Search results for: multimodal data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25267

Search results for: multimodal data

20797 Mathematical Modelling of Wastewater Collection System in Cha-Am Municipality Using PCSWMM

Authors: Thawtar Htun, Kim N. Irvine, Ranjna Jindal

Abstract:

This study aimed at modelling the wastewater collection system in Cha-Am Municipality using PCSWMM to investigate the quantity of combined sewage delivered to the aeration lagoon treatment system (ALTS). Cha-Am is a small sea resort town in Petchaburi Province located about 175 km southwest of Bangkok and is facing increasing development so it is important to understand current system performance and plan for future build out. PCSWMM was calibrated using observed ALTS inflow data for the period 15 June to 20 July 2015. The model was validated using observed ALTS inflow data for the periods 19 July to 20 October 2015 and 1 October to 31 December 2015, respectively. The 1:1 lines between modeled and observed peak flow and event volume for the calibration events qualitatively showed good correspondence. The r2 values between modeled and observed peak flow (99%) and event volume (89%) also were strong.

Keywords: combined sewer system, mathematical modelling, PCSWMM, wastewater collection system

Procedia PDF Downloads 213
20796 Explanation of Sentinel-1 Sigma 0 by Sentinel-2 Products in Terms of Crop Water Stress Monitoring

Authors: Katerina Krizova, Inigo Molina

Abstract:

The ongoing climate change affects various natural processes resulting in significant changes in human life. Since there is still a growing human population on the planet with more or less limited resources, agricultural production became an issue and a satisfactory amount of food has to be reassured. To achieve this, agriculture is being studied in a very wide context. The main aim here is to increase primary production on a spatial unit while consuming as low amounts of resources as possible. In Europe, nowadays, the staple issue comes from significantly changing the spatial and temporal distribution of precipitation. Recent growing seasons have been considerably affected by long drought periods that have led to quantitative as well as qualitative yield losses. To cope with such kind of conditions, new techniques and technologies are being implemented in current practices. However, behind assessing the right management, there is always a set of the necessary information about plot properties that need to be acquired. Remotely sensed data had gained attention in recent decades since they provide spatial information about the studied surface based on its spectral behavior. A number of space platforms have been launched carrying various types of sensors. Spectral indices based on calculations with reflectance in visible and NIR bands are nowadays quite commonly used to describe the crop status. However, there is still the staple limit by this kind of data - cloudiness. Relatively frequent revisit of modern satellites cannot be fully utilized since the information is hidden under the clouds. Therefore, microwave remote sensing, which can penetrate the atmosphere, is on its rise today. The scientific literature describes the potential of radar data to estimate staple soil (roughness, moisture) and vegetation (LAI, biomass, height) properties. Although all of these are highly demanded in terms of agricultural monitoring, the crop moisture content is the utmost important parameter in terms of agricultural drought monitoring. The idea behind this study was to exploit the unique combination of SAR (Sentinel-1) and optical (Sentinel-2) data from one provider (ESA) to describe potential crop water stress during dry cropping season of 2019 at six winter wheat plots in the central Czech Republic. For the period of January to August, Sentinel-1 and Sentinel-2 images were obtained and processed. Sentinel-1 imagery carries information about C-band backscatter in two polarisations (VV, VH). Sentinel-2 was used to derive vegetation properties (LAI, FCV, NDWI, and SAVI) as support for Sentinel-1 results. For each term and plot, summary statistics were performed, including precipitation data and soil moisture content obtained through data loggers. Results were presented as summary layouts of VV and VH polarisations and related plots describing other properties. All plots performed along with the principle of the basic SAR backscatter equation. Considering the needs of practical applications, the vegetation moisture content may be assessed using SAR data to predict the drought impact on the final product quality and yields independently of cloud cover over the studied scene.

Keywords: precision agriculture, remote sensing, Sentinel-1, SAR, water content

Procedia PDF Downloads 125
20795 Apricot Insurance Portfolio Risk

Authors: Kasirga Yildirak, Ismail Gur

Abstract:

We propose a model to measure hail risk of an Agricultural Insurance portfolio. Hail is one of the major catastrophic event that causes big amount of loss to an insurer. Moreover, it is very hard to predict due to its strange atmospheric characteristics. We make use of parcel based claims data on apricot damage collected by the Turkish Agricultural Insurance Pool (TARSIM). As our ultimate aim is to compute the loadings assigned to specific parcels, we build a portfolio risk model that makes use of PD and the severity of the exposures. PD is computed by Spherical-Linear and Circular –Linear regression models as the data carries coordinate information and seasonality. Severity is mapped into integer brackets so that Probability Generation Function could be employed. Individual regressions are run on each clusters estimated on different criteria. Loss distribution is constructed by Panjer Recursion technique. We also show that one risk-one crop model can easily be extended to the multi risk–multi crop model by assuming conditional independency.

Keywords: hail insurance, spherical regression, circular regression, spherical clustering

Procedia PDF Downloads 251
20794 Factors Affecting Green Supply Chain Management of Lampang Ceramics Industry

Authors: Nattida Wannaruk, Wasawat Nakkiew

Abstract:

This research aims to study the factors that affect the performance of green supply chain management in the Lampang ceramics industry. The data investigation of this research was questionnaires which were gathered from 20 factories in the Lampang ceramics industry. The research factors are divided into five major groups which are green design, green purchasing, green manufacturing, green logistics and reverse logistics. The questionnaire has consisted of four parts that related to factors green supply chain management and general information of the Lampang ceramics industry. Then, the data were analyzed using descriptive statistic and priority of each factor by using the analytic hierarchy process (AHP). The understanding of factors affecting the green supply chain management of Lampang ceramics industry was indicated in the summary result along with each factor weight. The result of this research could be contributed to the development of indicators or performance evaluation in the future.

Keywords: Lampang ceramics industry, green supply chain management, analysis hierarchy process (AHP), factors affecting

Procedia PDF Downloads 332
20793 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.

Keywords: piecewise regression, bayesian, reversible jump MCMC, segmentation

Procedia PDF Downloads 373
20792 Cellular Architecture of Future Wireless Communication Networks

Authors: Mohammad Yahaghifar

Abstract:

Nowadays Wireless system designers have been facing the continuously increasing demand for high data rates and mobility required by new wireless applications. Evolving future communication network generation cellular wireless networks are envisioned to overcome the fundamental challenges of existing cellular networks, for example, higher data rates, excellent end-to-end performance, and user coverage in hot-spots and crowded areas with lower latency,energy consumption and cost per information transfer. In this paper we propose a potential cellular architecture that separates indoor and outdoor scenarios and discuss various promising technologies for future wireless communication systemssystems, such as massive MIMO, energy-efficient communications,cognitive radio networks, and visible light communications and we disscuse about 5G that is next generation of wireless networks.

Keywords: future challenges in networks, cellur architecture, visible light communication, 5G wireless technologies, spatial modulation, massiva mimo, cognitive radio network, green communications

Procedia PDF Downloads 488
20791 The Consumption of Sodium and Fat from Processed Foods

Authors: Pil Kyoo Jo, Jee Young Kim, Yu Jin Oh, Sohyun Park, Young Ha Joo, Hye Suk Kim, Semi Kang

Abstract:

When convenience drives daily food choices, the increased consumption of processed foods may be associated with the increased intakes of sodium and fat and further with the onset of chronic diseases. The purpose of this study was to investigate the levels of sodium, saturated fat, and calories intakes through processed foods and the dietary patterns among adult populations in South Korea. We used the nationally representative data from the 5th Korea National Health and Nutrition Examination Survey (KNHANES, 2010-2012) and a cross-sectional survey on the eating behaviors among university students(N=893, 380 men, 513 women) aged from 20 to 24 years. Results showed that South Koreans consumed 43.5% of their total food consumption from processed foods. The 24-hour recalls data showed that 77% of sodium, 60% of fats, 59% of saturated fat, and 44% of calories were consumed from processed food. The intake of processed foods increased by 1.7% in average since 2008 annually. Only 33% of processed food that respondents consumed had nutrition labeling. The data from university students showed that students selected processed foods in convenience store when eating alone compared to eating with someone else. Given the convenience and lack of time, more people will consume processed foods and it may impact their overall dietary intake and further their health. In order to help people to make healthier food choices, regulations and policies to reduce the potentially unhealthy nutrients of processed foods should be strengthened. This research was supported by the National Research Foundation of Korea for 2011 Korea-Japan Basic Scientific Cooperation Program. This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2015S1A5B6037369).

Keywords: sodium, fat, processed foods, diet trends

Procedia PDF Downloads 255
20790 The Incidence of Acetylcholine Receptor Antibody Positive Myasthenia Gravis in South Africa

Authors: Mombaur Busisiwe, Lesosky Maia, Liebenberg Lisa, Heckmann Jeannine

Abstract:

Introduction: To assess age- and gender-specific incidence rates (IR) of acetylcholine receptor (AChR)-antibody positive myasthenia gravis (MG) in South Africa, and geographical variation in incidence. Methods: IRs were calculated from positive AChR antibody laboratory data between 2011 and 2012, using 2011 population census data. Results:890 individuals were seropositive, for an annual IR of 8.5 per million. Age-standardized IR for early- (< 50) and late-onset (≥ 50) MG were 4.1 and 24 per million, respectively, and for juveniles, 4.3 per million. The IR between provinces ranged from 1 to 19 per million. Conclusions: In this Southern hemisphere African population, the overall IR and peak IR (in older men) for seropositive MG is comparable to that in Europe and North America, arguing against environmental factors. However, IRs may be higher among children with African genetic ancestry. Geographical variation in incidence underscores the importance of outreach programs for regions with limited resources.

Keywords: incidence rates (IR), acetylcholine receptor (AChR), myasthenia gravis (MG), South Africa

Procedia PDF Downloads 493
20789 Impact on the Results of Sub-Group Analysis on Performance of Recommender Systems

Authors: Ho Yeon Park, Kyoung-Jae Kim

Abstract:

The purpose of this study is to investigate whether friendship in social media can be an important factor in recommender system through social scientific analysis of friendship in popular social media such as Facebook and Twitter. For this purpose, this study analyzes data on friendship in real social media using component analysis and clique analysis among sub-group analysis in social network analysis. In this study, we propose an algorithm to reflect the results of sub-group analysis on the recommender system. The key to this algorithm is to ensure that recommendations from users in friendships are more likely to be reflected in recommendations from users. As a result of this study, outcomes of various subgroup analyzes were derived, and it was confirmed that the results were different from the results of the existing recommender system. Therefore, it is considered that the results of the subgroup analysis affect the recommendation performance of the system. Future research will attempt to generalize the results of the research through further analysis of various social data.

Keywords: sub-group analysis, social media, social network analysis, recommender systems

Procedia PDF Downloads 363
20788 Does Stock Markets Asymmetric Information Affect Foreign Capital Flows?

Authors: Farid Habibi Tanha, Mojtaba Jahanbazi, Morteza Foroutan, Rasidah Mohd Rashid

Abstract:

This paper depicts the effects of asymmetric information in determining capital inflows to be captured through stock market microstructure. The model can explain several stylized facts regarding the capital immobility. The first phase of the research involves in collecting and refining 150,000,000 daily data of 11 stock markets over a period of one decade in an effort to minimize the impact of survivorship bias. Three micro techniques were used to measure information asymmetries. The final phase analyzes the model through panel data approach. As a unique contribution, this research will provide valuable information regarding negative effects of information asymmetries in stock markets on attracting foreign investments. The results of this study can be directly considered by policy makers to monitor and control changes of capital flow in order to keep market conditions in a healthy manner, by preventing and managing possible shocks to avoid sudden reversals and market failures.

Keywords: asymmetric information, capital inflow, market microstructure, investment

Procedia PDF Downloads 321
20787 Data Model to Predict Customize Skin Care Product Using Biosensor

Authors: Ashi Gautam, Isha Shukla, Akhil Seghal

Abstract:

Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.

Keywords: biosensors, data model, machine learning, skin care

Procedia PDF Downloads 97
20786 A Study on the Conspicuous Consumption, Involvement and Physical and Mental Health of Pet Owners

Authors: Chi-Yueh Hsu, Hsuan-Liang Hsu, Hsiu-Hui Chiang

Abstract:

This study is to explore the relationship between the conspicuous consumption, leisure involvement and physical and mental health, and to understand the prediction of conspicuous consumption and leisure involvement to physical and mental health. The data was collected and analysed by purposive sampling, and the research objects were the dog walkers in Taiwan area. A total of 300 questionnaires were issued and after shaving the invalid questionnaire, a total of 246 valid samples were collected, and the effective rate was 82%.. The data were analyzed by correlation analysis and multiple stepwise regression analysis. The results showed that there was a significant correlation between conspicuous consumption and leisure involvement, and the conspicuous consumption and leisure involvement of dog walkers have a significant impact on physical and mental health, especially in self-expression, attractiveness and centrality of leisure involvement have a significant impact on physical and mental health.

Keywords: walking dog, attractiveness, self-expression, multiple stepwise regression analysis

Procedia PDF Downloads 261
20785 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.

Keywords: fire prediction, drone, smoke toxicity, analyser, fire management

Procedia PDF Downloads 89
20784 Associations and Interactions of Delivery Mode and Antibiotic Exposure with Infant Cortisol Level: A Correlational Study

Authors: Samarpreet Singh, Gerald Giesbrecht

Abstract:

Both c-section and antibiotic exposure are linked to gut microbiota imbalance in infants. Such disturbance is associated with the Hypothalamic-Pituitary-Adrenal (HPA) axis function. However, the literature only has contradicting evidence for the association between c-sections and the HPA axis. Therefore, this study aims to test if the mode of delivery and antibiotics exposure is associated with the HPA axis. Also, whether exposure to both interacts with the HPA-axis. It was hypothesized that associations and interactions would be observed. Secondary data analysis was used for this co-relational study. Data for the mode of delivery and antibiotics exposure variables were documented from hospital records or self-questionnaires. In addition, cortisol levels (Area under the curve with respect to increasing (AUCi) and Area under the curve with respect to ground (AUCg)) were based on saliva collected from three months old during the infant’s visit to the lab and after drawing blood. One-way and between-subject ANOVA analyses were run on data. No significant association between delivery mode and infant cortisol level was found, AUCi and AUCg, p > .05. Only the infant’s AUCg was found to be significantly higher if there were antibiotics exposure at delivery (p = .001) or their mothers were exposed during pregnancy (p < .05). Infants born by c-section and exposed to antibiotics at three months had higher AUCi than those born vaginally, p < .02. These results imply that antibiotic exposure before three months is associated with an infant’s stress response. The association might increase if antibiotic exposure occurs three months after a c-section birth. However, more robust and causal evidence in future studies is needed, given a variable group’s statistically weak sample size. Nevertheless, the results of this study still highlight the unintended consequences of antibiotic exposure during delivery and pregnancy.

Keywords: HPA-axis, antibiotics, c-section, gut-microbiota, development, stress

Procedia PDF Downloads 72
20783 A Psychosocial Impact of the Covid-19 Pandemic Among Frontline Workers and General Populations in Kathmandu

Authors: Nabin Prasad Joshi

Abstract:

A new variant of the coronavirus family found in the Wuhan city market of China is causing serious harm to human beings. After the WHO decided COVID-19 was a pandemic situation, everyone started to measure the prevention of infectious diseases according to WHO guidelines. It includes social distancing, isolation, quarantine, lockdown, sanitation, and masking, respectively. During this time, the researcher has observed the difficulties of cultivating the new normal in people in Nepal. People have perceived the single coronavirus differently; common populations and frontline workers have different perceptions of coronavirus. The researcher started to measure the psychosocial impact of the COVID-19 pandemic on frontline workers and general populations in Kathmandu valley. The total number of sample units for this research is 82; it includes 52 general populations and 30 frontline workers. These sample units are selected through convenient sampling and purposive sampling, respectively. This research is based on descriptive and exploratory design. DASS-21 of the Nepali version is a comprehensive data collection tool for depression, anxiety, and stress measurement in this research, and simultaneously the psychosocial checklist, key-informant interview, and case study have been done. Quantitative data are analyzed with the help of excel, and qualitative data are through thematic analysis. The study has shown that the occurrence of psychosocial issues among frontline workers is greater than in general populations. It is found that the informants with higher education status have greater psychosocial issues in comparison to low education status. In the context of a pandemic, family/friends’ support can function as a protective factor when at adequate levels.

Keywords: anxiety, depression, isolation, lockdown

Procedia PDF Downloads 77
20782 Stability of the Wellhead in the Seabed in One of the Marine Reservoirs of Iran

Authors: Mahdi Aghaei, Saeid Jamshidi, Mastaneh Hajipour

Abstract:

Effective factors on the mechanical wellbore stability are divided in to two categories: 1) Controllable factors, 2) Uncontrollable factors. The purpose of geo-mechanical modeling of wells is to determine the limit of controlled parameters change based on the stress regime at each point and by solving the governing equations the pore-elastic environment around the well. In this research, the mechanical analysis of wellbore stability was carried out for Soroush oilfield. For this purpose, the geo-mechanical model of the field is made using available data. This model provides the necessary parameters for obtaining the distribution of stress around the wellbore. Initially, a basic model was designed to perform various analysis, based on obtained data, using Abaqus software. All of the subsequent sensitivity analysis such as sensitivity analysis on porosity, permeability, etc. was done on the same basic model. The results obtained from these analysis gives various result such as: with the constant geomechanical parameters, and sensitivity analysis on porosity permeability is ineffective. After the most important parameters affecting the wellbore stability and instability are geo-mechanical parameters.

Keywords: wellbore stability, movement, stress, instability

Procedia PDF Downloads 203
20781 Verification of Dosimetric Commissioning Accuracy of Flattening Filter Free Intensity Modulated Radiation Therapy and Volumetric Modulated Therapy Delivery Using Task Group 119 Guidelines

Authors: Arunai Nambi Raj N., Kaviarasu Karunakaran, Krishnamurthy K.

Abstract:

The purpose of this study was to create American Association of Physicist in Medicine (AAPM) Task Group 119 (TG 119) benchmark plans for flattening filter free beam (FFF) deliveries of intensity modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT) in the Eclipse treatment planning system. The planning data were compared with the flattening filter (FF) IMRT & VMAT plan data to verify the dosimetric commissioning accuracy of FFF deliveries. AAPM TG 119 proposed a set of test cases called multi-target, mock prostate, mock head and neck, and C-shape to ascertain the overall accuracy of IMRT planning, measurement, and analysis. We used these test cases to investigate the performance of the Eclipse Treatment planning system for the flattening filter free beam deliveries. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two arc VMAT technique for both the beam deliveries (6 MV FF, 6MV FFF, 10 MV FF and 10 MV FFF). The planning objectives and dose were set as described in TG 119. The dose prescriptions for multi-target, mock prostate, mock head and neck, and C-shape were taken as 50, 75.6, 50 and 50 Gy, respectively. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC‑13) ion chamber. The composite planar dose and per-field gamma analysis were measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). FFF beam deliveries of IMRT and VMAT plans were comparable to flattening filter beam deliveries. Our planning and quality assurance results matched with TG 119 data. AAPM TG 119 test cases are useful to generate FFF benchmark plans. From the obtained data in this study, we conclude that the commissioning of FFF IMRT and FFF VMAT delivery were found within the limits of TG-119 and the performance of the Eclipse treatment planning system for FFF plans were found satisfactorily.

Keywords: flattening filter free beams, intensity modulated radiation therapy, task group 119, volumetric modulated arc therapy

Procedia PDF Downloads 146
20780 Estimation of Fouling in a Cross-Flow Heat Exchanger Using Artificial Neural Network Approach

Authors: Rania Jradi, Christophe Marvillet, Mohamed Razak Jeday

Abstract:

One of the most frequently encountered problems in industrial heat exchangers is fouling, which degrades the thermal and hydraulic performances of these types of equipment, leading thus to failure if undetected. And it occurs due to the accumulation of undesired material on the heat transfer surface. So, it is necessary to know about the heat exchanger fouling dynamics to plan mitigation strategies, ensuring a sustainable and safe operation. This paper proposes an Artificial Neural Network (ANN) approach to estimate the fouling resistance in a cross-flow heat exchanger by the collection of the operating data of the phosphoric acid concentration loop. The operating data of 361 was used to validate the proposed model. The ANN attains AARD= 0.048%, MSE= 1.811x10⁻¹¹, RMSE= 4.256x 10⁻⁶ and r²=99.5 % of accuracy which confirms that it is a credible and valuable approach for industrialists and technologists who are faced with the drawbacks of fouling in heat exchangers.

Keywords: cross-flow heat exchanger, fouling, estimation, phosphoric acid concentration loop, artificial neural network approach

Procedia PDF Downloads 198
20779 Economic Valuation of Emissions from Mobile Sources in the Urban Environment of Bogotá

Authors: Dayron Camilo Bermudez Mendoza

Abstract:

Road transportation is a significant source of externalities, notably in terms of environmental degradation and the emission of pollutants. These emissions adversely affect public health, attributable to criteria pollutants like particulate matter (PM2.5 and PM10) and carbon monoxide (CO), and also contribute to climate change through the release of greenhouse gases, such as carbon dioxide (CO2). It is, therefore, crucial to quantify the emissions from mobile sources and develop a methodological framework for their economic valuation, aiding in the assessment of associated costs and informing policy decisions. The forthcoming congress will shed light on the externalities of transportation in Bogotá, showcasing methodologies and findings from the construction of emission inventories and their spatial analysis within the city. This research focuses on the economic valuation of emissions from mobile sources in Bogotá, employing methods like hedonic pricing and contingent valuation. Conducted within the urban confines of Bogotá, the study leverages demographic, transportation, and emission data sourced from the Mobility Survey, official emission inventories, and tailored estimates and measurements. The use of hedonic pricing and contingent valuation methodologies facilitates the estimation of the influence of transportation emissions on real estate values and gauges the willingness of Bogotá's residents to invest in reducing these emissions. The findings are anticipated to be instrumental in the formulation and execution of public policies aimed at emission reduction and air quality enhancement. In compiling the emission inventory, innovative data sources were identified to determine activity factors, including information from automotive diagnostic centers and used vehicle sales websites. The COPERT model was utilized to ascertain emission factors, requiring diverse inputs such as data from the national transit registry (RUNT), OpenStreetMap road network details, climatological data from the IDEAM portal, and Google API for speed analysis. Spatial disaggregation employed GIS tools and publicly available official spatial data. The development of the valuation methodology involved an exhaustive systematic review, utilizing platforms like the EVRI (Environmental Valuation Reference Inventory) portal and other relevant sources. The contingent valuation method was implemented via surveys in various public settings across the city, using a referendum-style approach for a sample of 400 residents. For the hedonic price valuation, an extensive database was developed, integrating data from several official sources and basing analyses on the per-square meter property values in each city block. The upcoming conference anticipates the presentation and publication of these results, embodying a multidisciplinary knowledge integration and culminating in a master's thesis.

Keywords: economic valuation, transport economics, pollutant emissions, urban transportation, sustainable mobility

Procedia PDF Downloads 58
20778 Ambivalence in Embracing Artificial Intelligence in the Units of a Public Hospital in South Africa

Authors: Sanele E. Nene L., Lia M. Hewitt

Abstract:

Background: Artificial intelligence (AI) has a high value in healthcare, various applications have been developed for the efficiency of clinical operations, such as appointment/surgery scheduling, diagnostic image analysis, prognosis, prediction and management of specific ailments. Purpose: The purpose of this study was to explore, describe, contrast, evaluate, and develop the various leadership strategies as a conceptual framework, applied by public health Operational Managers (OMs) to embrace AI benefits, with the aim to improve the healthcare system in a public hospital. Design and Method: A qualitative, exploratory, descriptive and contextual research design was followed and a descriptive phenomenological approach. Five phases were followed to conduct this study. Phenomenological individual interviews and focus groups were used to collect data and a phenomenological thematic data analysis method was used. Findings and conclusion: Three themes surfaced as the experiences of AI by the OMs; Positive experiences related to AI, Management and leadership processes in AI facilitation, and Challenges related to AI.

Keywords: ambivalence, embracing, Artificial intelligence, public hospital

Procedia PDF Downloads 79
20777 Embedded Hw-Sw Reconfigurable Techniques For Wireless Sensor Network Applications

Authors: B. Kirubakaran, C. Rajasekaran

Abstract:

Reconfigurable techniques are used in many engineering and industrial applications for the efficient data transmissions through the wireless sensor networks. Nowadays most of the industrial applications are work for try to minimize the size and cost. During runtime the reconfigurable technique avoid the unwanted hang and delay in the system performance. In recent world Field Programmable Gate Array (FPGA) as one of the most efficient reconfigurable device and widely used for most of the hardware and software reconfiguration applications. In this paper, the work deals with whatever going to make changes in the hardware and software during runtime it’s should not affect the current running process that’s the main objective of the paper our changes be done in a parallel manner at the same time concentrating the cost and power transmission problems during data trans-receiving. Analog sensor (Temperature) as an input for the controller (PIC) through that control the FPGA digital sensors in generalized manner.

Keywords: field programmable gate array, peripheral interrupt controller, runtime reconfigurable techniques, wireless sensor networks

Procedia PDF Downloads 407
20776 Perceptions of Climate Change and Adaptation of Climate-Smart Technology by the Paddy Farmers: A Case Study of Kandy District in Sri Lanka

Authors: W. A. D. P. Wanigasundera, P. C. B. Alahakoon

Abstract:

Kandy district in Sri Lanka has small scale and rain-fed paddy farming, and highly vulnerable to climate change. In this study, the status of climate change was assessed using meteorological data and compared with the perceptions of paddy farming community. Factors affecting the adaptation to the climate smart farming were also assessed. Meteorological data for 33 years were collected and the changes over time compared with the perceptions of farmers. The temperature, rainfall and number of rainy days have increased in both locations. The onset of rains also has shifted. The perceptions of the majority of the farmers were in line with the actual changes. The knowledge and attitudes about the causes of climate change and adaptation were medium and related to level of adoption. Formulating effective communication strategies, and a collaborative approach involving state, private sector, civil society to make Sri Lankan agriculture ‘climate-smart’ is urgently needed.

Keywords: adaptation of climate-smart technology, climate change, perception, rain-fed paddy

Procedia PDF Downloads 332
20775 Trend Analysis of Annual Total Precipitation Data in Konya

Authors: Naci Büyükkaracığan

Abstract:

Hydroclimatic observation values ​​are used in the planning of the project of water resources. Climate variables are the first of the values ​​used in planning projects. At the same time, the climate system is a complex and interactive system involving the atmosphere, land surfaces, snow and bubbles, the oceans and other water structures. The amount and distribution of precipitation, which is an important climate parameter, is a limiting environmental factor for dispersed living things. Trend analysis is applied to the detection of the presence of a pattern or trend in the data set. Many trends work in different parts of the world are usually made for the determination of climate change. The detection and attribution of past trends and variability in climatic variables is essential for explaining potential future alteration resulting from anthropogenic activities. Parametric and non-parametric tests are used for determining the trends in climatic variables. In this study, trend tests were applied to annual total precipitation data obtained in period of 1972 and 2012, in the Konya Basin. Non-parametric trend tests, (Sen’s T, Spearman’s Rho, Mann-Kendal, Sen’s T trend, Wald-Wolfowitz) and parametric test (mean square) were applied to annual total precipitations of 15 stations for trend analysis. The linear slopes (change per unit time) of trends are calculated by using a non-parametric estimator developed by Sen. The beginning of trends is determined by using the Mann-Kendall rank correlation test. In addition, homogeneities in precipitation trends are tested by using a method developed by Van Belle and Hughes. As a result of tests, negative linear slopes were found in annual total precipitations in Konya.

Keywords: trend analysis, precipitation, hydroclimatology, Konya

Procedia PDF Downloads 219
20774 Land Use Change Detection Using Remote Sensing and GIS

Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi

Abstract:

In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.

Keywords: Haraz basin, change detection, land-use, satellite data

Procedia PDF Downloads 415
20773 Microstructure and Excess Conductivity of Bulk, Ag-Added FeSe Superconductors

Authors: Michael Koblischka, Yassine Slimani, Thomas Karwoth, Anjela Koblischka-Veneva, Essia Hannachi

Abstract:

On bulk FeSe superconductors containing different additions of Ag, a thorough investigation of the microstructures was performed using optical microscopy, SEM and TEM. The electrical resistivity was measured using four-point measurements in the temperature range 2 K ≤ T ≤ 150 K. The data obtained are analyzed in the framework of the excess conductivity approach using the Aslamazov-Larkin (AL) model. The investigated samples comprised of five distinct fluctuation regimes, namely short-wave (SWF), onedimensional (1D), two-dimensional (2D), three-dimensional (3D), and critical (CR) fluctuation regimes. The coherence length along the c-axis at zero-temperature (ξc(0)), the lower and upper critical magnetic fields (Bc1 and Bc2), the critical current density (Jc) and numerous other superconducting parameters were estimated with respect to the Ag content in the samples. The data reveal a reduction of the resistivity and a strong decrease of ξc(0) when doping the 11-samples with silver. The optimum content of the Ag-addition is found at 4 wt.-% Ag, yielding the highest critical current density.

Keywords: iron-based superconductors, FeSe, Ag-addition, excess conductivity, microstructure

Procedia PDF Downloads 146
20772 African Traditional Method of Social Control Mechanism: A Sociological Review of Native Charms in Farm Security in Ayetoro Community, Ogun State, Nigeria

Authors: Adebisi A. Sunday, Babajide Adeokin

Abstract:

The persistent rise in farm theft in rural region of Nigeria is attributed to the lack of adequate and effective policing in the regions; thus, this brought about the inevitable introduction of native charms on farmlands as a means of fortification of harvests against theft in Ayetoro community. The use of charm by farmers as security on farmlands is a traditional crime control mechanism that is largely based on unwritten laws which greatly influenced the lives of people, and their attitudes toward the society. This research presents a qualitative sociological study on how native charms are deployed by farmers for protection against theft. The study investigated the various types of charms that are employed as security measures among farmers in Ayetoro community and the rationale behind the use of these mechanisms as farm security. The study utilized qualitative method to gather data in the research process. Under the qualitative method, in-depth interview method was adopted to generate a robust and detailed data from the respondents. Also the data generated were analysed qualitatively using thematic content analysis and simple description which was preceded by transcription of data from the recorder. It was revealed that amidst numerous charms known, two major charms are used on farmlands as a measure of social control in Ayetoro community, Ogun state South West Nigeria. Furthermore, the result of this study showed that, the desire for safekeeping of harvest from pilferers and the heavy punishments dispense on offenders by native charms are the reasons why farmers deploy charms on their farms. In addition, findings revealed that the adoption of these charms for protection has improved yields among farmers in the community because the safety of harvest has been made possible by virtue of the presence of various charms in the farm lands. Therefore, based on the findings of this study, it is recommended that such measures should be recognized in mainstream social control mechanisms in the fight against crime in Nigeria and the rest of the world. Lastly, native charms could be installed in all social and cooperate organisation and position of authority to prevent theft of valuables and things hold with utmost importance.

Keywords: Ayetoro, farm theft, mechanism, native charms, Pilferer

Procedia PDF Downloads 145
20771 Nursing Documentation of Patients' Information at Selected Primary Health Care Facilities in Limpopo Province, South Africa: Implications for Professional Practice

Authors: Maria Sonto Maputle, Rhulani C. Shihundla, Rachel T. Lebese

Abstract:

Background: Patients’ information must be complete and accurately documented in order to foster quality and continuity of care. The multidisciplinary health care members use patients’ documentation to communicate about health status, preventive health services, treatment, planning and delivery of care. The purpose of this study was to determine the practice of nursing documentation of patients’ information at selected Primary Health Care (PHC) facilities in Vhembe District, Limpopo Province, South Africa. Methods: The research approach adopted was qualitative while exploratory and descriptive design was used. The study was conducted at selected PHC facilities. Population included twelve professional nurses. Non-probability purposive sampling method was used to sample professional nurses who were willing to participate in the study. The criteria included participants’ whose daily work and activities, involved creating, keeping and updating nursing documentation of patients’ information. Qualitative data collection was through unstructured in-depth interviews until no new information emerged. Data were analysed through open–coding of, Tesch’s eight steps method. Results: Following data analysis, it was found that professional nurses’ had knowledge deficit related to insufficient training on updates and rendering multiple services daily had negative impact on accurate documentation of patients’ information. Conclusion: The study recommended standardization of registers, books and forms used at PHC facilities, and reorganization of PHC services into open day system.

Keywords: documentation, knowledge, patient care, patient’s information, training

Procedia PDF Downloads 190
20770 Reasons to Redesign: Teacher Education for a Brighter Tomorrow

Authors: Deborah L. Smith

Abstract:

To review our program and determine the best redesign options, department members gathered feedback and input through focus groups, analysis of data, and a review of the current research to ensure that the changes proposed were not based solely on the state’s new professional standards. In designing course assignments and assessments, we listened to a variety of constituents, including students, other institutions of higher learning, MDE webinars, host teachers, literacy clinic personnel, and other disciplinary experts. As a result, we are designing a program that is more inclusive of a variety of field experiences for growth. We have determined ways to improve our program by connecting academic disciplinary knowledge, educational psychology, and community building both inside and outside the classroom for professional learning communities. The state’s release of new professional standards led my department members to question what is working and what needs improvement in our program. One aspect of our program that continues to be supported by research and data analysis is the function of supervised field experiences with meaningful feedback. We seek to expand in this area. Other data indicate that we have strengths in modeling a variety of approaches such as cooperative learning, discussions, literacy strategies, and workshops. In the new program, field assignments will be connected to multiple courses, and efforts to scaffold student learning to guide them toward best evidence-based practices will be continuous. Despite running a program that meets multiple sets of standards, there are areas of need that we directly address in our redesign proposal. Technology is ever-changing, so it’s inevitable that improving digital skills is a focus. In addition, scaffolding procedures for English Language Learners (ELL) or other students who struggle is imperative. Diversity, equity, and inclusion (DEI) has been an integral part of our curriculum, but the research indicates that more self-reflection and a deeper understanding of culturally relevant practices would help the program improve. Connections with professional learning communities will be expanded, as will leadership components, so that teacher candidates understand their role in changing the face of education. A pilot program will run in academic year 22/23, and additional data will be collected each semester through evaluations and continued program review.

Keywords: DEI, field experiences, program redesign, teacher preparation

Procedia PDF Downloads 169
20769 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: Heavy Water Reactor, Burn up, Minor Actinides, Neutronic Calculation

Procedia PDF Downloads 246
20768 Numerical Modelling of a Vacuum Consolidation Project in Vietnam

Authors: Nguyen Trong Nghia, Nguyen Huu Uy Vu, Dang Huu Phuoc, Sanjay Kumar Shukla, Le Gia Lam, Nguyen Van Cuong

Abstract:

This paper introduces a matching scheme for selection of soil/drain properties in analytical solution and numerical modelling (axisymmetric and plane strain conditions) of a ground improvement project by using Prefabricated Vertical Drains (PVD) in combination with vacuum and surcharge preloading. In-situ monitoring data from a case history of a road construction project in Vietnam was adopted in the back-analysis. Analytical solution and axisymmetric analysis can approximate well the field data meanwhile the horizontal permeability need to be adjusted in plane strain scenario to achieve good agreement. In addition, the influence zone of the ground treatment was examined. The residual settlement was investigated to justify the long-term settlement in compliance with the design code. Moreover, the degree of consolidation of non-PVD sub-layers was also studied by means of two different approaches.

Keywords: numerical modelling, prefabricated vertical drains, vacuum consolidation, soft soil

Procedia PDF Downloads 230