Search results for: model ORYZA2000
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16909

Search results for: model ORYZA2000

12199 A Conceptual Model of the Factors Affecting Saudi Citizens' Use of Social Media to Communicate with the Government

Authors: Reemiah Alotaibi, Muthu Ramachandran, Ah-Lian Kor, Amin Hosseinian-Far

Abstract:

In the past decade, developers of Web 2.0 technologies have shown increasing interest in the topic of e-government. There has been a rapid growth in social media technology because of its significant role in backing up some essential social needs. Its importance and power is derived from its capacity to support two-way communication. Governments are curious to get engaged in these websites, hoping to benefit from the new forms of communication and interaction offered by such technology. Greater participation by the public can be viewed as a chief indicator of effective government communication. Yet, the level of public participation in government 2.0 is not quite satisfactory. In general, it is still at the early stage in most developing countries, including Saudi Arabia. Although it is a fact that Saudi people are among the most active in using social media, the number of people who use social media to communicate with the public institutions is not high. Furthermore, most of the governmental organisations are not using social media tools to communicate with the public. They use these platforms to disseminate information. Our study focuses on the factors affecting citizens’ adoption of social media in Saudi Arabia. Our research question is: what are the factors affecting Saudi citizens’ use of social media to communicate with the government? To answer this research question, the research aims to validate the UTAUT model for examining social media tools from the citizen perspective. An amendment will be proposed to fit the adoption of social media platforms as a communication channel in government by using a developed conceptual model which integrates constructs from the UTAUT model and others external variables based on the literature review. The set of potential factors that affect these citizens' decisions to adopt social media to communicate with their government has been identified as perceived encouragement, trust and cultural influence. The connection between the above-mentioned constructs from the basis for the research hypothesis will be examined in the light of a quantitative methodology. Data collection will be performed through a survey targeting a number of Saudi citizens who are social media users. The data collected from the primary survey will later be analysed by using statistical methods. The outcomes of this research project are argued to have potential contributions to the fields of social media and e-Government adoption, both on the theoretical and practical levels. It is believed that this research project is the first of its type that attempts to identify the factors that affect citizens’ adoption of social media to communicate with the government. The importance of identifying these factors stems from the potential use of them to enhance the government’s implementation of social media and help in making more accurate decisions and strategies based on comprehending the most important factors that affect citizens’ decisions.

Keywords: social media, adoption, citizen, UTAUT model

Procedia PDF Downloads 421
12198 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 324
12197 Global Healthcare Village Based on Mobile Cloud Computing

Authors: Laleh Boroumand, Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar

Abstract:

Cloud computing being the use of hardware and software that are delivered as a service over a network has its application in the area of health care. Due to the emergency cases reported in most of the medical centers, prompt for an efficient scheme to make health data available with less response time. To this end, we propose a mobile global healthcare village (MGHV) model that combines the components of three deployment model which include country, continent and global health cloud to help in solving the problem mentioned above. In the creation of continent model, two (2) data centers are created of which one is local and the other is global. The local replay the request of residence within the continent, whereas the global replay the requirements of others. With the methods adopted, there is an assurance of the availability of relevant medical data to patients, specialists, and emergency staffs regardless of locations and time. From our intensive experiment using the simulation approach, it was observed that, broker policy scheme with respect to optimized response time, yields a very good performance in terms of reduction in response time. Though, our results are comparable to others when there is an increase in the number of virtual machines (80-640 virtual machines). The proportionality in increase of response time is within 9%. The results gotten from our simulation experiments shows that utilizing MGHV leads to the reduction of health care expenditures and helps in solving the problems of unqualified medical staffs faced by both developed and developing countries.

Keywords: cloud computing (MCC), e-healthcare, availability, response time, service broker policy

Procedia PDF Downloads 381
12196 An Application of Extreme Value Theory as a Risk Measurement Approach in Frontier Markets

Authors: Dany Ng Cheong Vee, Preethee Nunkoo Gonpot, Noor Sookia

Abstract:

In this paper, we consider the application of Extreme Value Theory as a risk measurement tool. The Value at Risk, for a set of indices, from six Stock Exchanges of Frontier markets is calculated using the Peaks over Threshold method and the performance of the model index-wise is evaluated using coverage tests and loss functions. Our results show that 'fat-tailedness' alone of the data is not enough to justify the use of EVT as a VaR approach. The structure of the returns dynamics is also a determining factor. This approach works fine in markets which have had extremes occurring in the past thus making the model capable of coping with extremes coming up (Colombo, Tunisia and Zagreb Stock Exchanges). On the other hand, we find that indices with lower past than present volatility fail to adequately deal with future extremes (Mauritius and Kazakhstan). We also conclude that using EVT alone produces quite static VaR figures not reflecting the actual dynamics of the data.

Keywords: extreme value theory, financial crisis 2008, value at risk, frontier markets

Procedia PDF Downloads 280
12195 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria

Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov

Abstract:

This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.

Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model

Procedia PDF Downloads 72
12194 Mapping of Geological Structures Using Aerial Photography

Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash

Abstract:

Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.

Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures

Procedia PDF Downloads 689
12193 The Implementation of Character Education in Code Riverbanks, Special Region of Yogyakarta, Indonesia

Authors: Ulil Afidah, Muhamad Fathan Mubin, Firdha Aulia

Abstract:

Code riverbanks Yogyakarta is a settlement area with middle to lower social classes. Socio-economic situation is affecting the behavior of society. This research aimed to find and explain the implementation and the assessment of character education which were done in elementary schools in Code riverside, Yogyakarta region of Indonesia. This research is a qualitative research which the subjects were the kids of Code riverbanks, Yogyakarta. The data were collected through interviews and document studies and analyzed qualitatively using the technique of interactive analysis model of Miles and Huberman. The results show that: (1) The learning process of character education was done by integrating all aspects such as democratic and interactive learning session also introducing role model to the students. 2) The assessment of character education was done by teacher based on teaching and learning process and an activity in outside the classroom that was the criterion on three aspects: Cognitive, affective and psychomotor.

Keywords: character, Code riverbanks, education, Yogyakarta

Procedia PDF Downloads 252
12192 Designing the Maturity Model of Smart Digital Transformation through the Foundation Data Method

Authors: Mohammad Reza Fazeli

Abstract:

Nowadays, the fourth industry, known as the digital transformation of industries, is seen as one of the top subjects in the history of structural revolution, which has led to the high-tech and tactical dominance of the organization. In the face of these profits, the undefined and non-transparent nature of the after-effects of investing in digital transformation has hindered many organizations from attempting this area of this industry. One of the important frameworks in the field of understanding digital transformation in all organizations is the maturity model of digital transformation. This model includes two main parts of digital transformation maturity dimensions and digital transformation maturity stages. Mediating factors of digital maturity and organizational performance at the individual (e.g., motivations, attitudes) and at the organizational level (e.g., organizational culture) should be considered. For successful technology adoption processes, organizational development and human resources must go hand in hand and be supported by a sound communication strategy. Maturity models are developed to help organizations by providing broad guidance and a roadmap for improvement. However, as a result of a systematic review of the literature and its analysis, it was observed that none of the 18 maturity models in the field of digital transformation fully meet all the criteria of appropriateness, completeness, clarity, and objectivity. A maturity assessment framework potentially helps systematize assessment processes that create opportunities for change in processes and organizations enabled by digital initiatives and long-term improvements at the project portfolio level. Cultural characteristics reflecting digital culture are not systematically integrated, and specific digital maturity models for the service sector are less clearly presented. It is also clearly evident that research on the maturity of digital transformation as a holistic concept is scarce and needs more attention in future research.

Keywords: digital transformation, organizational performance, maturity models, maturity assessment

Procedia PDF Downloads 113
12191 A Novel Rapid Well Control Technique Modelled in Computational Fluid Dynamics Software

Authors: Michael Williams

Abstract:

The ability to control a flowing well is of the utmost important. During the kill phase, heavy weight kill mud is circulated around the well. While increasing bottom hole pressure near wellbore formation, the damage is increased. The addition of high density spherical objects has the potential to minimise this near wellbore damage, increase bottom hole pressure and reduce operational time to kill the well. This operational time saving is seen in the rapid deployment of high density spherical objects instead of building high density drilling fluid. The research aims to model the well kill process using a Computational Fluid Dynamics software. A model has been created as a proof of concept to analyse the flow of micron sized spherical objects in the drilling fluid. Initial results show that this new methodology of spherical objects in drilling fluid agrees with traditional stream lines seen in non-particle flow. Additional models have been created to demonstrate that areas of higher flow rate around the bit can lead to increased probability of wash out of formations but do not affect the flow of micron sized spherical objects. Interestingly, areas that experience dimensional changes such as tool joints and various BHA components do not appear at this initial stage to experience increased velocity or create areas of turbulent flow, which could lead to further borehole stability. In conclusion, the initial models of this novel well control methodology have not demonstrated any adverse flow patterns, which would conclude that this model may be viable under field conditions.

Keywords: well control, fluid mechanics, safety, environment

Procedia PDF Downloads 177
12190 Series Network-Structured Inverse Models of Data Envelopment Analysis: Pitfalls and Solutions

Authors: Zohreh Moghaddas, Morteza Yazdani, Farhad Hosseinzadeh

Abstract:

Nowadays, data envelopment analysis (DEA) models featuring network structures have gained widespread usage for evaluating the performance of production systems and activities (Decision-Making Units (DMUs)) across diverse fields. By examining the relationships between the internal stages of the network, these models offer valuable insights to managers and decision-makers regarding the performance of each stage and its impact on the overall network. To further empower system decision-makers, the inverse data envelopment analysis (IDEA) model has been introduced. This model allows the estimation of crucial information for estimating parameters while keeping the efficiency score unchanged or improved, enabling analysis of the sensitivity of system inputs or outputs according to managers' preferences. This empowers managers to apply their preferences and policies on resources, such as inputs and outputs, and analyze various aspects like production, resource allocation processes, and resource efficiency enhancement within the system. The results obtained can be instrumental in making informed decisions in the future. The top result of this study is an analysis of infeasibility and incorrect estimation that may arise in the theory and application of the inverse model of data envelopment analysis with network structures. By addressing these pitfalls, novel protocols are proposed to circumvent these shortcomings effectively. Subsequently, several theoretical and applied problems are examined and resolved through insightful case studies.

Keywords: inverse models of data envelopment analysis, series network, estimation of inputs and outputs, efficiency, resource allocation, sensitivity analysis, infeasibility

Procedia PDF Downloads 58
12189 The Effects of an Exercise Program Integrated with the Transtheoretical Model on Pain and Trunk Muscle Endurance of Rice Farmers with Chronic Low Back Pain

Authors: Thanakorn Thanawat, Nomjit Nualnetr

Abstract:

Background and Purpose: In Thailand, rice farmers have the most prevalence of low back pain when compared with other manual workers. Exercises have been suggested to be a principal part of treatment programs for low back pain. However, the programs should be tailored to an individual’s readiness to change categorized by a behavioral approach. This study aimed to evaluate a difference between the responses of rice farmers with chronic low back pain who received an exercise program integrated with the transtheoretical model of behavior change (TTM) and those of the comparison group regarding severity of pain and trunk muscle endurance. Materials and Methods: An 8-week exercise program was conducted to rice farmers with chronic low back pain who were randomized to either the TTM (n=62, 52 woman and 10 men, mean age ± SD 45.0±5.4 years) or non-TTM (n=64, 53 woman and 11 men, mean age ± SD 44.7±5.4 years) groups. All participants were tested for their severity of pain and trunk (abdominal and back) muscle endurance at baseline (week 0) and immediately after termination of the program (week 8). Data were analysed by using descriptive statistics and student’s t-tests. The results revealed that both TTM and non-TTM groups could decrease their severity of pain and improve trunk muscle endurance after participating in the 8-week exercise program. When compared with the non-TTM group, however, the TTM showed a significantly greater increase in abdominal muscle endurance than did the non-TTM (P=0.004, 95% CI -12.4 to -2.3). Conclusions and Clinical Relevance: An exercise program integrated with the TTM could provide benefits to rice farmers with chronic low back pain. Future studies with a longitudinal design and more outcome measures such as physical performance and quality of life are suggested to reveal further benefits of the program.

Keywords: chronic low back pain, transtheoretical model, rice farmers, exercise program

Procedia PDF Downloads 386
12188 Shield Tunnel Excavation Simulation of a Case Study Using a So-Called 'Stress Relaxation' Method

Authors: Shengwei Zhu, Alireza Afshani, Hirokazu Akagi

Abstract:

Ground surface settlement induced by shield tunneling is addressing increasing attention as shield tunneling becomes a popular construction technique for tunnels in urban areas. This paper discusses a 2D longitudinal FEM simulation of a tunneling case study in Japan (Tokyo Metro Yurakucho Line). Tunneling-induced field data was already collected and is used here for comparison and evaluating purposes. In this model, earth pressure, face pressure, backfilling grouting, elastic tunnel lining, and Mohr-Coulomb failure criterion for soil elements are considered. A method called ‘stress relaxation’ is also exploited to simulate the gradual tunneling excavation. Ground surface settlements obtained from numerical results using the introduced method are then compared with the measurement data.

Keywords: 2D longitudinal FEM model, tunneling case study, stress relaxation, shield tunneling excavation

Procedia PDF Downloads 335
12187 Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance

Authors: Akan C. Offong, E. J. Anthony, Vasilije Manovic

Abstract:

A modified steady-state numerical model is developed for the electrochemical reduction of CO2 to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm2), FE-faradaic efficiency (~98%) and conversion (~80%) for CO2 electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF4]) electrolyte, on CD, FE and CO2 conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF4]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO2 mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO2 conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H2 formations. However, H2 formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO2 flow rate increases, CD, FE and CO2 conversion increases.

Keywords: carbon dioxide, electro-chemical reduction, ionic liquids, microfluidics, modelling

Procedia PDF Downloads 151
12186 Dynamic Construction Site Layout Using Ant Colony Optimization

Authors: Yassir AbdelRazig

Abstract:

Evolutionary optimization methods such as genetic algorithms have been used extensively for the construction site layout problem. More recently, ant colony optimization algorithms, which are evolutionary methods based on the foraging behavior of ants, have been successfully applied to benchmark combinatorial optimization problems. This paper proposes a formulation of the site layout problem in terms of a sequencing problem that is suitable for solution using an ant colony optimization algorithm. In the construction industry, site layout is a very important planning problem. The objective of site layout is to position temporary facilities both geographically and at the correct time such that the construction work can be performed satisfactorily with minimal costs and improved safety and working environment. During the last decade, evolutionary methods such as genetic algorithms have been used extensively for the construction site layout problem. This paper proposes an ant colony optimization model for construction site layout. A simple case study for a highway project is utilized to illustrate the application of the model.

Keywords: ant colony, construction site layout, optimization, genetic algorithms

Procedia PDF Downloads 385
12185 Deploying a Transformative Learning Model in Technological University Dublin to Assess Transversal Skills

Authors: Sandra Thompson, Paul Dervan

Abstract:

Ireland’s first Technological University (TU Dublin) was established on 1st January 2019, and its creation is an exciting new milestone in Irish Higher Education. TU Dublin is now Ireland’s biggest University supporting 29,000 students across three campuses with 3,500 staff. The University aspires to create work-ready graduates who are socially responsible, open-minded global thinkers who are ambitious to change the world for the better. As graduates, they will be enterprising and daring in all their endeavors, ready to play their part in transforming the future. Feedback from Irish employers and students coupled with evidence from other authoritative sources such as the World Economic Forum points to a need for greater focus on the development of students’ employability skills as they prepare for today’s work environment. Moreover, with an increased focus on Universal Design for Learning (UDL) and inclusiveness, there is recognition that students are more than a numeric grade value. Robust grading systems have been developed to track a student’s performance around discipline knowledge but there is little or no global consensus on a definition of transversal skills nor on a unified framework to assess transversal skills. Education and industry sectors are often assessing one or two skills, and some are developing their own frameworks to capture the learner’s achievement in this area. Technological University Dublin (TU Dublin) have discovered and implemented a framework to allow students to develop, assess and record their transversal skills using transformative learning theory. The model implemented is an adaptation of Student Transformative Learning Record - STLR which originated in the University of Central Oklahoma (UCO). The purpose of this paper therefore, is to examine the views of students, staff and employers in the context of deploying a Transformative Learning model within the University to assess transversal skills. It will examine the initial impact the transformative learning model is having socially, personally and on the University as an organization. Crucially also, to identify lessons learned from the deployment in order to assist other Universities and Higher Education Institutes who may be considering a focused adoption of Transformative Learning to meet the challenge of preparing students for today’s work environment.

Keywords: assessing transversal skills, higher education, transformative learning, students

Procedia PDF Downloads 135
12184 Advanced Real-Time Fluorescence Imaging System for Rat's Femoral Vein Thrombosis Monitoring

Authors: Sang Hun Park, Chul Gyu Song

Abstract:

Artery and vein occlusion changes observed in patients and experimental animals are unexplainable symptoms. As the fat accumulated in cardiovascular ruptures, it causes vascular blocking. Likewise, early detection of cardiovascular disease can be useful for treatment. In this study, we used the mouse femoral occlusion model to observe the arterial and venous occlusion changes without darkroom. We observed the femoral arterial flow pattern changes by proposed fluorescent imaging system using an animal model of thrombosis. We adjusted the near-infrared light source current in order to control the intensity of the fluorescent substance light. We got the clear fluorescent images and femoral artery flow pattern were measured by a 5-minute interval. The result showed that the fluorescent substance flowing in the femoral arteries were accumulated in thrombus as time passed, and the fluorescence of other vessels gradually decreased.

Keywords: thrombus, fluorescence, femoral, arteries

Procedia PDF Downloads 345
12183 A Guide for Using Viscoelasticity in ANSYS

Authors: A. Fettahoglu

Abstract:

Theory of viscoelasticity is used by many researchers to represent the behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell model and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Afterwards, a guide is illustrated to ease using of viscoelasticity tool in ANSYS.

Keywords: ANSYS, generalized Maxwell model, finite element method, Prony series, viscoelasticity, viscoelastic material curve fitting

Procedia PDF Downloads 621
12182 Multilevel Regression Model - Evaluate Relationship Between Early Years’ Activities of Daily Living and Alzheimer’s Disease Onset Accounting for Influence of Key Sociodemographic Factors Using a Longitudinal Household Survey Data

Authors: Linyi Fan, C.J. Schumaker

Abstract:

Background: Biomedical efforts to treat Alzheimer’s disease (AD) have typically produced mixed to poor results, while more lifestyle-focused treatments such as exercise may fare better than existing biomedical treatments. A few promising studies have indicated that activities of daily life (ADL) may be a useful way of predicting AD. However, the existing cross-sectional studies fail to show how functional-related issues such as ADL in early years predict AD and how social factors influence health either in addition to or in interaction with individual risk factors. This study would helpbetterscreening and early treatments for the elderly population and healthcare practice. The findings have significance academically and practically in terms of creating positive social change. Methodology: The purpose of this quantitative historical, correlational study was to examine the relationship between early years’ ADL and the development of AD in later years. The studyincluded 4,526participantsderived fromRAND HRS dataset. The Health and Retirement Study (HRS) is a longitudinal household survey data set that is available forresearchof retirement and health among the elderly in the United States. The sample was selected by the completion of survey questionnaire about AD and dementia. The variablethat indicates whether the participant has been diagnosed with AD was the dependent variable. The ADL indices and changes in ADL were the independent variables. A four-step multilevel regression model approach was utilized to address the research questions. Results: Amongst 4,526 patients who completed the AD and dementia questionnaire, 144 (3.1%) were diagnosed with AD. Of the 4,526 participants, 3,465 (76.6%) have high school and upper education degrees,4,074 (90.0%) were above poverty threshold. The model evaluatedthe effect of ADL and change in ADL on onset of AD in late years while allowing the intercept of the model to vary by level of education. The results suggested that the only significant predictor of the onset of AD was changes in early years’ ADL (b = 20.253, z = 2.761, p < .05). However, the result of the sensitivity analysis (b = 7.562, z = 1.900, p =.058), which included more control variables and increased the observation period of ADL, are not supported this finding. The model also estimated whether the variances of random effect vary by Level-2 variables. The results suggested that the variances associated with random slopes were approximately zero, suggesting that the relationship between early years’ ADL were not influenced bysociodemographic factors. Conclusion: The finding indicated that an increase in changes in ADL leads to an increase in the probability of onset AD in the future. However, this finding is not support in a broad observation period model. The study also failed to reject the hypothesis that the sociodemographic factors explained significant amounts of variance in random effect. Recommendations were then made for future research and practice based on these limitations and the significance of the findings.

Keywords: alzheimer’s disease, epidemiology, moderation, multilevel modeling

Procedia PDF Downloads 137
12181 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach

Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas

Abstract:

Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.

Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)

Procedia PDF Downloads 79
12180 Tuned Mass Damper Effects of Stationary People on Structural Damping of Footbridge Due to Dynamic Interaction in Vertical Motion

Authors: M. Yoneda

Abstract:

It is known that stationary human occupants act as dynamic mass-spring-damper systems and can change the modal properties of civil engineering structures. This paper describes the full scale measurement to explain the tuned mass damper effects of stationary people on structural damping of footbridge with center span length of 33 m. A human body can be represented by a lumped system consisting of masses, springs, and dashpots. Complex eigenvalue calculation is also conducted by using ISO5982:1981 human model (two degree of freedom system). Based on experimental and analytical results for the footbridge with the stationary people in the standing position, it is demonstrated that stationary people behave as a tuned mass damper and that ISO5982:1981 human model can explain the structural damping characteristics measured in the field.

Keywords: dynamic interaction, footbridge, stationary people, structural damping

Procedia PDF Downloads 279
12179 A Framework for Defining Innovation Districts: A Case Study of 22@ Barcelona

Authors: Arnault Morisson

Abstract:

Innovation districts are being implemented as urban regeneration strategies in cities as diverse as Barcelona (Spain), Boston (Massachusetts), Chattanooga (Tennessee), Detroit (Michigan), Medellin (Colombia), and Montréal (Canada). Little, however, is known about the concept. This paper aims to provide a framework to define innovation districts. The research methodology is based on a qualitative approach using 22@ Barcelona as a case study. 22@ Barcelona was the first innovation district ever created and has been a model for the innovation districts of Medellin (Colombia) and Boston (Massachusetts) among others. Innovation districts based on the 22@ Barcelona’s model can be defined as top-down urban innovation ecosystems designed around four multilayered and multidimensional models of innovation: urban planning, productive, collaborative, and creative, all coordinated under strong leadership, with the ultimate objectives to accelerate the innovation process and competitiveness of a locality. Innovation districts aim to respond to a new economic paradigm in which economic production flows back to cities.

Keywords: innovation ecosystem, governance, technology park, urban planning, urban policy, urban regeneration

Procedia PDF Downloads 377
12178 Effect of Dual-Oligo Saccharide on Loperamide-Induced Constipation in Rat Model

Authors: So Hyun Ahn, Geu Rim Seo, Byungsoo Shin, Kwang-Won Yu, Hyung Joo Suh, Sung Hee Han

Abstract:

We investigated the effects of GOS, lactulose and DuOligo in loperamide-induced constipation rat model. Dual-Oligo saccharide (DuOligo) was composed with galacto-oligosaccharide (GOS) and lactulose. GOS is an important dietary prebiotics that affects intestinal microbiota and barrier functions to have beneficial effect and lactulose is used as a laxative to treat constipation. To study the DuOligo, after adaptation period of four weeks of Spraque-Dawley rats, loperamide (5 mg/kg, twice per day) was injected to induce constipation for 1 week. DuOligo increased the fecal pellet amount, fecal weight, and water content of feces in rats with loperamide-induced constipation. DuOligo groups tended to produce more total fatty acid than that of observed for the control group. Gastrointestinal transit ratio and length and area of intestinal mucosa increased after treatment with DuOligo in loperamide-induced rats. These results showed that oral administration of DuOligo significantly modulated intestinal peristalsis.

Keywords: constipation, DuOligo, GOS, lactulose

Procedia PDF Downloads 415
12177 The Effects of Wood Ash on Ignition Point of Wood

Authors: K. A. Ibe, J. I. Mbonu, G. K. Umukoro

Abstract:

The effects of wood ash on the ignition point of five common tropical woods in Nigeria were investigated. The ash and moisture contents of the wood saw dust from Mahogany (Khaya ivorensis), Opepe (Sarcocephalus latifolius), Abura (Hallealedermannii verdc), Rubber (Heavea brasilensis) and Poroporo (Sorghum bicolour) were determined using a furnace (Vecstar furnaces, model ECF2, serial no. f3077) and oven (Genlab laboratory oven, model MINO/040) respectively. The metal contents of the five wood sawdust ash samples were determined using a Perkin Elmer optima 3000 dv atomic absorption spectrometer while the ignition points were determined using Vecstar furnaces model ECF2. Poroporo had the highest ash content, 2.263 g while rubber had the least, 0.710 g. The results for the moisture content range from 2.971 g to 0.903 g. Magnesium metal had the highest concentration of all the metals, in all the wood ash samples; with mahogany ash having the highest concentration, 9.196 ppm while rubber ash had the least concentration of magnesium metal, 2.196 ppm. The ignition point results showed that the wood ashes from mahogany and opepe increased the ignition points of the test wood samples when coated on them while the ashes from poroporo, rubber and abura decreased the ignition points of the test wood samples when coated on them. However, Opepe saw dust ash decreased the ignition point in one of the test wood samples, suggesting that the metal content of the test wood sample was more than that of the Opepe saw dust ash. Therefore, Mahogany and Opepe saw dust ashes could be used in the surface treatment of wood to enhance their fire resistance or retardancy. However, the caution to be exercised in this application is that the metal content of the test wood samples should be evaluated as well.

Keywords: ash, fire, ignition point, retardant, wood saw dust

Procedia PDF Downloads 394
12176 A Review of Pothole Detection Using Different Technologies

Authors: Ashwini Jarali, Prajwal Lalpotu, Shreya Jadhav, Snehal Kavathekar, Sanskruti Lad

Abstract:

This paper reviews recent advancements in pothole detection technologies, comparing various methods, including deep learning models like YOLO (You Only Look Once) and SSD (Single Shot Detector) and UAV-based systems with multispectral imaging. YOLO v8 Nano emerges as a highly effective model, balancing speed and accuracy in real-time detection, while SSD demonstrates superior precision in certain scenarios. Additionally, UAVs enhance detection by providing early insights into asphalt damage. Image processing techniques and manually labeled datasets are also employed to improve model training and accuracy. The paper evaluates the strengths and limitations of these methods, examining factors like computational efficiency, environmental adaptability, and real-time application. It further explores future directions in this field, focusing on optimizing detection techniques and integrating advanced sensors to enhance road safety and maintenance.

Keywords: YOLO(You Look Only Once), Pothole Detection, YOLOV8, YOLOV5

Procedia PDF Downloads 11
12175 Production and Distribution Network Planning Optimization: A Case Study of Large Cement Company

Authors: Lokendra Kumar Devangan, Ajay Mishra

Abstract:

This paper describes the implementation of a large-scale SAS/OR model with significant pre-processing, scenario analysis, and post-processing work done using SAS. A large cement manufacturer with ten geographically distributed manufacturing plants for two variants of cement, around 400 warehouses serving as transshipment points, and several thousand distributor locations generating demand needed to optimize this multi-echelon, multi-modal transport supply chain separately for planning and allocation purposes. For monthly planning as well as daily allocation, the demand is deterministic. Rail and road networks connect any two points in this supply chain, creating tens of thousands of such connections. Constraints include the plant’s production capacity, transportation capacity, and rail wagon batch size constraints. Each demand point has a minimum and maximum for shipments received. Price varies at demand locations due to local factors. A large mixed integer programming model built using proc OPTMODEL decides production at plants, demand fulfilled at each location, and the shipment route to demand locations to maximize the profit contribution. Using base SAS, we did significant pre-processing of data and created inputs for the optimization. Using outputs generated by OPTMODEL and other processing completed using base SAS, we generated several reports that went into their enterprise system and created tables for easy consumption of the optimization results by operations.

Keywords: production planning, mixed integer optimization, network model, network optimization

Procedia PDF Downloads 75
12174 Numerical Prediction of Bearing Strength on Composite Bolted Joint Using Three Dimensional Puck Failure Criteria

Authors: M. S. Meon, M. N. Rao, K-U. Schröder

Abstract:

Mechanical fasteners especially bolting is commonly used in joining carbon-fiber reinforced polymer (CFRP) composite structures due to their good joinability and easy for maintenance characteristics. Since this approach involves with notching, a proper progressive damage model (PDM) need to be implemented and verified to capture existence of damages in the structure. A three dimensional (3D) failure criteria of Puck is established to predict the ultimate bearing failure of such joint. The failure criteria incorporated with degradation scheme are coded based on user subroutine executed in Abaqus. Single lap joint (SLJ) of composite bolted joint is used as target configuration. The results revealed that the PDM adopted here could sufficiently predict the behaviour of composite bolted joint up to ultimate bearing failure. In addition, mesh refinement near holes increased the accuracy of predicted strength as well as computational effort.

Keywords: bearing strength, bolted joint, degradation scheme, progressive damage model

Procedia PDF Downloads 506
12173 Performance Complexity Measurement of Tightening Equipment Based on Kolmogorov Entropy

Authors: Guoliang Fan, Aiping Li, Xuemei Liu, Liyun Xu

Abstract:

The performance of the tightening equipment will decline with the working process in manufacturing system. The main manifestations are the randomness and discretization degree increasing of the tightening performance. To evaluate the degradation tendency of the tightening performance accurately, a complexity measurement approach based on Kolmogorov entropy is presented. At first, the states of performance index are divided for calibrating the discrete degree. Then the complexity measurement model based on Kolmogorov entropy is built. The model describes the performance degradation tendency of tightening equipment quantitatively. At last, a study case is applied for verifying the efficiency and validity of the approach. The research achievement shows that the presented complexity measurement can effectively evaluate the degradation tendency of the tightening equipment. It can provide theoretical basis for preventive maintenance and life prediction of equipment.

Keywords: complexity measurement, Kolmogorov entropy, manufacturing system, performance evaluation, tightening equipment

Procedia PDF Downloads 264
12172 A Semi-Implicit Phase Field Model for Droplet Evolution

Authors: M. H. Kazemi, D. Salac

Abstract:

A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.

Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method

Procedia PDF Downloads 488
12171 Students' Willingness to Accept Virtual Lecturing Systems: An Empirical Study by Extending the UTAUT Model

Authors: Ahmed Shuhaiber

Abstract:

The explosion of the World Wide Web and the electronic trend of university teaching have transformed the learning style to become more learner-centred, Which has popularized the digital delivery of mediated lectures as an alternative or an adjunct to traditional lectures. Despite its potential and popularity, virtual lectures have not been adopted yet in Jordanian universities. This research aimed to fill this gap by studying the factors that influence student’s willingness to accept virtual lectures in one Jordanian University. A quantitative approach was followed by obtaining 216 survey responses and statistically applying the UTAUT model with some modifications. Results revealed that performance expectancy, effort expectancy, social influences and self-efficacy could significantly influence student’s attitudes towards virtual lectures. Additionally, facilitating conditions and attitudes towards virtual lectures were found with significant influence on student’s intention to take virtual lectures. Research implications and future work were specified afterwards.

Keywords: E-learning, student willingness, UTAUT, virtual Lectures, web-based learning systems

Procedia PDF Downloads 294
12170 Estimation Model for Concrete Slump Recovery by Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

This paper is aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice, in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%- 1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameter, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.

Keywords: estimation model, second superplasticizer dosage, slump loss, slump recovery

Procedia PDF Downloads 201