitalization, IIoT
Procedia PDF Downloads 181475 Aspects Regarding the Structural Behaviour of Autonomous Underwater Vehicle for Emergency Response
Authors: Lucian Stefanita Grigore, Damian Gorgoteanu, Cristian Molder, Amado Stefan, Daniel Constantin
Abstract:
The purpose of this article is to present an analytical-numerical study on the structural behavior of a sunken autonomous underwater vehicle (AUV) for emergency intervention. The need for such a study was generated by the key objective of the ERL-Emergency project. The project aims to develop a system of collaborative robots for emergency response. The system consists of two robots: unmanned ground vehicles (UGV) on tracks and the second is an AUV. The system of collaborative robots, AUV and UGV, will be used to perform missions of monitoring, intervention, and rescue. The main mission of the AUV is to dive into the maritime space of an industrial port to detect possible leaks in a pipeline transporting petroleum products. Another mission is to close and open the valves with which the pipes are provided. Finally, you will need to be able to lift a manikin to the surface, which you can take to land. Numerical analysis was performed by the finite element method (FEM). The conditions for immersing the AUV at 100 m depth were simulated, and the calculations for different fluid flow rates were repeated. From a structural point of view, the stiffening areas and the enclosures in which the command-and-control elements and the accumulators are located have been especially analyzed. The conclusion of this research is that the AUV meets very well the established requirements.Keywords: analytical-numerical, emergency, FEM, robotics, underwater
Procedia PDF Downloads 150474 Thermal Behaviors of the Strong Form Factors of Charmonium and Charmed Beauty Mesons from Three Point Sum Rules
Authors: E. Yazıcı, H. Sundu, E. Veli Veliev
Abstract:
In order to understand the nature of strong interactions and QCD vacuum, investigation of the meson coupling constants have an important role. The knowledge on the temperature dependence of the form factors is very important for the interpretation of heavy-ion collision experiments. Also, more accurate determination of these coupling constants plays a crucial role in understanding of the hadronic decays. With the increasing of CM energies of the experiments, researches on meson interactions have become one of the more interesting problems of hadronic physics. In this study, we analyze the temperature dependence of the strong form factor of the BcBcJ/ψ vertex using the three point QCD sum rules method. Here, we assume that with replacing the vacuum condensates and also the continuum threshold by their thermal version, the sum rules for the observables remain valid. In calculations, we take into account the additional operators, which appear in the Wilson expansion at finite temperature. We also investigated the momentum dependence of the form factor at T = 0, fit it into an analytic function, and extrapolate into the deep time-like region in order to obtain a strong coupling constant of the vertex. Our results are consistent with the results existing in the literature.Keywords: QCD sum rules, thermal QCD, heavy mesons, strong coupling constants
Procedia PDF Downloads 189473 Identification of the Interior Noise Sources of Rail Vehicles
Authors: Hyo-In Koh, Anders Nordborg, Alex Sievi, Chun-Kwon Park
Abstract:
The noise source for the interior room of the high speed train is constituted by the rolling contact between the wheel and the rail, aerodynamic noise and structure-borne sound generated through the vibrations of bogie, connection points to the carbody. Air-borne sound is radiated through the panels and structures into the interior room of the trains. The high-speed lines are constructed with slab track systems and many tunnels. The interior noise level and the frequency characteristics vary according to types of the track structure and the infrastructure. In this paper the main sound sources and the transfer paths are studied to find out the contribution characteristics of the sources to the interior noise of a high-speed rail vehicle. For the identification of the acoustic power of each parts of the rolling noise sources a calculation model of wheel/rail noise is developed and used. For the analysis of the transmission of the sources to the interior noise noise and vibration are measured during the operation of the vehicle. According to operation speeds, the mainly contributed sources and the paths could be analyzed. Results of the calculations on the source generation and the results of the measurement with a high-speed train are shown and discussed.Keywords: rail vehicle, high-speed, interior noise, noise source
Procedia PDF Downloads 400472 Ambient Vibration Testing of Existing Buildings in Madinah
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
The elastic period has a primary role in the seismic assessment of buildings. Reliable calculations and/or estimates of the fundamental frequency of a building and its site are essential during analysis and design process. Various code formulas based on empirical data are generally used to estimate the fundamental frequency of a structure. For existing structures, in addition to code formulas and available analytical tools such as modal analyses, various methods of testing including ambient and forced vibration testing procedures may be used to determine dynamic characteristics. In this study, the dynamic properties of the 32 buildings located in the Madinah of Saudi Arabia were identified using ambient motions recorded at several, spatially-distributed locations within each building. Ambient vibration measurements of buildings have been analyzed and the fundamental longitudinal and transverse periods for all tested buildings are presented. The fundamental mode of vibration has been compared in plots with codes formulae (Saudi Building Code, EC8, and UBC1997). The results indicate that measured periods of existing buildings are shorter than that given by most empirical code formulas. Recommendations are given based on the common design and construction practice in Madinah city.Keywords: ambient vibration, fundamental period, RC buildings, infill walls
Procedia PDF Downloads 262471 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry
Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim
Abstract:
An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.Keywords: steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant
Procedia PDF Downloads 310