Search results for: mechanical and tribological behaviour
791 Presenting Research-Based Mindfulness Tools for Corporate Wellness
Authors: Dana Zelicha
Abstract:
The objective of this paper is to present innovative mindfulness tools specifically designed by OWBA—The Well Being Agency for organisations and corporate wellness programmes. The OWBA Mindfulness Tools (OWBA-MT) consist of practical mindfulness exercises to educate and train employees and business leaders to think, feel, and act more mindfully. Among these cutting-edge interventions are Mindful Meetings, Mindful Decision Making and Unitasking activities, intended to cultivate mindful communication and compassion in the workplace and transform organisational culture. In addition to targeting CEO’s and leaders within large corporations, OWBA-MT is also directed at the needs of specific populations such as entrepreneurs’ resilience and women empowerment. The goals of the OWBA-MT are threefold: to inform, inspire and implement. The first goal is to inform participants about the relationship between workplace stress, distractibility and miscommunication in the framework of mindfulness. The second goal is for the audience to be inspired to share those practices with other members of their organisation. The final objective is to equip participants with the tools to foster a compassionate, mindful and well-balanced work environment. To assess these tools, a 6-week case study was conducted as part of an employee wellness programme for a large international corporation. The OWBA-MT were introduced in a workshop forum once-a-week, with participants practicing these tools both in the office and at home. The workshops occurred 1 day a week (2 hours each), with themes and exercises varying weekly. To reinforce practice at home, participants received reflection forms and guided meditations online. Materials were sent via-email at the same time each day to ensure consistency and participation. To evaluate the effectiveness of the mindfulness intervention, improvements in four categories were measured: listening skills, mindfulness levels, prioritising skills and happiness levels. These factors were assessed using online self-reported questionnaires administered at the start of the intervention, and then again 4-weeks following completion. The measures included the Mindfulness Attention Awareness Scale (MAAS), Listening Skills Inventory (LSI), Time Management Behaviour Scale (TMBS) and a modified version of the Oxford Happiness Questionnaire (OHQ). All four parameters showed significant improvements from the start of the programme to the 4-week follow-up. Participant testimonials exhibited high levels of satisfaction and the overall results indicate that the OWBA-MT intervention substantially impacted the corporation in a positive way. The implications of these results suggest that OWBA-MT can improve employees’ capacities to listen and work well with others, to manage time effectively, and to experience enhanced satisfaction both at work and in life. Although corporate mindfulness programmes have proven to be effective, the challenge remains the low engagement levels at home in between training sessions and to implement the tools beyond the scope of the intervention. OWBA-MT has offered an innovative approach to enforce engagement levels at home by sending daily online materials outside the workshop forum with a personalised response. The limitations also noteworthy to consider for future research include the afterglow effect and lack of generalisability, as this study was conducted on a small and fairly homogenous sample.Keywords: corporate mindfulness, listening skills, mindful leadership, mindfulness tools, organisational well being
Procedia PDF Downloads 247790 Design and Development of Power Sources for Plasma Actuators to Control Flow Separation
Authors: Himanshu J. Bahirat, Apoorva S. Janawlekar
Abstract:
Plasma actuators are essential for aerodynamic flow separation control due to their lack of mechanical parts, lightweight, and high response frequency, which have numerous applications in hypersonic or supersonic aircraft. The working of these actuators is based on the formation of a low-temperature plasma between a pair of parallel electrodes by the application of a high-voltage AC signal across the electrodes, after which air molecules from the air surrounding the electrodes are ionized and accelerated through the electric field. The high-frequency operation is required in dielectric discharge barriers to ensure plasma stability. To carry out flow separation control in a hypersonic flow, the optimal design and construction of a power supply to generate dielectric barrier discharges is carried out in this paper. In this paper, it is aspired to construct a simplified circuit topology to emulate the dielectric barrier discharge and study its various frequency responses. The power supply can generate high voltage pulses up to 20kV at the repetitive frequency range of 20-50kHz with an input power of 500W. The power supply has been designed to be short circuit proof and can endure variable plasma load conditions. Its general outline is to charge a capacitor through a half-bridge converter and then later discharge it through a step-up transformer at a high frequency in order to generate high voltage pulses. After simulating the circuit, the PCB design and, eventually, lab tests are carried out to study its effectiveness in controlling flow separation.Keywords: aircraft propulsion, dielectric barrier discharge, flow separation control, power source
Procedia PDF Downloads 132789 Complex Management of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy
Authors: Abdullah A. Al Qurashi, Hattan A. Hassani, Bader K. Alaslap
Abstract:
Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is an uncommon, inheritable cardiac disorder characterized by the progressive substitution of cardiac myocytes by fibro-fatty tissues. This pathologic substitution predisposes patients to ventricular arrhythmias and right ventricular failure. The underlying genetic defect predominantly involves genes encoding for desmosome proteins, particularly plakophilin-2 (PKP2). These aberrations lead to impaired cell adhesion, heightening the susceptibility to fibrofatty scarring under conditions of mechanical stress. Primarily, ARVD/C affects the right ventricle, but it can also compromise the left ventricle, potentially leading to biventricular heart failure. Clinical presentations can vary, spanning from asymptomatic individuals to those experiencing palpitations, syncopal episodes, and, in severe instances, sudden cardiac death. The establishment of a diagnostic criterion specifically tailored for ARVD/C significantly aids in its accurate diagnosis. Nevertheless, the task of early diagnosis is complicated by the disease's frequently asymptomatic initial stages, and the overall rarity of ARVD/C cases reported globally. In some cases, as exemplified by the adult female patient in this report, the disease may advance to terminal stages, rendering therapies like Ventricular Tachycardia (VT) ablation ineffective. This case underlines the necessity for increased awareness and understanding of ARVD/C to aid in its early detection and management. Through such efforts, we aim to decrease morbidity and mortality associated with this challenging cardiac disorder.Keywords: arrhythmogenic right ventricular dysplasia, cardiac disease, interventional cardiology, cardiac electrophysiology
Procedia PDF Downloads 63788 Effect of Sintering Time and Porosity on Microstructure, Mechanical and Corrosion Properties of Ti6Al15Mo Alloy for Implant Applications
Authors: Jyotsna Gupta, S. Ghosh, S. Aravindan
Abstract:
The requirement of artificial prostheses (such as hip and knee joints) has increased with time. Many researchers are working to develop new implants with improved properties such as excellent biocompatibility with no tissue reactions, corrosion resistance in body fluid, high yield strength and low elastic modulus. Further, the morphological properties of the artificial implants should also match with that of the human bone so that cell adhesion, proliferation and transportation of the minerals and nutrition through body fluid can be obtained. Present study attempts to make porous Ti6Al15Mo alloys through powder metallurgy route using space holder technique. The alloy consists of 6wt% of Al which was taken as α phase stabilizer and 15wt% Mo was taken as β phase stabilizer with theoretical density 4.708. Ammonium hydrogen carbonate is used as a space holder in order to generate the porosity. The porosity of these fabricated porous alloys was controlled by adding the 0, 50, 70 vol.% of the space holder content. Three phases were found in the microstructure: α, α_2 and β phase of titanium. Kirkendall pores are observed to be decreased with increase of holding time during sintering and parallelly compressive strength and elastic modulus value increased slightly. Compressive strength and elastic modulus of porous Ti-6Al-15Mo alloy (1.17 g/cm3 density) is found to be suitable for cancellous bone. Released ions from Ti-6Al-15Mo alloy are far below from the permissible limits in human body.Keywords: bone implant, powder metallurgy, sintering time, Ti-6Al-15Mo
Procedia PDF Downloads 150787 A Bayesian Parameter Identification Method for Thermorheological Complex Materials
Authors: Michael Anton Kraus, Miriam Schuster, Geralt Siebert, Jens Schneider
Abstract:
Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes.Keywords: bayesian parameter identification, generalized Maxwell model, linear viscoelasticity, thermorheological complex
Procedia PDF Downloads 266786 Mg and MgN₃ Cluster in Diamond: Quantum Mechanical Studies
Authors: T. S. Almutairi, Paul May, Neil Allan
Abstract:
The geometrical, electronic and magnetic properties of the neutral Mg center and MgN₃ cluster in diamond have been studied theoretically in detail by means of an HSE06 Hamiltonian that includes a fraction of the exact exchange term; this is important for a satisfactory picture of the electronic states of open-shell systems. Another batch of the calculations by GGA functionals have also been included for comparison, and these support the results from HSE06. The local perturbations in the lattice by introduced Mg defect are restricted in the first and second shell of atoms before eliminated. The formation energy calculated with HSE06 and GGA of single Mg agrees with the previous result. We found the triplet state with C₃ᵥ is the ground state of Mg center with energy lower than the singlet with C₂ᵥ by ~ 0.1 eV. The recent experimental ZPL (557.4 nm) of Mg center in diamond has been discussed in the view of present work. The analysis of the band-structure of the MgN₃ cluster confirms that the MgN₃ defect introduces a shallow donor level in the gap lying within the conduction band edge. This observation is supported by the EMM that produces n-type levels shallower than the P donor level. The formation energy of MgN₂ calculated from a 2NV defect (~ 3.6 eV) is a promising value from which to engineer MgN₃ defects inside the diamond. Ion-implantation followed by heating to about 1200-1600°C might induce migration of N related defects to the localized Mg center. Temperature control is needed for this process to restore the damage and ensure the mobilities of V and N, which demands a more precise experimental study.Keywords: empirical marker method, generalised gradient approximation, Heyd–Scuseria–Ernzerhof screened hybrid functional, zero phono line
Procedia PDF Downloads 119785 Mineral Slag Used as an Alternative of Cement in Concrete
Authors: Eskinder Desta Shumuye, Jun Zhao, Zike Wang
Abstract:
This paper summarizes the results of experimental studies carried out at Zhengzhou University, School of Mechanics and Engineering Science, research laboratory, on the performance of concrete produced by combining Ordinary Portland Cement (OPC) with Ground-Granulated Blast Furnace Slag (GGBS). Concrete specimens cast with OPC and various percentage of GGBS (0%, 30%, 50%, and 70%) were subjected to high temperature exposure and extensive experimental test reproducing basic freeze-thaw cycle and a chloride-ion attack to determine their combined effects within the concrete samples. From the experimental studies, comparisons were made on the physical, mechanical, and microstructural properties in compassion with ordinary Portland cement concrete (OPC). Further, durability of GGBS cement concrete, such as exposure to accelerated carbonation, chloride ion attack, and freeze-thaw action in compassion with various percentage of GGBS and ordinary Portland cement concrete of similar mixture composition was analyzed. The microstructure, mineralogical composition, and pore size distribution of concrete specimens were determined via Scanning Electron Microscopy (SEM) analysis and X-Ray Diffraction (XRD). The result demonstrated that when the exposure temperature increases from 200 ºC to 400 ºC, the residual compressive strength was fluctuating for all concrete group, and compressive strength and chloride ion exposure of the concrete decreased with the increasing of slag content. The SEM and EDS results showed an increase in carbonation rate with increasing in slag content.Keywords: accelerated carbonation, chloride-ion, concrete, ground-granulated blast furnace slag, GGBS, high-temperature
Procedia PDF Downloads 146784 Collagen Scaffold Incorporated with Macrotyloma uniflorum Plant Extracts as a–Burn/Wound Dressing Material, in Vitro and in Vivo Evaluation
Authors: Thangavelu Muthukumar, Thotapalli Parvathaleswara Sastry
Abstract:
Collagen is the most abundantly available connective tissue protein, which is being used as a biomaterial for various biomedical applications. Presently, fish wastes are disposed improperly which is causing serious environmental pollution resulting in offensive odour. Fish scales are promising source of Type I collagen. Medicinal plants have been used since time immemorial for treatment of various ailments of skin and dermatological disorders especially cuts, wounds, and burns. Developing biomaterials from the natural sources which are having wound healing properties within the search of a common man is the need of hour, particularly in developing and third world countries. With these objectives in view we have developed a wound dressing material containing fish scale collagen (FSC) incorporated with Macrotyloma uniflorum plant extract (PE). The wound dressing composite was characterized for its physiochemical properties using conventional methods. SEM image revealed that the composite has fibrous and porous surface which helps in transportation of oxygen as well as absorbing wound fluids. The biomaterial has shown 95% biocompatibility with required mechanical strength and has exhibited antimicrobial properties. This biomaterial has been used as a wound dressing material in experimental wounds of rats. The healing pattern was evaluated by macroscopic observations, panimetric studies, biochemical, histopathological observations. The results showed faster healing pattern in the wounds treated with CSPE compared to the other composites used in this study and untreated control. These experiments clearly suggest that CSPE can be used as wound/burn dressing materials.Keywords: collagen, wound dressing, Macrotyloma uniflorum, burn dressing
Procedia PDF Downloads 423783 Evaluation of the Efficiency of Nanomaterials in the Consolidation of Limestone
Authors: Mohamed Saad Gad Elzoghby
Abstract:
Nanomaterials are widely used nowadays for the consolidation of degraded archaeological limestone. It’s one of the most predominant stones in monumental buildings and statuary works. It is exposed to different weathering processes that cause degradation and the presence of deterioration pattern as cracks, fissures, and granular disintegration. Nanomaterials have been applied to limestone consolidation. Among these nanomaterials are nanolimes, i.e., dispersions of lime nanoparticles in alcohols, and nano-silica, i.e., dispersions of silica nanoparticles in water, promising consolidating products for limestone. It was investigated and applied to overcome the disadvantages of traditional consolidation materials such as lime water, water glass, and paraliod. So, researchers investigated and tested the effectiveness of nanomaterials as consolidation materials for limestone. The present study includes an evaluation of some nanomaterials in consolidation limestone stone in comparison with traditional consolidants. These consolidation materials are nano calcium hydroxide nanolime, and nanosilica. The latter is known commercially as Nano Estel and the former Known as Nanorestore compared to traditional consolidants Wacker OH (ethyl silicate) and Paraloid B72 (a copolymer of ethyl methacrylate and methyl acrylate). The study evaluated the consolidation effectiveness of nanomaterials and traditional consolidants by using followed methods, characterization of physical properties of stone, scanning electron microscopy (SEM), X-ray diffractometry, Fourier transforms infrared spectroscopy, and mechanical properties. The study confirmed that nanomaterials were better in the distribution and encapsulation of calcite grains in limestone, and traditional materials were better in improving the physical properties of limestone. It demonstrated that good results could be achieved through mixtures of nanomaterials and traditional consolidants.Keywords: nanomaterials, limestone, consolidation, evaluation, weathering, nanolime, nanosilica, scanning electron microscope
Procedia PDF Downloads 86782 Modeling of Cold Tube Drawing with a Fixed Plug by Finite Element Method and Determination of Optimum Drawing Parameters
Authors: E. Yarar, E. A. Guven, S. Karabay
Abstract:
In this study, a comprehensive simulation was made for the cold tube drawing with fixed plug. The cold tube drawing process is preferred due to its high surface quality and the high mechanical properties. In drawing processes applied to materials with low plastic deformability, cracks can occur on the surfaces and the process efficiency decreases. The aim of the work is to investigate the effects of different drawing parameters on drawing forces and stresses. In the simulations, optimum conditions were investigated for four different materials, Ti64Al4V, AA5052, AISI4140, and C365. One of the most important parameters for the cold drawing process is the die angle. Three dies were designed for the analysis with semi die angles of 5°, 10°, and 15°. Three different parameters were used for the friction coefficient between die and the material. In the simulations, reduction of area and the drawing speed is kept constant. Drawing is done in one pass. According to the simulation results, the highest drawing forces were obtained in Ti64Al4V. As the semi die angle increases, the drawing forces decrease. The change in semi die angle was most effective on Ti64Al4V. Increasing the coefficient of friction is another effect that increases the drawing forces. The increase in the friction coefficient has also increased in drawing stresses. The increase in die angle also increased the drawing stress distribution for the other three materials outside C365. According to the results of the analysis, it is found that the designed drawing die is suitable for drawing. The lowest drawing stress distribution and drawing forces were obtained for AA5052. Drawing die parameters have a direct effect on the results. In addition, lubricants used for drawing have a significant effect on drawing forces.Keywords: cold tube drawing, drawing force, drawing stress, semi die angle
Procedia PDF Downloads 172781 Fatigue Crack Growth Rate Measurement by Means of Classic Method and Acoustic Emission
Authors: V. Mentl, V. Koula, P. Mazal, J. Volák
Abstract:
Nowadays, the acoustic emission is a widely recognized method of material damage investigation, mainly in cases of cracks initiation and growth observation and evaluation. This is highly important in structures, e.g. pressure vessels, large steam turbine rotors etc., applied both in classic and nuclear power plants. Nevertheless, the acoustic emission signals must be correlated with the real crack progress to be able to evaluate the cracks and their growth by this non-destructive technique alone in real situations and to reach reliable results when the assessment of the structures' safety and reliability is performed and also when the remaining lifetime should be evaluated. The main aim of this study was to propose a methodology for evaluation of the early manifestations of the fatigue cracks and their growth and thus to quantify the material damage by acoustic emission parameters. Specimens made of several steels used in the power producing industry were subjected to fatigue loading in the low- and high-cycle regimes. This study presents results of the crack growth rate measurement obtained by the classic compliance change method and the acoustic emission signal analysis. The experiments were realized in cooperation between laboratories of Brno University of Technology and West Bohemia University in Pilsen within the solution of the project of the Czech Ministry of Industry and Commerce: "A diagnostic complex for the detection of pressure media and material defects in pressure components of nuclear and classic power plants" and the project “New Technologies for Mechanical Engineering”.Keywords: fatigue, crack growth rate, acoustic emission, material damage
Procedia PDF Downloads 375780 Effect of Temperature on the Properties of Cement Paste Modified with Nanoparticles
Authors: Karine Pimenta Teixeira, Jessica Flores, Isadora PerdigãO Rocha, Leticia De Sá Carneiro, Mahsa Kamali, Ali Ghahremaninezhad
Abstract:
The advent of nanotechnology has enabled innovative solutions towards improving the behavior of infrastructure materials. Nanomaterials have the potential to revolutionize the construction industry by improving the performance and durability of construction materials, as well as imparting new functionalities to these materials. Due to variability in the environmental temperature during mixing and curing of cementitious materials in practice, it is important to understand how curing temperature influences the behavior of cementitious materials. In addition, high temperature curing is relevant in applications such as oil well cement and precast industry. Knowledge of the influence of temperature on the performance of cementitious materials modified with nanoparticles is important in the nanoengineering of cementitious materials in applications such as oil well cement and precast industry. This presentation aims to investigate the influence of temperature on the hydration, mechanical properties and durability of cementitious materials modified with TiO2 nanoparticles. It was found that temperature improved the early hydration. The cement pastes cured at high temperatures showed an increase in the compressive strength at early age but the strength gain decreased at late ages. The electrical resistivity of the cement pastes cured at high temperatures was shown to decrease more noticeably at late ages compared to that of the room temperature cured cement paste. SEM examination indicated that hydration product was more uniformly distributed in the microstructure of the cement paste cured at room temperature compared to the cement pastes cured at high temperature.Keywords: cement paste, nanoparticles, temperature, hydration
Procedia PDF Downloads 320779 Development of Hierarchically Structured Tablets with 3D Printed Inclusions for Controlled Drug Release
Authors: Veronika Lesáková, Silvia Slezáková, František Štěpánek
Abstract:
Drug dosage forms consisting of multi-unit particle systems (MUPS) for modified drug release provide a promising route for overcoming the limitation of conventional tablets. Despite the conventional use of pellets as units for MUP systems, 3D printed polymers loaded with a drug seem like an interesting candidate due to the control over dosing that 3D printing mechanisms offer. Further, 3D printing offers high flexibility and control over the spatial structuring of a printed object. The final MUPS tablets include PVP and HPC as granulate with other excipients, enabling the compaction process of this mixture with 3D printed inclusions, also termed minitablets. In this study, we have developed the multi-step production process for MUPS tablets, including the 3D printing technology. The MUPS tablets with incorporated 3D printed minitablets are a complex system for drug delivery, providing modified drug release. Such structured tablets promise to reduce drug fluctuations in blood, risk of local toxicity, and increase bioavailability, resulting in an improved therapeutic effect due to the fast transfer into the small intestine, where particles are evenly distributed. Drug loaded 3D printed minitablets were compacted into the excipient mixture, influencing drug release through varying parameters, such as minitablets size, matrix composition, and compaction parameters. Further, the mechanical properties and morphology of the final MUPS tablets were analyzed as many properties, such as plasticity and elasticity, can significantly influence the dissolution profile of the drug.Keywords: 3D printing, dissolution kinetics, drug delivery, hot-melt extrusion
Procedia PDF Downloads 98778 Study of the Non-isothermal Crystallization Kinetics of Polypropylene Homopolymer/Impact Copolymer Composites
Authors: Pixiang Wang, Shaoyang Liu, Yucheng Peng
Abstract:
Polypropylene (PP) is an essential material of numerous applications in different industrial sectors, including packaging, construction, and automotive. Because the application of homopolypropylene (HPP) is limited by its relatively low impact strength and high embrittlement temperature, various types of impact copolymer PP (ICPP) that incorporate elastomers/rubbers into HPP to increase impact strength have been successfully commercialized. Crystallization kinetics of an isotactic HPP, an ICPP, and their composites were studied in this work understand the composites’ behaviors better. The Avrami-Jeziorny model was used to describe the crystallization process. For most samples, the Avrami exponent, n, was greater than 3, indicating the crystal grew in three dimensions with spherical geometry. However, the n value could drop below 3 when the ICPP content was 80 wt.% or higher and the cooling rate was 7.5°C/min or lower, implying that the crystals could grow in two dimensions and some lamella structures could be formed under those conditions. The nucleation activity increased with the increase of the ICPP content, demonstrating that the rubber phase in the ICPP acted as a nucleation agent and facilitated the nucleation process. The decrease in crystallization rate after the ICPP content exceeded 60 wt.% might be caused by the excessive amount of crystal nuclei induced by the high ICPP content, which caused strong crystal-crystal interactions and limited the crystal growth space. The nucleation activity and the n value showed high correlations to the mechanical and thermal properties of the materials. The quantitative study of the kinetics of crystallization in this work could be a helpful reference for manufacturing ICPP and HPP/ICPP mixtures.Keywords: polypropylene, crystallization kinetics, Avrami-Jeziorny model, crystallization activation energy, Nucleation activity
Procedia PDF Downloads 91777 Biophysical Consideration in the Interaction of Biological Cell Membranes with Virus Nanofilaments
Authors: Samaneh Farokhirad, Fatemeh Ahmadpoor
Abstract:
Biological membranes are constantly in contact with various filamentous soft nanostructures that either reside on their surface or are being transported between the cell and its environment. In particular, viral infections are determined by the interaction of viruses (such as filovirus) with cell membranes, membrane protein organization (such as cytoskeletal proteins and actin filament bundles) has been proposed to influence the mechanical properties of lipid membranes, and the adhesion of filamentous nanoparticles influence their delivery yield into target cells or tissues. The goal of this research is to integrate the rapidly increasing but still fragmented experimental observations on the adhesion and self-assembly of nanofilaments (including filoviruses, actin filaments, as well as natural and synthetic nanofilaments) on cell membranes into a general, rigorous, and unified knowledge framework. The global outbreak of the coronavirus disease in 2020, which has persisted for over three years, highlights the crucial role that nanofilamentbased delivery systems play in human health. This work will unravel the role of a unique property of all cell membranes, namely flexoelectricity, and the significance of nanofilaments’ flexibility in the adhesion and self-assembly of nanofilaments on cell membranes. This will be achieved utilizing a set of continuum mechanics, statistical mechanics, and molecular dynamics and Monte Carlo simulations. The findings will help address the societal needs to understand biophysical principles that govern the attachment of filoviruses and flexible nanofilaments onto the living cells and provide guidance on the development of nanofilament-based vaccines for a range of diseases, including infectious diseases and cancer.Keywords: virus nanofilaments, cell mechanics, computational biophysics, statistical mechanics
Procedia PDF Downloads 101776 Advanced Metallic Frameworks for Development of Robust and Efficient Water Splitting Electrodes
Authors: Tam D. Nguyen, Joe Varga, Douglas MacFarlane, Alexandr Simonov
Abstract:
Development of advanced technologies for green hydrogen generation from renewables is of key strategic importance to global future energy security and economic growth. Renewable-powered water electrolysis (WE) is considered as the most effective of the sustainable methods for hydrogen generation at scale. Currently, the greatest challenge of hydrogen production via water electrolysis is the insufficiently high efficiency. In which, the energy loss associated with the conversion of water to hydrogen is approximately 40-60%, with 30-35% associated with the electrolysis itself and 10-12% with gas compression and transportation. Hence, development of an energy-efficient water electrolyser that can generate hydrogen at high pressure will address both of these major challenges. This requires the development of advanced electrode configuration of the water electrolysis cell. Herein, we developed a highly-ordered interconnected structure of the metallic inverse-opal (IO) frameworks based on low cost materials, e.g. Cu, Ni, Fe, Co. The water electrolysis electrodes based on these frameworks can provide excellent mechanical strength required for the application under conditions of extreme pressure, as well as outstanding catalytic performance through the exceptional high surface area and high electrical conductivity. For example, NiFe layered double hydroxide (LDH) catalyst deposited on Cu IO is able to reach the oxygen evolution reaction (OER) catalytic performance up to the rates of > 100 mA cm−2 (>727A gcatalyst-1) at an overpotential of ~0.3 V. This high performance is achieved with only few micron-thick catalyst layers, in contrast to similarly performance of 103-fold thicker electrodes based on foams and other substrates.Keywords: oxygen evolution reaction, support materials, mass transport, NiFe LDH
Procedia PDF Downloads 11775 De-convolution Based IVIVC Correlation for Tacrolimus ER Tablet (Narrow Therapeutic Index Drug) With Widening of Dissolution Prediction for Virtual Bioequivalence
Authors: Sajad Khaliq Dar, Dipanjan Goswami, Arshad H. Khuroo, Mohd. Akhtar, Pulak Kumar Metia, Sudershan Kumar
Abstract:
Background: Development of modified-release oral dosage formulations (OSD) like tacrolimus in narrow therapeutic categories, together with high levels of intra-individual variability, impose greater challenges. The risk assessment for bioequivalence studies requires developing a suitable design through pilot studies involving the comparison of multiple formulations of the same product with a marketed product to understand the in-vivo behaviour. These formulations could have varying coating levels and other minor quantitative differences to achieve the desired release rate for the final product. Although small-scale studies are critical before the conduct of full-scale Pharmacokinetic (PK) studies, regulatory agencies evaluate critical bioavailability attributes (CBA) before approving the submitted dossiers. Since Tacrolimus is a BCS Class II drug, therefore developing the extended-release formulation, in addition to associated challenges, provides an opportunity to present the In vitro-in vivo correlations (IVIVC) to regulatory agencies, not only to exhibit product quality but also to reduce the burden of additional human trials and cost involved to them for bringing the product to market. Objective: The objective of this study was to develop a Level-A In vitro - In vivo Correlation (IVIVC) model for Sun Pharma’s test formulation Tacrolimus ER tablet 4mg and extend its application to a widened dissolution window of 25% at 2.5 hours (critical release time) sampling time point. Experimental Procedure: Post the conduct of two in-vivo studies, a pilot study evaluating two test prototypes on 24 subjects (under fasting) and a pivotal study having 50 subjects (under fasting), the observed pharmacokinetic profile was used for IVIVC model development. The dissolution media used was 0.005% HPC + 0.25% SLS in Water 900 mL at pH 4.50 using USP II (Paddle) apparatus with alternative sinkers operated at 100 RPM. The sampling time points were chosen to mimic the drug absorption in vivo. The dissolution best fit to data was obtained using Makoid Banakar kinetics. Then deconvolution, anchoring to concepts of the single compartment by Wagner Nelson method was applied for tacrolimus slow-release formulation batch with film coating weight build-up of 5.4% (used in pilot bio study), medium release with Hypromellose (retard-release exhibit batch used in the pivotal study) and fast release formulation batch with film coating weight build-up of 5.05% (used in pilot bio study). Results and Conclusion: The results were deemed acceptable as prediction errors for internal and external validation were < 3% depicting in-vitro drug release mimics in-vivo absorption. Moreover, the prediction result for the Test/Reference ratio was <15% for all test formulations and widening dissolution (i.e., 39%-64% drug release at 2.5hrs) predictions were well within 80-125% when compared against Envarsus XR (reference drug). This IVIVC-validated model can be used in the futuristic exploration of dose titration with 1mg tacrolimus ER OSD as a surrogate for In-vivo bioequivalence trials.Keywords: pharmacokinetics, BCS, oral dosage form, Bioavailability, intra-individual variability
Procedia PDF Downloads 11774 The Influence of Microscopic Features on the Self-Cleaning Ability of Developed 3D Printed Fabric-Like Structures Using Different Printing Parameters
Authors: Ayat Adnan Atwah, Muhammad A. Khan
Abstract:
Self-cleaning surfaces are getting significant attention in industrial fields. Especially for textile fabrics, it is observed that self-cleaning textile fabric surfaces are created by manipulating the surface features with the help of coatings and nanoparticles, which are considered costly and far more complicated. However, controlling the fabrication parameters of textile fabrics at the microscopic level by exploring the potential for self-cleaning has not been addressed. This study aimed to establish the context of self-cleaning textile fabrics by controlling the fabrication parameters of the textile fabric at the microscopic level. Therefore, 3D-printed textile fabrics were fabricated using the low-cost fused filament fabrication (FFF) technique. The printing parameters, such as orientation angle (O), layer height (LH), and extruder width (EW), were used to control the microscopic features of the printed fabrics. The combination of three printing parameters was created to provide the best self-cleaning textile fabric surface: (LH) (0.15, 0.13, 0.10 mm) and (EW) (0.5, 0.4, 0.3 mm) along with two different (O) of (45º and 90º). Three different thermoplastic flexible filament materials were used: (TPU 98A), (TPE felaflex), and (TPC flex45). The printing parameters were optimised to get the optimum self-cleaning ability of the printed specimens. Furthermore, the impact of these characteristics on mechanical strength at the fabric-woven structure level was investigated. The study revealed that the printing parameters significantly affect the self-cleaning properties after adjusting the selected combination of layer height, extruder width, and printing orientation. A linear regression model was effectively developed to demonstrate the association between 3D printing parameters (layer height, extruder width, and orientation). According to the experimental results, (TPE felaflex) has a better self-cleaning ability than the other two materials.Keywords: 3D printing, self-cleaning fabric, microscopic features, printing parameters, fabrication
Procedia PDF Downloads 96773 Microbioreactor System for Cell Behavior Analysis Focused on Nerve Tissue Engineering
Authors: Yusser Olguín, Diego Benavente, Fernando Dorta, Nicole Orellana, Cristian Acevedo
Abstract:
One of the greatest challenges of tissue engineering is the generation of materials in which the highest possible number of conditions can be incorporated to stimulate the proliferation and differentiation of cells, which will be transformed together with the material into new functional tissue. In this sense, considering the properties of microfluidics and its relationship with cellular micro-environments, the possibility of controlling flow patterns and the ability to design diverse patterns in the chips, a microfluidic cell culture system can be established as a means for the evaluation of the effect of different parameters in a controlled and precise manner. Specifically in relation to the study and development of alternatives in peripheral nervous tissue engineering, it is necessary to consider different physical and chemical neurotrophic stimuli that promote cell growth and differentiation. Chemical stimuli include certain vitamins, glucocorticoids, gangliosides, and growth factors, while physical stimuli include topological stimuli, mechanical forces of the cellular environment and electrical stimulation. In this context, the present investigation shows the results of cell stimulation in a microbioreactor using electrical and chemical stimuli, where the differentiation of PC12 cells as a neuronal model is evidenced by neurite expression, dependent on the stimuli and their combination. The results were analysed with a multi-factor statistical approach, showing several relationships and dependencies between different parameters. Chip design, operating parameters and concentrations of neurotrophic chemical factors were found to be preponderant, based on the characteristics of the electrical stimuli.Keywords: microfluidics, nerve tissue engineering, microbioreactor, electrical stimuli
Procedia PDF Downloads 91772 Evaluation of the Efficiency of Nanomaterials in Consolidation of Limestone
Authors: Mohamed Saad Gad Eloghby
Abstract:
Nanomaterials are widely used nowadays for the consolidation of degraded archaeological limestone. It’s one of the most predominant stones in monumental buildings and statuary works. Exposure to different weathering processes caused degradation and the presence of deterioration pattern as cracks, fissures, and granular disintegration. Nanomaterials have been applied to limestone consolidation. Among these nanomaterials are nanolimes, i.e., dispersions of lime nanoparticles in alcohols and nanosilica, i.e., dispersions of silica nanoparticles in water promising consolidating products for limestone. It was investigated and applied to overcome the disadvantages of traditional consolidation materials such as lime water, water glass and paraliod. So, researchers investigated and tested the effectiveness of nanomaterials as consolidation materials for limestone. The present study includes the evaluation of some nano materials in consolidation limestone stone in comparison with traditional consolidantes. These consolidation materials are nano calcium hydroxide nanolime and nanosilica. The latter is known commercially as Nano Estel and the former is known as Nanorestore compared to traditional consolidantes Wacker OH (ethyl silicate) and Paraloid B72 (a copolymer of ethyl methacrylate and methyl acrylate). The study evaluated the consolidation effectiveness of nanomaterials and traditional consolidantes by using followed methods, Characterization of physical properties of stone, Scanning electron microscopy (SEM), X-ray diffractometry, Fourier transform infrared spectroscopy and Mechanical properties. The study confirmed that nanomaterials were better in the distribution and encapsulation of calcite grains in limestone, and traditional materials were better in improving the physical properties of limestone. It demonstrated that good results can be achieved through mixtures of nanomaterials and traditional consolidants.Keywords: nanomaterials, limestone, consolidation, evaluation, weathering, nanolime, nanosilica, scanning electron microscope
Procedia PDF Downloads 80771 Effect of Alkaline Activator, Water, Superplasticiser and Slag Contents on the Compressive Strength and Workability of Slag-Fly Ash Based Geopolymer Mortar Cured under Ambient Temperature
Authors: M. Al-Majidi, A. Lampropoulos, A. Cundy
Abstract:
Geopolymer (cement-free) concrete is the most promising green alternative to ordinary Portland cement concrete and other cementitious materials. While a range of different geopolymer concretes have been produced, a common feature of these concretes is heat curing treatment which is essential in order to provide sufficient mechanical properties in the early age. However, there are several practical issues with the application of heat curing in large-scale structures. The purpose of this study is to develop cement-free concrete without heat curing treatment. Experimental investigations were carried out in two phases. In the first phase (Phase A), the optimum content of water, polycarboxylate based superplasticizer contents and potassium silicate activator in the mix was determined. In the second stage (Phase B), the effect of ground granulated blast furnace slag (GGBFS) incorporation on the compressive strength of fly ash (FA) and Slag based geopolymer mixtures was evaluated. Setting time and workability were also conducted alongside with compressive tests. The results showed that as the slag content was increased the setting time was reduced while the compressive strength was improved. The obtained compressive strength was in the range of 40-50 MPa for 50% slag replacement mixtures. Furthermore, the results indicated that increment of water and superplasticizer content resulted to retarding of the setting time and slight reduction of the compressive strength. The compressive strength of the examined mixes was considerably increased as potassium silicate content was increased.Keywords: fly ash, geopolymer, potassium silicate, slag
Procedia PDF Downloads 227770 Surface Nanostructure Developed by Ultrasonic Shot Peening and Its Effect on Low Cycle Fatigue Life of the IN718 Superalloy
Authors: Sanjeev Kumar, Vikas Kumar
Abstract:
Inconel 718 (IN718) is a high strength nickel-based superalloy designed for high-temperature applications up to 650 °C. It is widely used in gas turbines of jet engines and related aerospace applications because of its good mechanical properties and structural stability at elevated temperatures. Because of good performance ratio and excellent process capability, this alloy has been used predominantly for aeronautic engine components like compressor disc and compressor blade. The main precipitates that contribute to high-temperature strength of IN718 are γʹ Ni₃(Al, Ti) and mainly γʹʹ (Ni₃ Nb). Various processes have been used for modification of the surface of components, such as Laser Shock Peening (LSP), Conventional Shot Peening (SP) and Ultrasonic Shot Peening (USP) to induce compressive residual stress (CRS) and development of fine-grained structure in the surface region. Surface nanostructure by ultrasonic shot peening is a novel methodology of surface modification to improve the overall performance of structural components. Surface nanostructure was developed on the peak aged IN718 superalloy using USP and its effect was studied on low cycle fatigue (LCF) life. Nanostructure of ~ 49 to 73 nm was developed in the surface region of the alloy by USP. The gage section of LCF samples was USPed for 5 minutes at a constant frequency of 20 kHz using StressVoyager to modify the surface. Strain controlled cyclic tests were performed for non-USPed and USPed samples at ±Δεt/2 from ±0.50% to ±1.0% at strain rate (ė) 1×10⁻³ s⁻¹ under reversal loading (R=‒1) at room temperature. The fatigue life of the USPed specimens was found to be more than that of the non-USPed ones. LCF life of the USPed specimen at Δεt/2=±0.50% was enhanced by more than twice of the non-USPed specimen.Keywords: IN718 superalloy, nanostructure, USP, LCF life
Procedia PDF Downloads 119769 Weibull Cumulative Distribution Function Analysis with Life Expectancy Endurance Test Result of Power Window Switch
Authors: Miky Lee, K. Kim, D. Lim, D. Cho
Abstract:
This paper presents the planning, rationale for test specification derivation, sampling requirements, test facilities, and result analysis used to conduct lifetime expectancy endurance tests on power window switches (PWS) considering thermally induced mechanical stress under diurnal cyclic temperatures during normal operation (power cycling). The detail process of analysis and test results on the selected PWS set were discussed in this paper. A statistical approach to ‘life time expectancy’ was given to the measurement standards dealing with PWS lifetime determination through endurance tests. The approach choice, within the framework of the task, was explained. The present task was dedicated to voltage drop measurement to derive lifetime expectancy while others mostly consider contact or surface resistance. The measurements to perform and the main instruments to measure were fully described accordingly. The failure data from tests were analyzed to conclude lifetime expectancy through statistical method using Weibull cumulative distribution function. The first goal of this task is to develop realistic worst case lifetime endurance test specification because existing large number of switch test standards cannot induce degradation mechanism which makes the switches less reliable. 2nd goal is to assess quantitative reliability status of PWS currently manufactured based on test specification newly developed thru this project. The last and most important goal is to satisfy customer’ requirement regarding product reliability.Keywords: power window switch, endurance test, Weibull function, reliability, degradation mechanism
Procedia PDF Downloads 238768 Comparative Assessment of the Thermal Tolerance of Spotted Stemborer, Chilo partellus Swinhoe (Lepidoptera: Crambidae) and Its Larval Parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae)
Authors: Reyard Mutamiswa, Frank Chidawanyika, Casper Nyamukondiwa
Abstract:
Under stressful thermal environments, insects adjust their behaviour and physiology to maintain key life-history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we therefore investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. In laboratory experiments, we determined lethal temperature assays (upper and lower lethal temperatures) using direct plunge protocols in programmable water baths (Systronix, Scientific, South Africa), effects of ramping rate on critical thermal limits following standardized protocols using insulated double-jacketed chambers (‘organ pipes’) connected to a programmable water bath (Lauda Eco Gold, Lauda DR.R. Wobser GMBH and Co. KG, Germany), supercooling points (SCPs) following dynamic protocols using a Pico logger connected to a programmable water bath, heat knock-down time (HKDT) and chill-coma recovery (CCRT) time following static protocols in climate chambers (HPP 260, Memmert GmbH + Co.KG, Germany) connected to a camera (HD Covert Network Camera, DS-2CD6412FWD-20, Hikvision Digital Technology Co., Ltd, China). When exposed for two hours to a static temperature, lower lethal temperatures ranged -9 to 6; -14 to -2 and -1 to 4ºC while upper lethal temperatures ranged from 37 to 48; 41 to 49 and 36 to 39ºC for C. partellus eggs, larvae and C. sesamiae adults respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean SCPs for C. partellus larvae, pupae and adults were -11.82±1.78, -10.43±1.73 and -15.75±2.47 respectively with adults having the lowest SCPs. Heat knock-down time and chill-coma recovery time varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the later recovered significantly faster following chill-coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host-parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect-natural enemy interactions under rapidly changing thermal environments.Keywords: chill-coma recovery time, climate change, heat knock-down time, lethal temperatures, supercooling point
Procedia PDF Downloads 239767 Design of a Satellite Solar Panel Deployment Mechanism Using the Brushed DC Motor as Rotational Speed Damper
Authors: Hossein Ramezani Ali-Akbari
Abstract:
This paper presents an innovative method to control the rotational speed of a satellite solar panel during its deployment phase. A brushed DC motor has been utilized in the passive spring driven deployment mechanism to reduce the deployment speed. In order to use the DC motor as a damper, its connector terminals have been connected with an external resistance in a closed circuit. It means that, in this approach, there is no external power supply in the circuit. The working principle of this method is based on the back electromotive force (or back EMF) of the DC motor when an external torque (here the torque produced by the torsional springs) is coupled to the DC motor’s shaft. In fact, the DC motor converts to an electric generator and the current flows into the circuit and then produces the back EMF. Based on Lenz’s law, the generated current produced a torque which acts opposite to the applied external torque, and as a result, the deployment speed of the solar panel decreases. The main advantage of this method is to set an intended damping coefficient to the system via changing the external resistance. To produce the sufficient current, a gearbox has been assembled to the DC motor which magnifies the number of turns experienced by the DC motor. The coupled electro-mechanical equations of the system have been derived and solved, then, the obtained results have been presented. A full-scale prototype of the deployment mechanism has been built and tested. The potential application of brushed DC motors as a rotational speed damper has been successfully demonstrated.Keywords: back electromotive force, brushed DC motor, rotational speed damper, satellite solar panel deployment mechanism
Procedia PDF Downloads 329766 Theoretical Analysis of the Existing Sheet Thickness in the Calendering of Pseudoplastic Material
Authors: Muhammad Zahid
Abstract:
The mechanical process of smoothing and compressing a molten material by passing it through a number of pairs of heated rolls in order to produce a sheet of desired thickness is called calendering. The rolls that are in combination are called calenders, a term derived from kylindros the Greek word for the cylinder. It infects the finishing process used on cloth, paper, textiles, leather cloth, or plastic film and so on. It is a mechanism which is used to strengthen surface properties, minimize sheet thickness, and yield special effects such as a glaze or polish. It has a wide variety of applications in industries in the manufacturing of textile fabrics, coated fabrics, and plastic sheeting to provide the desired surface finish and texture. An analysis has been presented for the calendering of Pseudoplastic material. The lubrication approximation theory (LAT) has been used to simplify the equations of motion. For the investigation of the nature of the steady solutions that exist, we make use of the combination of exact solution and numerical methods. The expressions for the velocity profile, rate of volumetric flow and pressure gradient are found in the form of exact solutions. Furthermore, the quantities of interest by engineering point of view, such as pressure distribution, roll-separating force, and power transmitted to the fluid by the rolls are also computed. Some results are shown graphically while others are given in the tabulated form. It is found that the non-Newtonian parameter and Reynolds number serve as the controlling parameters for the calendering process.Keywords: calendering, exact solutions, lubrication approximation theory, numerical solutions, pseudoplastic material
Procedia PDF Downloads 152765 Aging-Related Changes in Calf Muscle Function: Implications for Venous Hemodynamic and the Role of External Mechanical Activation
Authors: Bhavatharani S., Boopathy V., Kavin S., Naveethkumar R.
Abstract:
Context: Resistance training with blood flow restriction (BFR) has increased in clinical rehabilitation due to the substantial benefits observed in augmenting muscle mass and strength using low loads. However, there is a great variability of training pressures for clinical populations as well as methods to estimate it. The aim of this study was to estimate the percentage of maximal BFR that could result by applying different methodologies based on arbitrary or individual occlusion levels using a cuff width between 9 and 13 cm. Design: A secondary analysis was performed on the combined databases of 2 previous larger studies using BFR training. Methods: To estimate these percentages, the occlusion values needed to reach complete BFR (100% limb occlusion pressure [LOP]) were estimated by Doppler ultrasound. Seventy-five participants (age 24.32 [4.86] y; weight: 78.51 [14.74] kg; height: 1.77 [0.09] m) were enrolled in the laboratory study for measuring LOP in the thigh, arm, or calf. Results: When arbitrary values of restriction are applied, a supra-occlusive LOP between 120% and 190% LOP may result. Furthermore, the application of 130% resting brachial systolic blood pressure creates a similar occlusive stimulus as 100% LOP. Conclusions: Methods using 100 mm Hg and the resting brachial systolic blood pressure could represent the safest application prescriptions as they resulted in applied pressures between 60% and 80% LOP. One hundred thirty percent of the resting brachial systolic blood pressure could be used to indirectly estimate 100% LOP at cuff widths between 9 and 13 cm. Finally, methodologies that use standard values of 200 and, 300 mm Hg far exceed LOP and may carry additional risk during BFR exercise.Keywords: lower limb rehabilitation, ESP32, pneumatics for medical, programmed rehabilitation
Procedia PDF Downloads 86764 Application of Grey Theory in the Forecast of Facility Maintenance Hours for Office Building Tenants and Public Areas
Authors: Yen Chia-Ju, Cheng Ding-Ruei
Abstract:
This study took case office building as subject and explored the responsive work order repair request of facilities and equipment in offices and public areas by gray theory, with the purpose of providing for future related office building owners, executive managers, property management companies, mechanical and electrical companies as reference for deciding and assessing forecast model. Important conclusions of this study are summarized as follows according to the study findings: 1. Grey Relational Analysis discusses the importance of facilities repair number of six categories, namely, power systems, building systems, water systems, air conditioning systems, fire systems and manpower dispatch in order. In terms of facilities maintenance importance are power systems, building systems, water systems, air conditioning systems, manpower dispatch and fire systems in order. 2. GM (1,N) and regression method took maintenance hours as dependent variables and repair number, leased area and tenants number as independent variables and conducted single month forecast based on 12 data from January to December 2011. The mean absolute error and average accuracy of GM (1,N) from verification results were 6.41% and 93.59%; the mean absolute error and average accuracy of regression model were 4.66% and 95.34%, indicating that they have highly accurate forecast capability.Keywords: rey theory, forecast model, Taipei 101, office buildings, property management, facilities, equipment
Procedia PDF Downloads 451763 Nanocomposites Based Micro/Nano Electro-Mechanical Systems for Energy Harvesters and Photodetectors
Authors: Radhamanohar Aepuru, R. V. Mangalaraja
Abstract:
Flexible electronic devices have drawn potential interest and provide significant new insights to develop energy conversion and storage devices such as photodetectors and nanogenerators. Recently, self-powered electronic systems have captivated huge attention for next generation MEMS/NEMS devices that can operate independently by generating built-in field without any need of external bias voltage and have wide variety of applications in telecommunication, imaging, environmental and defence sectors. The basic physical process involved in these devices are charge generation, separation, and charge flow across the electrodes. Many inorganic nanostructures have been exploring to fabricate various optoelectronic and electromechanical devices. However, the interaction of nanostructures and their excited charge carrier dynamics, photoinduced charge separation, and fast carrier mobility are yet to be studied. The proposed research is to address one such area and to realize the self-powered electronic devices. In the present work, nanocomposites of inorganic nanostructures based on ZnO, metal halide perovskites; and polyvinylidene fluoride (PVDF) based nanocomposites are realized for photodetectors and nanogenerators. The characterization of the inorganic nanostructures is carried out through steady state optical absorption and luminescence spectroscopies as well as X-ray diffraction and high-resolution transmission electron microscopy (TEM) studies. The detailed carrier dynamics is investigated using various spectroscopic techniques. The developed composite nanostructures exhibit significant optical and electrical properties, which have wide potential applications in various MEMS/NEMS devices such as photodetectors and nanogenerators.Keywords: dielectrics, nanocomposites, nanogenerators, photodetectors
Procedia PDF Downloads 133762 Pre-Transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel
Authors: Manendra Singh Parihar, Sandip Ghosh Chowdhury
Abstract:
Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its microstructure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel.Keywords: variant selection, reconstruction, EBSD, austenitic stainless steel, martensitic transformation
Procedia PDF Downloads 500