Search results for: zero-point charge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 913

Search results for: zero-point charge

493 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles

Authors: Masood Roohi, Amir Taghavipour

Abstract:

This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.

Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time

Procedia PDF Downloads 352
492 A Luminescence Study of Bi³⁺ Codoping on Eu³⁺ Doped YPO₄

Authors: N. Yaiphaba, Elizabeth C. H.

Abstract:

YPO₄ nanoparticles codoped with Eu³⁺(5 at.%) and Bi³⁺(0, 1, 3, 5, 7, 10, 12, 15, 20 at.%) have been prepared in poly acrylic acid (PAA)-H₂O medium by hydrothermal synthesis by maintaining a temperature of 180oC. The crystalline structure of as-prepared and 500oC annealed samples transforms from tetragonal (JCPDS-11-0254) to hexagonal phase (JCPDS-42-0082) with increasing concentration of Bi³⁺ ions. However, 900oC annealed samples exhibit tetragonal structure. The crystallite size of the particles varies from 19-50 nm. The luminescence intensity increases at lower concentration of Bi³⁺ ions and then decreases with increasing Bi3+ ion concentrations. The luminescence intensity further increases on annealing at 500oC and 900oC. Further, 900oC annealed samples show sharp increase in luminescence intensity. Moreover, the samples follow bi-exponential decay indicating energy transfer from donor to the activator or non-uniform distribution of ions in the samples. The samples on excitation at 318 nm exhibit near white emission while at 394 nm excitation show emission in the red region. The as-prepared samples are redispersible and have potential applications in display devices, metal ion sensing, biological labelling, etc.

Keywords: charge transfer, sensitizer, activator, annealing

Procedia PDF Downloads 67
491 Multichannel Scheme under Fairness Environment for Cognitive Radio Networks

Authors: Hans Marquez Ramos, Cesar Hernandez, Ingrid Páez

Abstract:

This paper develops a multiple channel assignment model, which allows to take advantage in most efficient way, spectrum opportunities in cognitive radio networks. Developed scheme allows make several available and frequency adjacent channel assignments, which require a bigger wide band, under an equality environment. The hybrid assignment model it is made by to algorithms, one who makes the ranking and select available frequency channels and the other one in charge of establishing an equality criteria, in order to not restrict spectrum opportunities for all other secondary users who wish to make transmissions. Measurements made were done for average bandwidth, average delay, as well fairness computation for several channel assignment. Reached results were evaluated with experimental spectrum occupational data from GSM frequency band captured. Developed model, shows evidence of improvement in spectrum opportunity use and a wider average transmit bandwidth for each secondary user, maintaining equality criteria in channel assignment.

Keywords: bandwidth, fairness, multichannel, secondary users

Procedia PDF Downloads 505
490 An Investigation on the Suitability of Dual Ion Beam Sputtered GMZO Thin Films: For All Sputtered Buffer-Less Solar Cells

Authors: Vivek Garg, Brajendra S. Sengar, Gaurav Siddharth, Nisheka Anadkat, Amitesh Kumar, Shailendra Kumar, Shaibal Mukherjee

Abstract:

CuInGaSe (CIGSe) is the dominant thin film solar cell technology. The band alignment of Buffer/CIGSe interface is one of the most crucial parameters for solar cell performance. In this article, the valence band offset (VBOff) and conduction band offset (CBOff) values of Cu(In0.70Ga0.30)Se/ 1 at.% Ga: Mg0.25Zn0.75O (GMZO) heterojunction, grown by dual ion beam sputtering system (DIBS), are calculated to understand the carrier transport mechanism at the heterojunction for the realization of all sputtered buffer-less solar cells. To determine the valence band offset (VBOff), ∆E_V at GMZO/CIGSe heterojunction interface, the standard method based on core-level photoemission is utilized. The value of ∆E_V can be evaluated by considering common core-level peaks. In our study, the values of (Valence band onset)VBOn, obtained by linear extrapolation method for GMZO and CIGSe films are calculated to be 2.86 and 0.76 eV. In the UPS spectra peak positions of Se 3d is observed in UPS spectra at 54.82 and 54.7 eV for CIGSe film and GMZO/CIGSe interface respectively, while the peak position of Mg 2p is observed at 50.09 and 50.12 eV for GMZO and GMZO/CIGSe interface respectively. The optical band gap of CIGSe and GMZO are obtained from absorption spectra procured from spectroscopic ellipsometry are 1.26 and 3.84 eV respectively. The calculated average values of ∆E_v and ∆E_C are estimated to be 2.37 and 0.21 eV, respectively, at room temperature. The calculated positive conduction band offset termed as a spike at the absorber junction is the required criterion for the high-efficiency solar cells for the efficient charge extraction from the junction. So we can conclude that the above study confirms GMZO thin films grown by the dual ion beam sputtering system are the suitable candidate for the CIGSe thin films based ultra-thin buffer-less solar cells. We investigated the band-offset properties at the GMZO/CIGSe heterojunction to verify the suitability of the GMZO for the realization of the buffer-less solar cells. The calculated average values of ∆E_V and ∆E_C are estimated to be 2.37 and 0.21 eV, respectively, at room temperature. The calculated positive conduction band offset termed as a spike at the absorber junction is the required criterion for the high-efficiency solar cells for the efficient charge extraction from the junction. So we can conclude that the above study confirms GMZO thin films grown by the dual ion beam sputtering system are the suitable candidate for the CIGSe thin films based ultra-thin buffer-less solar cells. Acknowledgment: We are thankful to DIBS, EDX, and XRD facility equipped at Sophisticated Instrument Centre (SIC) at IIT Indore. The authors B.S.S and A.K acknowledge CSIR and V.G acknowledge UGC, India for their fellowships. B.S.S is thankful to DST and IUSSTF for BASE Internship Award. Prof. Shaibal Mukherjee is thankful to DST and IUSSTF for BASE Fellowship and MEITY YFRF award. This work is partially supported by DAE BRNS, DST CERI, and DST-RFBR Project under India-Russia Programme of Cooperation in Science and Technology. We are thankful to Mukul Gupta for SIMS facility equipped at UGC-DAE Indore.

Keywords: CIGSe, DIBS, GMZO, solar cells, UPS

Procedia PDF Downloads 278
489 Partial Discharge Characteristics of Free- Moving Particles in HVDC-GIS

Authors: Philipp Wenger, Michael Beltle, Stefan Tenbohlen, Uwe Riechert

Abstract:

The integration of renewable energy introduces new challenges to the transmission grid, as the power generation is located far from load centers. The associated necessary long-range power transmission increases the demand for high voltage direct current (HVDC) transmission lines and DC distribution grids. HVDC gas-insulated switchgears (GIS) are considered being a key technology, due to the combination of the DC technology and the long operation experiences of AC-GIS. To ensure long-term reliability of such systems, insulation defects must be detected in an early stage. Operational experience with AC systems has proven evidence, that most failures, which can be attributed to breakdowns of the insulation system, can be detected and identified via partial discharge (PD) measurements beforehand. In AC systems the identification of defects relies on the phase resolved partial discharge pattern (PRPD). Since there is no phase information within DC systems this method cannot be transferred to DC PD diagnostic. Furthermore, the behaviour of e.g. free-moving particles differs significantly at DC: Under the influence of a constant direct electric field, charge carriers can accumulate on particles’ surfaces. As a result, a particle can lift-off, oscillate between the inner conductor and the enclosure or rapidly bounces at just one electrode, which is known as firefly motion. Depending on the motion and the relative position of the particle to the electrodes, broadband electromagnetic PD pulses are emitted, which can be recorded by ultra-high frequency (UHF) measuring methods. PDs are often accompanied by light emissions at the particle’s tip which enables optical detection. This contribution investigates PD characteristics of free moving metallic particles in a commercially available 300 kV SF6-insulated HVDC-GIS. The influences of various defect parameters on the particle motion and the PD characteristic are evaluated experimentally. Several particle geometries, such as cylinder, lamella, spiral and sphere with different length, diameter and weight are determined. The applied DC voltage is increased stepwise from inception voltage up to UDC = ± 400 kV. Different physical detection methods are used simultaneously in a time-synchronized setup. Firstly, the electromagnetic waves emitted by the particle are recorded by an UHF measuring system. Secondly, a photomultiplier tube (PMT) detects light emission with a wavelength in the range of λ = 185…870 nm. Thirdly, a high-speed camera (HSC) tracks the particle’s motion trajectory with high accuracy. Furthermore, an electrically insulated electrode is attached to the grounded enclosure and connected to a current shunt in order to detect low frequency ion currents: The shunt measuring system’s sensitivity is in the range of 10 nA at a measuring bandwidth of bw = DC…1 MHz. Currents of charge carriers, which are generated at the particle’s tip migrate through the gas gap to the electrode and can be recorded by the current shunt. All recorded PD signals are analyzed in order to identify characteristic properties of different particles. This includes e.g. repetition rates and amplitudes of successive pulses, characteristic frequency ranges and detected signal energy of single PD pulses. Concluding, an advanced understanding of underlying physical phenomena particle motion in direct electric field can be derived.

Keywords: current shunt, free moving particles, high-speed imaging, HVDC-GIS, UHF

Procedia PDF Downloads 160
488 Combining Impedance and Hydrodynamic Methods toward Hydrogen Evolution Reaction to Characterize Pt(pc), Pt5Gd, and Nanostructure Pd Electrocatalyst

Authors: Kun-Ting Song, Christian Schott, Peter Schneider, Sebastian Watzele, Regina Kluge, Elena Gubanova, Aliaksandr S. Bandarenka

Abstract:

The combination of electrochemical impedance spectroscopy (EIS) and the hydrodynamic technique like rotation disc electrode (RDE) provides a critical method for quantitively investigating mechanisms of hydrogen evolution reaction (HER) in acidic and alkaline media. Pt5Gd represented higher HER activities than polycrystalline Pt (Pt(pc)) by means of the surface strain effects. The model of the equivalent electric circuit to fit the impedance data under the RDE configurations is developed. To investigate the relative reaction contribution, the ratio of the charge transfer reactions of the Volmer-Heyrovsky and Volmer-Tafel pathways on Pt and Pt5Gd electrodes is determined. The ratio remains comparably similar in acidic media, but it changes in alkaline media with Volmer–Heyrovsky pathway dominating. This combined approach of EIS and RDE can help to study the electrolyte effects and other essential reactions for electrocatalysis in future work.

Keywords: hydrogen evolution reaction, electrochemical impedance spectroscopy, hydrodynamic methods, electrocatalysis, electrochemical interface

Procedia PDF Downloads 83
487 Theoretical Studies on the Formation Constant, Geometry, Vibrational Frequencies and Electronic Properties Dinuclear Molybdenum Complexes

Authors: Mahboobeh Mohadeszadeh, Behzad Padidaran Moghaddam

Abstract:

In order to measuring dinuclear molybdenum complexes formation constant First,the reactants and the products were optimized separately and then, their frequencies were measured. In next level , with using Hartree-fock (HF) and density functional theory (DFT) methods ,Theoretical studies on the geometrical parameters, electronic properties and vibrational frequencies of dinuclear molybdenum complexes [C40H44Mo2N2O20] were investigated . These calculations were performed with the B3LYP, BPV86, B3PW91 and HF theoretical method using the LANL2DZ (for Mo’s) + 6-311G (for others) basis sets. To estimate the error rate between theoretical data and experimental data, RSquare , SError and RMS values that according with the theoretical and experimental parameters found out DFT methods has more integration with experimental data compare to HF methods. In addition, through electron specification of compounds, the percentage of atomic orbital’s attendance in making molecular orbital’s, atoms electrical charge, the sustainable energy resulting and also HOMO and LUMO orbital’s energy achieved.

Keywords: geometrical parameters, hydrogen bonding, electronic properties, vibrational frequencies

Procedia PDF Downloads 274
486 Enhancing Anode Performance in Li-S Batteries via Coating with Waste Battery-Derived Materials

Authors: Mohsen Hajian Foroushani, Samane Maroufi, Rasoul Khayyam Nekouei, Veena Sahajwalla

Abstract:

Lithium (Li) metal possesses outstanding characteristics, with the highest specific capacity (3860 mAh g-1) and the lowest electrochemical potential (-3.04 V vs. SHE) among available metal anodes. The collaborative impact of Li and sulfur, featuring a specific capacity of 1670 mAh g-1, positions Li–S batteries (LSBs) as highly promising contenders for the next generation of high-energy-density batteries. However, the comprehensive commercialization of LSBs relies on addressing various challenges inherent to these batteries. One of the most formidable hurdles is the widespread issue of Li dendrite nucleation and growth on the anode surface, stemming from the inherent instability of the solid electrolyte interphase (SEI) layer. In this study, we employed a Zn-based coating derived from waste materials, significantly enhancing the performance of the symmetrical cell across various current densities. The applied coating not only improved the cyclability of the cell by more than fourfold but also reduced the charge transfer resistance from over 300 to less than 10 before cycling. Examination through SEM micrographs of both samples revealed the successful suppression of Li dendrites by the applied coating.

Keywords: Li-S batteries, Li dendrite, sustainability, Li anode

Procedia PDF Downloads 73
485 Experimental Study of Water Injection into Manifold on Engine Performance and Emissions in Compression Ignition Engine

Authors: N. Rajmohan, M. R. Swaminathan

Abstract:

The performance of a diesel engine depends mainly on mixing of the fuel and air in the combustion chamber. The diesel engine suffers from significant generation of nitric oxide and particulate matter emission due to incomplete combustion. As the fuel is injected directly into the combustion chamber in conventional diesel engines, spatial distributions of air-fuel ratio vary widely from rich to lean in combustion chamber. The NOx is formed in stoichiometric zone and smoke is generated during diffusion combustion period where the combustion rate becomes slower. One of the effective methods to reduce oxides of nitrogen and particulate matter emissions simultaneously is to reduce the intake charge temperature in diesel engines. Therefore, in the present study, the effect of water injection into intake air on performance and emission characteristic of single cylinder CI engine are carried out at different load and constant speed, with variable water to diesel ratio by mass. The water is injected into intake air by an elementary carburetor.

Keywords: engine emission control, oxides of nitrogen, diesel engine, ignition engine

Procedia PDF Downloads 362
484 Complex Dynamics in a Model of Management of the Protected Areas

Authors: Paolo Russu

Abstract:

This paper investigates the economic and ecological dynamics that emerge in Protected Areas (PAs) due to interactions between visitors and the animals that live there. The PAs contain two species whose interactions are determined by the Lotka-Volterra equations system. Visitors' decisions to visit PAs are influenced by the entrance cost required to enter the park and the chance of witnessing the species living there. Visitors have contradictory effects on the species and thus on the sustainability of the protected areas: on the one hand, an increase in the number of tourists damages the natural habitat of the regions and thus the species living there; on the other hand, it increases the total amount of entrance fees that the managing body of the PAs can use to perform defensive expenditures that protect the species from extinction. For a given set of parameter values, saddle-node bifurcation, Hopf bifurcation, homoclinic orbits, and a Bogdanov–Takens bifurcation of codimension two has been investigated. The system displays periodic doubling and chaotic solutions, as numerical examples demonstrate. Pontryagin's Maximum Principle was utilised to develop an optimal admission charge policy that maximised social gain and ecosystem conservation.

Keywords: chaos, bifurcation points, dynamical model, optimal control

Procedia PDF Downloads 82
483 Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives

Authors: Alper T. Celebi, Ali Beskok

Abstract:

Electroosmotic (EO) slip flows in nanochannels are investigated using non-equilibrium molecular dynamics (MD) simulations, and the results are compared with analytical solution of Poisson-Boltzmann and Stokes (PB-S) equations with slip contribution. The ultimate objective of this study is to show that well-known continuum flow model can accurately predict the EO velocity profiles in nanochannels using the slip lengths and apparent viscosities obtained from force-driven flow simulations performed at various liquid-wall interaction strengths. EO flow of aqueous NaCl solution in silicon nanochannels are simulated under realistic electrochemical conditions within the validity region of Poisson-Boltzmann theory. A physical surface charge density is determined for nanochannels based on dissociations of silanol functional groups on channel surfaces at known salt concentration, temperature and local pH. First, we present results of density profiles and ion distributions by equilibrium MD simulations, ensuring that the desired thermodynamic state and ionic conditions are satisfied. Next, force-driven nanochannel flow simulations are performed to predict the apparent viscosity of ionic solution between charged surfaces and slip lengths. Parabolic velocity profiles obtained from force-driven flow simulations are fitted to a second-order polynomial equation, where viscosity and slip lengths are quantified by comparing the coefficients of the fitted equation with continuum flow model. Presence of charged surface increases the viscosity of ionic solution while the velocity-slip at wall decreases. Afterwards, EO flow simulations are carried out under uniform electric field for different liquid-wall interaction strengths. Velocity profiles present finite slips near walls, followed with a conventional viscous flow profile in the electrical double layer that reaches a bulk flow region in the center of the channel. The EO flow enhances with increased slip at the walls, which depends on wall-liquid interaction strength and the surface charge. MD velocity profiles are compared with the predictions from analytical solutions of the slip modified PB-S equation, where the slip length and apparent viscosity values are obtained from force-driven flow simulations in charged silicon nano-channels. Our MD results show good agreements with the analytical solutions at various slip conditions, verifying the validity of PB-S equation in nanochannels as small as 3.5 nm. In addition, the continuum model normalizes slip length with the Debye length instead of the channel height, which implies that enhancement in EO flows is independent of the channel height. Further MD simulations performed at different channel heights also shows that the flow enhancement due to slip is independent of the channel height. This is important because slip enhanced EO flow is observable even in micro-channels experiments by using a hydrophobic channel with large slip and high conductivity solutions with small Debye length. The present study provides an advanced understanding of EO flows in nanochannels. Correct characterization of nanoscale EO slip flow is crucial to discover the extent of well-known continuum models, which is required for various applications spanning from ion separation to drug delivery and bio-fluidic analysis.

Keywords: electroosmotic flow, molecular dynamics, slip length, velocity-slip

Procedia PDF Downloads 158
482 Investigation of Different Electrolyte Salts Effect on ZnO/MWCNT Anode Capacity in LIBs

Authors: Şeyma Dombaycıoğlu, Hilal Köse, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium ion batteries (LIBs) have been considered as one of the most attractive energy storage choices for laptop computers, electric vehicles and cellular phones owing to their high energy and power density. Compared with conventional carbonaceous materials, transition metal oxides (TMOs) have attracted great interests and stand out among versatile novel anode materials due to their high theoretical specific capacity, wide availability and good safety performance. ZnO, as an anode material for LIBs, has a high theoretical capacity of 978 mAh g-1, much higher than that of the conventional graphite anode (∼370 mAhg-1). However, several major problems such as poor cycleability, resulting from the severe volume expansion and contraction during the alloying-dealloying cycles with Li+ ions and the associated charge transfer process, the pulverization and the agglomeration of individual particles, which drastically reduces the total entrance/exit sites available for Li+ ions still hinder the practical use of ZnO powders as an anode material for LIBs. Therefore, a great deal of effort has been devoted to overcome these problems, and many methods have been developed. In most of these methods, it is claimed that carbon nanotubes (CNTs) will radically improve the performance of batteries, because their unique structure may especially enhance the kinetic properties of the electrodes and result in an extremely high specific charge compared with the theoretical limits of graphitic carbon. Due to outstanding properties of CNTs, MWCNT buckypaper substrate is considered a buffer material to prevent mechanical disintegration of anode material during the battery applications. As the bridge connecting the positive and negative electrodes, the electrolyte plays a critical role affecting the overall electrochemical performance of the cell including rate, capacity, durability and safety. Commercial electrolytes for Li-ion batteries normally consist of certain lithium salts and mixed organic linear and cyclic carbonate solvents. Most commonly, LiPF6 is attributed to its remarkable features including high solubility, good ionic conductivity, high dissociation constant and satisfactory electrochemical stability for commercial fabrication. Besides LiPF6, LiBF4 is well known as a conducting salt for LIBs. LiBF4 shows a better temperature stability in organic carbonate based solutions and less moisture sensitivity compared to LiPF6. In this work, free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials were prepared by a sol gel technique giving a high capacity anode material for lithium ion batteries. Electrolyte solutions (including 1 m Li+ ion) were prepared with different Li salts in glove box. For this purpose, LiPF6 and LiBF4 salts and also mixed of these salts were solved in EC:DMC solvents (1:1, w/w). CR2016 cells were assembled by using these prepared electrolyte solutions, the ZnO/MWCNT buckypaper nanocomposites as working electrodes, metallic lithium as cathode and polypropylene (PP) as separator. For investigating the effect of different Li salts on the electrochemical performance of ZnO/MWCNT nanocomposite anode material electrochemical tests were performed at room temperature.

Keywords: anode, electrolyte, Li-ion battery, ZnO/MWCNT

Procedia PDF Downloads 231
481 Zero Voltage Switched Full Bridge Converters for the Battery Charger of Electric Vehicle

Authors: Rizwan Ullah, Abdar Ali, Zahid Ullah

Abstract:

This paper illustrates the study of three isolated zero voltage switched (ZVS) PWM full bridge (FB) converters to charge the high voltage battery in the charger of electric vehicle (EV). EV battery chargers have several challenges such as high efficiency, high reliability, low cost, isolation, and high power density. The cost of magnetic and filter components in the battery charger is reduced when switching frequency is increased. The increase in the switching frequency increases switching losses. ZVS is used to reduce switching losses and to operate the converter in the battery charger at high frequency. The performance of each of the three converters is evaluated on the basis of ZVS range, dead times of the switches, conduction losses of switches, circulating current stress, circulating energy, duty cycle loss, and efficiency. The limitations and merits of each PWM FB converter are reviewed. The converter with broader ZVS range, high efficiency and low switch stresses is selected for battery charger applications in EV.

Keywords: electric vehicle, PWM FB converter, zero voltage switching, circulating energy

Procedia PDF Downloads 439
480 Study of the Transport of Multivalent Metal Cations Through Cation-Exchange Membranes by Electrochemical Impedance Spectroscopy

Authors: V. Pérez-Herranz, M. Pinel, E. M. Ortega, M. García-Gabaldón

Abstract:

In the present work, Electrochemical Impedance Spectrocopy (EIS) is applied to study the transport of different metal cations through a cation-exchange membrane. This technique enables the identification of the ionic-transport characteristics and to distinguish between different transport mechanisms occurring at different current density ranges. The impedance spectra are dependent on the applied dc current density, on the type of cation and on the concentration. When the applied dc current density increases, the diameter of the impedance spectra loops increases because all the components of membrane system resistance increase. The diameter of the impedance plots decreases in the order of Na(I), Ni(II) and Cr(III) due to the increased interactions between the negatively charged sulfonic groups of the membrane and the cations with greater charge. Nyquist plots are shifted towards lower values of the real impedance, and its diameter decreases with the increase of concentration due to the decrease of the solution resistance.

Keywords: ion-exchange membranes, Electrochemical Impedance Spectrocopy, multivalent metal cations, membrane system

Procedia PDF Downloads 529
479 Academic and Sociocultural Adaptation Experiences of International Students Studying in Kazakhstan

Authors: Tatyana Kim

Abstract:

This paper seeks to explore the academic and sociocultural adaptation experiences of international students studying in Kazakhstan. Using multiple case study design, the research will be undertaken at two private Kazakhstani universities having a relatively large and diverse body of international students. Thus, 20 full-time undergraduate international students from the sampled universities will be interviewed to identify factors that impede or, vice versa, facilitate their academic and sociocultural adaptation in Kazakhstan, as well as to reveal how universities support these students in the process of their adaptation. To investigate the issue more deeply, it was decided to explore the university administrators’ viewpoint of the issue. Thus, six university administrators who are in charge of recruiting and supporting international students and, thus, are particularly knowledgeable about their experiences, have been recruited for this study. Identification of both students’ and administrators’ perspectives on the matter may help reveal miscommunication, if any, and gain greater insight into the phenomenon. The data will be collected between November 5, 2019, and December 10, 2019. Preliminary findings will be presented at the conference. Lysgaard’s U-curve adjustment theory (1955) will be employed as a guiding framework to discuss and interpret the findings.

Keywords: academic adaptation, adaptation, higher education, international students, sociocultural adaptation

Procedia PDF Downloads 240
478 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets

Authors: Rabindranath Bag, Surjeet Singh

Abstract:

Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.

Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique

Procedia PDF Downloads 274
477 Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition

Authors: Jin-Woo Park, Sung-Soo Lee, Nong-Moon Hwang

Abstract:

The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR.

Keywords: chemical vapour deposition, charged cluster model, generation of charged nanoparticles, deposition behaviour, nanostructures, gan, charged transfer rate

Procedia PDF Downloads 439
476 Alcoxysilanes Production from Silica and Dimethylcarbonate Promoted by Alkali Bases: A DFT Investigation of the Reaction Mechanism

Authors: Valeria Butera, Norihisa Fukaya, Jun-Chu Choi, Kazuhiko Sato, Yoong-Kee Choe

Abstract:

Several silicon dioxide sources can react with dimethyl carbonate (DMC) in presence of alkali bases catalysts to ultimately produce tetramethoxysilane (TMOS). Experimental findings suggested that the reaction proceeds through several steps in which the first molecule of DMC is converted to dimethylsilyloxide (DMOS) and CO₂. Following the same mechanistic steps, a second molecule of DMC reacts with the DMOS to afford the final product TMOS. Using a cluster model approach, a quantum-mechanical investigation of the first part of the reaction leading to DMOS formation is reported with a twofold purpose: (1) verify the viability of the reaction mechanism proposed on the basis of experimental evidences .(2) compare the behaviors of three different alkali hydroxides MOH, where M=Li, K and Cs, to determine whether diverse ionic radius and charge density can be considered responsible for the observed differences in reactivity. Our findings confirm the observed experimental trend and furnish important information about the effective role of the alkali hydroxides giving an explanation of the different catalytic activity of the three metal cations.

Keywords: Alcoxysilanes production, cluster model approach, DFT, DMC conversion

Procedia PDF Downloads 275
475 Nano-Sensors: Search for New Features

Authors: I. Filikhin, B. Vlahovic

Abstract:

We focus on a novel type of detection based on electron tunneling properties of double nanoscale structures in semiconductor materials. Semiconductor heterostructures as quantum wells (QWs), quantum dots (QDs), and quantum rings (QRs) may have energy level structure of several hundred of electron confinement states. The single electron spectra of the double quantum objects (DQW, DQD, and DQR) were studied in our previous works with relation to the electron localization and tunneling between the objects. The wave function of electron may be localized in one of the QDs or be delocalized when it is spread over the whole system. The localizing-delocalizing tunneling occurs when an electron transition between both states is possible. The tunneling properties of spectra differ strongly for “regular” and “chaotic” systems. We have shown that a small violation of the geometry drastically affects localization of electron. In particular, such violations lead to the elimination of the delocalized states of the system. The same symmetry violation effect happens if electrical or magnetic fields are applied. These phenomena could be used to propose a new type of detection based on the high sensitivity of charge transport between double nanostructures and small violations of the shapes. It may have significant technological implications.

Keywords: double quantum dots, single electron levels, tunneling, electron localizations

Procedia PDF Downloads 505
474 Microstructural and Electrochemical Investigation of Carbon Coated Nanograined LiFePO4 as Cathode Material for Li-Batteries

Authors: Rinlee Butch M. Cervera, Princess Stephanie P. Llanos

Abstract:

Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, pure LiFePO4 (LFP) and carbon-coated nanograined LiFePO4 (LFP-C) is synthesized and characterized for its microstructural properties. X-ray diffraction patterns of the synthesized samples can be indexed to an orthorhombic LFP structure with about 63 nm crystallite size as calculated by using Scherrer’s equation. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LFP and coating of amorphous carbon layer. Elemental mapping using energy dispersive spectroscopy analysis revealed the homogeneous dispersion of the compositional elements. In addition, galvanostatic charge and discharge measurements were investigated for the cathode performance of the synthesized LFP and LFP-C samples. The results showed that the carbon-coated sample demonstrated the highest capacity of about 140 mAhg-1 as compared to non-coated and micrograined sized commercial LFP.

Keywords: ceramics, energy storage, electrochemical measurements, transmission electron microscope

Procedia PDF Downloads 258
473 Internet Usage Behavior on Mobile Phones of the Faculty of Management Science Students at Suan Sunandha Rajabhat University

Authors: Arpapron Phokajang

Abstract:

The objectives of this research were to study the internet usage, including; date, time, description of using service, network service, telephone charge, and to study the internet usage behavior on mobile phones of the Faculty of Management Science students at Suan Sunandha Rajabhat University. The samples consisted of 395 students from the Faculty of Management Science. Questionnaires were used for collecting the data. Descriptive statistics used in this research including percentage, mean, and standard deviation. The findings of this research found that most respondents were female, aged between 21 and 25 years old, used the monthly AIS network service calls on Monday to Friday around 6.01-12.00 p.m., the internet usage behavior on mobile phones for entertainment was found in the highest level in all aspects, and education, business and commerce, and communication were found in the moderate level and using the internet to watch YouTube in the highest level also.

Keywords: faculty of management science, internet usage behavior, mobile phones, Suan Sunandha Rajabhat University

Procedia PDF Downloads 238
472 Maintaining Organizational Harmony: The Way Forward in Ghanaian Basic Schools

Authors: Dominic Kwaku Danso Mensah

Abstract:

The study examined conflict management strategies among head teachers and teachers in selected basic schools in Okai-Koi sub metro in the greater region of Ghana. In all, 270 participants were engaged in the study, comprising 237 teachers, 32 head teachers, and one officer in charge of the Metropolis. The study employed descriptive survey while using purposive and simple random sampling techniques to sample participants. Interview guides and questionnaires were the main instruments used for gathering primary data. The study found that conflict is inevitable in the schools. Conflicts in schools are usually subtle and hardly noticed by outsiders even though they occur on daily basis. The causes of conflict include among other things, high expectation from head teachers, inability to attain goals set, communication from head teachers and power struggle. The study found out that, in managing and resolving conflicts, issues such as identifying and focusing on the problem, building of trust and cooperation, clarifying goals and objectives were seen to be effective means of managing conflict and recommended that management should design and develop conflict management strategies to quickly resolve conflict.

Keywords: basic education, conflict management, organizational harmony, power

Procedia PDF Downloads 289
471 Sensitive Determination of Copper(II) by Square Wave Anodic Stripping Voltammetry with Tetracarbonylmolybdenum(0) Multiwalled Carbon Nanotube Paste Electrode

Authors: Illyas Md Isa, Mohamad Idris Saidin, Mustaffa Ahmad, Norhayati Hashim

Abstract:

A highly selective and sensitive carbon paste electrode modified with multiwall carbon nanotubes and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) complex was used for determination of trace amounts of Cu(II) using square wave anodic stripping voltammetry (SWASV). The influences of experimental variables on the proposed electrode such as pH, supporting electrolyte, preconcentration potential and time, and square wave parameters were investigated. Under optimal conditions, the proposed electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu(II) with a limit of detection 8.0 × 10–11 M. The relative standard deviation (n = 5) for a solution containing 1.0 × 10– 6 M of Cu(II) was 0.036. The presence of various cations (in 10 and 100-folds concentration) did not interfere. Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favourable. The proposed electrode was applied for the determination of Cu(II) in several water samples. Results agreed very well with those obtained by inductively coupled plasma-optical emission spectrometry. The modified electrode was then proposed as an alternative for determination of Cu(II).

Keywords: chemically modified electrode, Cu(II), square wave anodic stripping voltammetry, tetracarbonylmolybdenum(0)

Procedia PDF Downloads 270
470 Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems

Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo

Abstract:

Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.

Keywords: electrodeposition, kinetics diagrams, modeling, voltammetry

Procedia PDF Downloads 141
469 Experimental Study of Mixture of R290/R600 to Replace R134a in a Domestic Refrigerator

Authors: T. O. Babarinde, B. O. Bolaji, S. O. Ismaila

Abstract:

Interest in natural refrigerants, such as hydrocarbons has been renewed in recent years because of the environmental problems associated with synthetic chlorofluorocarbon (CFC) and hydro-chlorofluorocarbon (HCFC) refrigerants. Due to the depletion of ozone-layer and global warming effects, synthetic refrigerants are being gradually phased out in accordance with the international protocols that aim to protect the environment. In this work, a refrigerator designed to work with R134a was used for this experiment, Liquefied Petroleum Gas (LPG) which consists of commercial propane and butane in a single evaporator domestic refrigerator with a total volume of 62 litres. In this experiment, type K thermocouples with their probes were used to measure the temperatures of four major components (evaporator, compressor, condenser and expansion device) of the refrigeration system. Also the system was instrumented with two pressure gauges at the inlet and outlet of the compressor for measuring the suction and discharged pressures. The experiments were carried out using 40, 60, 80,100g charges and the charges were measured with a digital charging scale. Thermodynamic properties of the LPG refrigerant were determined. The results obtained showed that using LPG charge of 60g. The system COP increased with 14.6% and the power consumption reduced with 9.8% when compared with R134a. Therefore, LPG can replace R134a in domestic refrigerator.

Keywords: domestic refrigerator, experimental, LPG, R134a

Procedia PDF Downloads 483
468 Optimal Sizes of Battery Energy Storage Systems for Economic Operation in Microgrid

Authors: Sirus Mohammadi, Sara Ansari, Darush dehghan, Habib Hoshyari

Abstract:

Batteries for storage of electricity from solar and wind generation farms are a key element in the success of sustainability. In recent years, due to large integration of Renewable Energy Sources (RESs) like wind turbine and photovoltaic unit into the Micro-Grid (MG), the necessity of Battery Energy Storage (BES) has increased dramatically. The BES has several benefits and advantages in the MG-based applications such as short term power supply, power quality improvement, facilitating integration of RES, ancillary service and arbitrage. This paper presents the cost-based formulation to determine the optimal size of the BES in the operation management of MG. Also, some restrictions, i.e. power capacity of Distributed Generators (DGs), power and energy capacity of BES, charge/discharge efficiency of BES, operating reserve and load demand satisfaction should be considered as well. In this paper, a methodology is proposed for the optimal allocation and economic analysis of ESS in MGs on the basis of net present value (NPV). As the optimal operation of an MG strongly depends on the arrangement and allocation of its ESS, economic operation strategies and optimal allocation methods of the ESS devices are required for the MG.

Keywords: microgrid, energy storage system, optimal sizing, net present value

Procedia PDF Downloads 494
467 A 3D Model of the Sustainable Management of the Natural Environment in National Parks

Authors: Paolo Russu

Abstract:

This paper investigates the economic and ecological dynamics that emerge in Protected Areas (PAs) as a result of interactions between visitors to the area and the animals that live there. We suppose that the PAs contain two species whose interactions are determined by the Lotka-Volterra equations system. Visitors' decisions to visit PAs are influenced by the entrance cost required to enter the park as well as the chance of witnessing the species that live there. Visitors have contradictory effects on the species and thus on the sustainability of the protected areas: on the one hand, an increase in the number of tourists damages the natural habitat of the areas and thus the species living there; on the other hand, it increases the total amount of entrance fees that the managing body of the PAs can use to perform defensive expenditures that protect the species from extinction. For a given set of parameter values, the existence of saddle-node bifurcation, Hopf bifurcation, homoclinic orbits, and a Bogdanov–Takens bifurcation of codimension two has been investigated. The system displays periodic doubling and chaotic solutions, as demonstrated by numerical examples. Pontryagin's Maximum Principle was utilized to develop an optimal admission charge policy that maximized both social gain and ecosystem conservation.

Keywords: environmental preferences, singularities point, dynamical system, chaos

Procedia PDF Downloads 97
466 Structural and Electrical Properties of VO₂/ZnO Nanostructures

Authors: Sang-Wook Han, Zhenlan Jin, In-Hui Hwang, Chang-In Park

Abstract:

We examined structural and electrical properties of uniformly-oriented VO₂/ZnO nanostructures. VO₂ was deposited on ZnO templates by using a direct current-sputtering deposition. Scanning electron microscope and transmission electron microscope measurements indicated that b-oriented VO₂ were uniformly crystallized on ZnO templates with different lengths. VO₂/ZnO formed nanorods on ZnO nanorods with length longer than 250 nm. X-ray absorption fine structure at V K edge of VO₂/ZnO showed M1 and R phases of VO₂ at 30 and 100 ℃, respectively, suggesting structural phase transition between temperatures. Temperature-dependent resistance measurements of VO₂/ZnO nanostructures revealed metal-to-insulator transition at 65 ℃ and 55 ℃ during heating and cooling, respectively, regardless of ZnO length. The bond lengths of V-O and V-V pairs in VO₂/ZnO nanorods were somewhat distorted, and a substantial amount of structural disorder existed in the atomic pairs, compared to those of VO₂ films without ZnO. Resistance from VO₂/ZnO nanorods revealed a sharp MIT near 65 ℃ during heating and a hysteresis behavior. The resistance results suggest that microchannel for charge carriers exist nearly room temperature during cooling. VO₂/ZnO nanorods are quite stable and reproducible so that they can be widely used for practical applications to electronic devices, gas sensors, and ultra-fast switches, as examples.

Keywords: metal-to-insulator transition, VO₂, ZnO, XAFS, structural-phase transition

Procedia PDF Downloads 483
465 Periodical System of Isotopes

Authors: Andriy Magula

Abstract:

With the help of a special algorithm being the principle of multilevel periodicity, the periodic change of properties at the nuclear level of chemical elements was discovered and the variant for the periodic system of isotopes was presented. The periodic change in the properties of isotopes, as well as the vertical symmetry of subgroups, was checked for consistency in accordance with the following ten types of experimental data: mass ratio of fission fragments; quadrupole moment values; magnetic moment; lifetime of radioactive isotopes; neutron scattering; thermal neutron radiative capture cross-sections (n, γ); α-particle yield cross-sections (n, α); isotope abundance on Earth, in the Solar system and other stellar systems; features of ore formation and stellar evolution. For all ten cases, the correspondences for the proposed periodic structure of the nucleus were obtained. The system was formed in the usual 2D table, similar to the periodic system of elements, and the mass series of isotopes was divided into 8 periods and 4 types of ‘nuclear’ orbitals: sn, dn, pn, fn. The origin of ‘magic’ numbers as a set of filled charge shells of the nucleus was explained. Due to the isotope system, the periodic structure is shown at a new level of the universe, and the prospects of its practical use are opened up.

Keywords: periodic system, isotope, period, subgroup, “nuclear” orbital, nuclear reaction

Procedia PDF Downloads 18
464 SnSₓ, Cu₂ZnSnS₄ Nanostructured Thin Layers for Thin-Film Solar Cells

Authors: Elena A. Outkina, Marina V. Meledina, Aliaksandr A. Khodin

Abstract:

Nanostructured thin films of SnSₓ, Cu₂ZnSnS₄ (CZTS) semiconductors were fabricated by chemical processing to produce thin-film photoactive layers for photocells as a prospective lowest-cost and environment-friendly alternative to Si, Cu(In, Ga)Se₂, and other traditional solar cells materials. To produce SnSₓ layers, the modified successive ionic layer adsorption and reaction (SILAR) technique were investigated, including successive cyclic dipping into Na₂S solution and SnCl₂, NaCl, triethanolamine solution. To fabricate CZTS layers, the cyclic dipping into CuSO₄ with ZnSO₄, SnCl₂, and Na₂S solutions was used with intermediate rinsing in distilled water. The nano-template aluminum/alumina substrate was used to control deposition processes. Micromorphology and optical characteristics of the fabricated layers have been investigated. Analysis of 2D-like layers deposition features using nano-template substrate is presented, including the effect of nanotips in a template on surface charge redistribution and transport.

Keywords: kesterite, nanotemplate, SILAR, solar cell, tin sulphide

Procedia PDF Downloads 142