Search results for: squared prediction risk
7742 Utilization of Online Risk Mapping Techniques versus Desktop Geospatial Tools in Making Multi-Hazard Risk Maps for Italy
Authors: Seyed Vahid Kamal Alavi
Abstract:
Italy has experienced a notable quantity and impact of disasters due to natural hazards and technological accidents caused by diverse risk sources on its physical, technological, and human/sociological infrastructures during past decade. This study discusses the frequency and impacts of the most three physical devastating natural hazards in Italy for the period 2000–2013. The approach examines the reliability of a range of open source WebGIS techniques versus a proposed multi-hazard risk management methodology. Spatial and attribute data which include USGS publically available hazard data and thirteen years Munich RE recorded data for Italy with different severities have been processed, visualized in a GIS (Geographic Information System) framework. Comparison of results from the study showed that the multi-hazard risk maps generated using open source techniques do not provide a reliable system to analyze the infrastructures losses in respect to national risk sources while they can be adopted for general international risk management purposes. Additionally, this study establishes the possibility to critically examine and calibrate different integrated techniques in evaluating what better protection measures can be taken in an area.Keywords: multi-hazard risk mapping, risk management, GIS, Italy
Procedia PDF Downloads 3717741 Interpretation of Two Indices for the Prediction of Cardiovascular Risk in Pediatric Obesity
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Obesity and weight gain are associated with increased risk of developing cardiovascular diseases and the progression of liver fibrosis. Aspartate transaminase–to-platelet count ratio index (AST-to-PLT, APRI) and fibrosis-4 (FIB-4) were primarily considered as the formulas capable of differentiating hepatitis from cirrhosis. Recently, they have found clinical use as measures of liver fibrosis and cardiovascular risk. However, their status in children has not been evaluated in detail yet. The aim of this study is to determine APRI and FIB-4 status in obese (OB) children and compare them with values found in children with normal body mass index (N-BMI). A total of sixty-eight children examined in the outpatient clinics of the Pediatrics Department in Tekirdag Namik Kemal University Medical Faculty were included in the study. Two groups were constituted. In the first group, thirty-five children with N-BMI, whose age- and sex-dependent BMI indices vary between 15 and 85 percentiles, were evaluated. The second group comprised thirty-three OB children whose BMI percentile values were between 95 and 99. Anthropometric measurements and routine biochemical tests were performed. Using these parameters, values for the related indices, BMI, APRI, and FIB-4, were calculated. Appropriate statistical tests were used for the evaluation of the study data. The statistical significance degree was accepted as p<0.05. In the OB group, values found for APRI and FIB-4 were higher than those calculated for the N-BMI group. However, there was no statistically significant difference between the N-BMI and OB groups in terms of APRI and FIB-4. A similar pattern was detected for triglyceride (TRG) values. The correlation coefficient and degree of significance between APRI and FIB-4 were r=0.336 and p=0.065 in the N-BMI group. On the other hand, they were r=0.707 and p=0.001 in the OB group. Associations of these two indices with TRG have shown that this parameter was strongly correlated (p<0.001) both with APRI and FIB-4 in the OB group, whereas no correlation was calculated in children with N-BMI. Triglycerides are associated with an increased risk of fatty liver, which can progress to severe clinical problems such as steatohepatitis, which can lead to liver fibrosis. Triglycerides are also independent risk factors for cardiovascular disease. In conclusion, the lack of correlation between TRG and APRI as well as FIB-4 in children with N-BMI, along with the detection of strong correlations of TRG with these indices in OB children, was the indicator of the possible onset of the tendency towards the development of fatty liver in OB children. This finding also pointed out the potential risk for cardiovascular pathologies in OB children. The nature of the difference between APRI vs FIB-4 correlations in N-BMI and OB groups (no correlation versus high correlation), respectively, may be the indicator of the importance of involving age and alanine transaminase parameters in addition to AST and PLT in the formula designed for FIB-4.Keywords: APRI, children, FIB-4, obesity, triglycerides
Procedia PDF Downloads 3487740 Volatile Organic Compounds from Decomposition of Local Food Waste and Potential Health Risk
Authors: Siti Rohana Mohd Yatim, Ku Halim Ku Hamid, Kamariah Noor Ismail, Zulkifli Abdul Rashid
Abstract:
The aim of this study is to investigate odour emission profiles from storage of food waste and to assess the potential health risk caused by exposure to volatile compounds. Food waste decomposition process was conducted for 14 days and kept at 20°C and 30°C in self-made bioreactor. VOCs emissions from both samples were collected at different stages of decomposition starting at day 0, day 1, day 3, day 5, day 7, day 10, day 12 and day 14. It was analyzed using TD-GC/MS. Findings showed that various VOCs were released during decomposition of food waste. Compounds produced were influenced by time, temperature and the physico-chemical characteristics of the compounds. The most abundant compound released was dimethyl disulfide. Potential health risk of exposure to this compound is represented by hazard ratio, HR, calculated at 1.6 x 1011. Since HR equal to or less than 1.0 is considered negligible risk, this indicates that the compound posed a potential risk to human health.Keywords: volatile organic compounds, decomposition process, food waste, health risk
Procedia PDF Downloads 5207739 Comparison of Risk and Return on Trading and Profit Sharing Based Financing Contract in Indonesian Islamic Bank
Authors: Fatin Fadhilah Hasib, Puji Sucia Sukmaningrum, Imron Mawardi, Achsania Hendratmi
Abstract:
Murabaha is the most popular contract by the Islamic banks in Indonesia, since there is opinion stating that the risk level of mudharaba and musyaraka are higher and the return is uncertain. This research aims to analyze the difference of return, risk, and variation coefficient between profit sharing-based and trading-based financing in Islamic bank. This research uses quantitative approach using Wilcoxon signed rank test with data sampled from 13 Indonesian Islamic banks, collected from their quarterly financial reports from 2011 to 2015. The result shows the significant difference in return, while risk and variation coefficient are almost same. From the analysis, it can be concluded that profit sharing-based financing is less desirable not because of its risk. Trading-based financing is more desirable than the profit sharing because of its return.Keywords: financing, Islamic bank, return, risk
Procedia PDF Downloads 3787738 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks
Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher
Abstract:
Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.Keywords: neural networks, rainfall, prediction, climatic variables
Procedia PDF Downloads 4887737 Development of an Image-Based Biomechanical Model for Assessment of Hip Fracture Risk
Authors: Masoud Nasiri Sarvi, Yunhua Luo
Abstract:
Low-trauma hip fracture, usually caused by fall from standing height, has become a main source of morbidity and mortality for the elderly. Factors affecting hip fracture include sex, race, age, body weight, height, body mass distribution, etc., and thus, hip fracture risk in fall differs widely from subject to subject. It is therefore necessary to develop a subject-specific biomechanical model to predict hip fracture risk. The objective of this study is to develop a two-level, image-based, subject-specific biomechanical model consisting of a whole-body dynamics model and a proximal-femur finite element (FE) model for more accurately assessing the risk of hip fracture in lateral falls. Required information for constructing the model is extracted from a whole-body and a hip DXA (Dual Energy X-ray Absorptiometry) image of the subject. The proposed model considers all parameters subject-specifically, which will provide a fast, accurate, and non-expensive method for predicting hip fracture risk.Keywords: bone mineral density, hip fracture risk, impact force, sideways falls
Procedia PDF Downloads 5367736 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction
Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh
Abstract:
Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction
Procedia PDF Downloads 1717735 Diversification and Risk Management in Non-Profit Organisations: A Case Study
Authors: Manzurul Alam, John Griffiths, David Holloway, Megan Paull, Anne Clear
Abstract:
Background: This paper investigates the nature of risk management practices in non-profit organizations. It is argued here that the risk exposure of these organizations has increased as a result of their entrepreneurial activities. This study explores how a particular non-profit organization formulates its risk strategies in the face funding restrictions. Design/Method/Approach: The study adopts a case study approach to report the results on how a non-profit organization diversifies its activities, tackles risks arising from such activities and improves performance. Results: The findings show that the organization made structural adjustments and leadership changes which helped to adjust their risk strategies. It also reports the organizational processes to deal with risks arising from both related and unrelated diversification strategies. Implications: Any generalization from this case example needs to be taken with caution as there are significant differences between non-profit organizations operating in different sectors. Originality: The paper makes a significant contribution to the non-profit literature by highlighting the diversification strategies along with risk performance.Keywords: risk management, performance management, non-profit organizations, financial management
Procedia PDF Downloads 5157734 Overview About Sludge Produced From Treatment Plant of Bahr El-Baqar Drain and Reusing It With Cement in Outdoor Paving
Authors: Khaled M.Naguib, Ahmed M.Noureldin
Abstract:
This paper aims to achieve many goals such as knowing (quantities produced- main properties- characteristics) of sludge produced from Bahr EL-Baqar drains treatment plant. This prediction or projection was made by laboratory analysis and modelling of Model samples from sludge depending on many studies that have previously done, second check the feasibility and do a risk analysis to know the best alternatives for reuse in producing secondary products that add value to sludge. Also, to know alternatives that have no value to add. All recovery methods are relatively very expensive and challenging to be done in this mega plant, so the recommendation from this study is to use the sludge as a coagulant to reduce some compounds or in secondary products. The study utilized sludge-cement replacement percentages of 10%, 20%, 30%, 40% and 50%. Produced tiles were tested for water absorption and breaking (bending) strength. The study showed that all produced tiles exhibited a water absorption ratio of around 10%. The study concluded that produced tiles, except for 50% sludge-cement replacement, comply with the breaking strength requirements of 2.8 MPa for tiles for external use.Keywords: cement, tiles, water treatment sludge, breaking strength, absorption, heavy metals, risk analysis
Procedia PDF Downloads 1077733 A Literature Review on Banks’ Profitability and Risk Adjustment Decisions
Authors: Libena Cernohorska, Barbora Sutorova, Petr Teply
Abstract:
There are pending discussions over an impact of global regulatory efforts on banks. In this paper we present a literature review on the profitability-risk-capital relationship in banking. Research papers dealing with this topic can be divided into two groups: the first group focusing on a capital-risk relationship and the second group analyzing a capital-profitability relationship. The first group investigates whether the imposition of stricter capital requirements reduces risk-taking incentives of banks based on a simultaneous equations model. Their model pioneered the idea that the changes in both capital and risk have endogenous and exogenous components. The results obtained by the authors indicate that changes in the capital level are positively related to the changes in asset risk. The second group of the literature concentrating solely on the relationship between the level of held capital and bank profitability is limited. Nevertheless, there are a lot of studies dealing with the banks’ profitability as such, where bank capital is very often included as an explanatory variable. Based on the literature review of dozens of relevant papers in this study, an empirical research on banks’ profitability and risk adjustment decisions under new banking rules Basel III rules can be easily undertaken.Keywords: bank, Basel III, capital, decision making, profitability, risk, simultaneous equations model
Procedia PDF Downloads 4997732 Financial Portfolio Optimization in Turkish Electricity Market via Value at Risk
Authors: F. Gökgöz, M. E. Atmaca
Abstract:
Electricity has an indispensable role in human daily life, technological development and economy. It is a special product or service that should be instantaneously generated and consumed. Sources of the world are limited so that effective and efficient use of them is very important not only for human life and environment but also for technological and economic development. Competitive electricity market is one of the important way that provides suitable platform for effective and efficient use of electricity. Besides benefits, it brings along some risks that should be carefully managed by a market player like Electricity Generation Company. Risk management is an essential part in market players’ decision making. In this paper, risk management through diversification is applied with the help of Value at Risk methods for case studies. Performance of optimal electricity sale solutions are measured and the portfolio performance has been evaluated via Sharpe-Ratio, and compared with conventional approach. Biennial historical electricity price data of Turkish Day Ahead Market are used to demonstrate the approach.Keywords: electricity market, portfolio optimization, risk management, value at risk
Procedia PDF Downloads 3137731 The Role of Lifetime Stress in the Relation between Socioeconomic Status and Health-Risk Behaviors
Authors: Teresa Smith, Farrah Jacquez
Abstract:
Health-risk behaviors (e.g., smoking, poor diet) directly increase the risk for chronic disease and morbidity. There is substantial evidence of a negative association between socioeconomic status (SES) and engagement in health-risk behaviors. However, due to the complexity of SES, researchers have suggested looking beyond this factor to fully understand the mechanisms that underlie engagement in health-risk behaviors. Stress is one plausible mechanism through which SES impacts health-risk behaviors. Currently, it remains unclear how stress occurring across the life course might impact health behaviors and explain the association between SES and these behaviors. To address the gaps in the literature, 172 adults between the ages of 18-49 were surveyed about their lifetime stress exposure, sociodemographic variables, and health-risk behaviors via an online recruitment portal, Prolific. Five major findings emerged from the current study. First, SES was negatively associated with engagement in health-risk behaviors and lifetime stress above and beyond current stress and other relevant demographics. Second, lifetime stress was significantly associated with health-risk behaviors above and beyond current stress and relevant demographic variables. Third, lifetime stress fully mediated the association between SES and health-risk behaviors above and beyond current stress and other demographics. Fourth, the severity of stress experienced emerged as the most significant lifetime stress variable that explains the relation between SES and health-risk behaviors. Fifth and finally, lower SES and experiencing financial and legal/crime stressors increased the likelihood of engaging in health-risk behaviors. The current study results align with previous research and suggest that stress occurring over the lifespan impacts the relation between SES and health-risk behaviors, which are in turn known to impact health outcomes. However, our findings move the current literature forward by providing a more nuanced understanding of the specific aspects of stress that influence this association. Specifically, the severity of stress experienced across the entire lifespan was the most important aspect of stress when examining the association between SES and health-risk behaviors. Further, individuals most at risk for engaging in health-risk behaviors are those of the lowest SES and experience financial and legal/crime stressors. These findings have the potential to inform interventions and policies aimed at addressing health-risk behaviors by providing a more sophisticated understanding of the impact of stress.Keywords: stress, health behaviors, socioeconomic status, health
Procedia PDF Downloads 1467730 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering
Authors: Hamza Nejib, Okba Taouali
Abstract:
This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.Keywords: online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS
Procedia PDF Downloads 3997729 The Impact of Global Financial Crises and Corporate Financial Crisis (Bankruptcy Risk) on Corporate Tax Evasion: Evidence from Emerging Markets
Authors: Seyed Sajjad Habibi
Abstract:
The aim of this study is to investigate the impact of global financial crises and corporate financial crisis on tax evasion of companies listed on the Tehran Stock Exchange. For this purpose, panel data in the periods of financial crisis period (2007 to 2012) and without a financial crisis (2004, 2005, 2006, 2013, 2014, and 2015) was analyzed using multivariate linear regression. The results indicate a significant relationship between the corporate financial crisis (bankruptcy risk) and tax evasion in the global financial crisis period. The results also showed a significant relationship between the corporate bankruptcy risk and tax evasion in the period with no global financial crisis. A significant difference was found between the bankruptcy risk and tax evasion in the period of the global financial crisis and that with no financial crisis so that tax evasion increased in the financial crisis period.Keywords: global financial crisis, corporate financial crisis, bankruptcy risk, tax evasion risk, emerging markets
Procedia PDF Downloads 2807728 A Risk Management Framework for Selling a Mega Power Plant Project in a New Market
Authors: Negar Ganjouhaghighi, Amirali Dolatshahi
Abstract:
The origin of most risks of a mega project usually takes place in the phases before closing the contract. As a practical point of view, using project risk management techniques for preparing a proposal is not a total solution for managing the risks of a contract. The objective of this paper is to cover all those activities associated with risk management of a mega project sale’s processes; from entrance to a new market to awarding activities and the review of contract performance. In this study, the risk management happens in six consecutive steps that are divided into three distinct but interdependent phases upstream of the award of the contract: pre-tendering, tendering and closing. In the first step, by preparing standard market risk report, risks of the new market are identified. The next step is the bid or no bid decision making based on the previous gathered data. During the next three steps in tendering phase, project risk management techniques are applied for determining how much contingency reserve must be added or reduced to the estimated cost in order to put the residual risk to an acceptable level. Finally, the last step which happens in closing phase would be an overview of the project risks and final clarification of residual risks. The sales experience of more than 20,000 MW turn-key power plant projects alongside this framework, are used to develop a software that assists the sales team to have a better project risk management.Keywords: project marketing, risk management, tendering, project management, turn-key projects
Procedia PDF Downloads 3297727 Stock Market Prediction by Regression Model with Social Moods
Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome
Abstract:
This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.Keywords: stock market prediction, social moods, regression model, DJIA
Procedia PDF Downloads 5487726 Measuring Banking Systemic Risk Conditional Value-At-Risk and Conditional Coherent Expected Shortfall in Taiwan Using Vector Quantile GARCH Model
Authors: Ender Su, Kai Wen Wong, I-Ling Ju, Ya-Ling Wang
Abstract:
In this study, the systemic risk change of Taiwan’s banking sector is analyzed during the financial crisis. The risk expose of each financial institutions to the whole Taiwan banking systemic risk or vice versa under financial distress are measured by conditional Value-at-Risk (CoVaR) and conditional coherent expected shortfall (CoES). The CoVaR and CoES are estimated by using vector quantile autoregression (MVMQ-CaViaR) with the daily stock returns of each banks included domestic and foreign banks in Taiwan. The daily in-sample data covered the period from 05/20/2002 to 07/31/2007 and the out-of-sample period until 12/31/2013 spanning the 2008 U.S. subprime crisis, 2010 Greek debt crisis, and post risk duration. All banks in Taiwan are categorised into several groups according to their size of market capital, leverage and domestic/foreign to find out what the extent of changes of the systemic risk as the risk changes between the individuals in the bank groups and vice versa. The final results can provide a guidance to financial supervisory commission of Taiwan to gauge the downside risk in the system of financial institutions and determine the minimum capital requirement hold by financial institutions due to the sensibility changes in CoVaR and CoES of each banks.Keywords: bank financial distress, vector quantile autoregression, CoVaR, CoES
Procedia PDF Downloads 3867725 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study
Authors: Salima Smiti, Ines Gasmi, Makram Soui
Abstract:
Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.Keywords: credit risk assessment, classification algorithms, data mining, rule extraction
Procedia PDF Downloads 1817724 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju
Abstract:
The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events
Procedia PDF Downloads 2617723 Maturity Transformation Risk Factors in Islamic Banking: An Implication of Basel III Liquidity Regulations
Authors: Haroon Mahmood, Christopher Gan, Cuong Nguyen
Abstract:
Maturity transformation risk is highlighted as one of the major causes of recent global financial crisis. Basel III has proposed new liquidity regulations for transformation function of banks and hence to monitor this risk. Specifically, net stable funding ratio (NSFR) is introduced to enhance medium- and long-term resilience against liquidity shocks. Islamic banking is widely accepted in many parts of the world and contributes to a significant portion of the financial sector in many countries. Using a dataset of 68 fully fledged Islamic banks from 11 different countries, over a period from 2005 – 2014, this study has attempted to analyze various factors that may significantly affect the maturity transformation risk in these banks. We utilize 2-step system GMM estimation technique on unbalanced panel and find bank capital, credit risk, financing, size and market power are most significant among the bank specific factors. Also, gross domestic product and inflation are the significant macro-economic factors influencing this risk. However, bank profitability, asset efficiency, and income diversity are found insignificant in determining the maturity transformation risk in Islamic banking model.Keywords: Basel III, Islamic banking, maturity transformation risk, net stable funding ratio
Procedia PDF Downloads 4157722 The Influence of Polymorphisms of NER System Genes on the Risk of Colorectal Cancer in the Polish Population
Authors: Ireneusz Majsterek, Karolina Przybylowska, Lukasz Dziki, Adam Dziki, Jacek Kabzinski
Abstract:
Colorectal cancer (CRC) is one of the deadliest cancers. Every year we see an increase in the number of cases, and in spite of intensive research etiology of the disease remains unknown. For many years, researchers are seeking to associate genetic factors with an increased risk of CRC, so far it has proved to be a compelling link between the MMR system of DNA repair and hereditary nonpolyposis colorectal cancers (HNPCC). Currently, research is focused on finding the relationship between the remaining DNA repair systems and an increased risk of developing colorectal cancer. The aim of the study was to determine the relationship between gene polymorphisms Ser835Ser of XPF gene and Gly23Ala of XPA gene–elements of NER DNA repair system, and modulation of the risk of colorectal cancer in the Polish population. Determination of the molecular basis of carcinogenesis process and predicting increased risk will allow qualifying patients to increased risk group and including them in preventive program. We used blood collected from 110 patients diagnosed with colorectal cancer. The control group consisted of equal number of healthy people. Genotyping was performed by TaqMan method. The obtained results indicate that the genotype 23Gly/Ala of XPA gene is associated with an increased risk of colorectal cancer, while 23Ala/Ala as well as TCT allele of Ser835Ser of XPF gene may reduce the risk of CRC.Keywords: NER, colorectal cancer, XPA, XPF, polymorphisms
Procedia PDF Downloads 5687721 Design for Safety: Safety Consideration in Planning and Design of Airport Airsides
Authors: Maithem Al-Saadi, Min An
Abstract:
During airport planning and design stages, the major issues of capacity and safety in construction and operation of an airport need to be taken into consideration. The airside of an airport is a major and critical infrastructure that usually consists of runway(s), taxiway system, and apron(s) etc., which have to be designed according to the international standards and recommendations, and local limitations to accommodate the forecasted demands. However, in many cases, airport airsides are suffering from unexpected risks that occurred during airport operations. Therefore, safety risk assessment should be applied in the planning and design of airsides to cope with the probability of risks and their consequences, and to make decisions to reduce the risks to as low as reasonably practicable (ALARP) based on safety risk assessment. This paper presents a combination approach of Failure Modes, Effect, and Criticality Analysis (FMECA), Fuzzy Reasoning Approach (FRA), and Fuzzy Analytic Hierarchy Process (FAHP) to develop a risk analysis model for safety risk assessment. An illustrated example is used to the demonstrate risk assessment process on how the design of an airside in an airport can be analysed by using the proposed safety design risk assessment model.Keywords: airport airside planning and design, design for safety, fuzzy reasoning approach, fuzzy AHP, risk assessment
Procedia PDF Downloads 3657720 Assessment of Predictive Confounders for the Prevalence of Breast Cancer among Iraqi Population: A Retrospective Study from Baghdad, Iraq
Authors: Nadia H. Mohammed, Anmar Al-Taie, Fadia H. Al-Sultany
Abstract:
Although breast cancer prevalence continues to increase, mortality has been decreasing as a result of early detection and improvement in adjuvant systemic therapy. Nevertheless, this disease required further efforts to understand and identify the associated potential risk factors that could play a role in the prevalence of this malignancy among Iraqi women. The objective of this study was to assess the perception of certain predictive risk factors on the prevalence of breast cancer types among a sample of Iraqi women diagnosed with breast cancer. This was a retrospective observational study carried out at National Cancer Research Center in College of Medicine, Baghdad University from November 2017 to January 2018. Data of 100 patients with breast cancer whose biopsies examined in the National Cancer Research Center were included in this study. Data were collected to structure a detailed assessment regarding the patients’ demographic, medical and cancer records. The majority of study participants (94%) suffered from ductal breast cancer with mean age 49.57 years. Among those women, 48.9% were obese with body mass index (BMI) 35 kg/m2. 68.1% of them had positive family history of breast cancer and 66% had low parity. 40.4% had stage II ductal breast cancer followed by 25.5% with stage III. It was found that 59.6% and 68.1% had positive oestrogen receptor sensitivity and positive human epidermal growth factor (HER2/neu) receptor sensitivity respectively. In regard to the impact of prediction of certain variables on the incidence of ductal breast cancer, positive family history of breast cancer (P < 0.0001), low parity (P< 0.0001), stage I and II breast cancer (P = 0.02) and positive HER2/neu status (P < 0.0001) were significant predictive factors among the study participants. The results from this study provide relevant evidence for a significant positive and potential association between certain risk factors and the prevalence of breast cancer among Iraqi women.Keywords: Ductal Breast Cancer, Hormone Sensitivity, Iraq, Risk Factors
Procedia PDF Downloads 1287719 The Combination Of Aortic Dissection Detection Risk Score (ADD-RS) With D-dimer As A Diagnostic Tool To Exclude The Diagnosis Of Acute Aortic Syndrome (AAS)
Authors: Mohamed Hamada Abdelkader Fayed
Abstract:
Background: To evaluate the diagnostic accuracy of (ADD-RS) with D-dimer as a screening test to exclude AAS. Methods: We conducted research for the studies examining the diagnostic accuracy of (ADD- RS)+ D-dimer to exclude the diagnosis of AAS, We searched MEDLINE, Embase, and Cochrane of Trials up to 31 December 2020. Results: We identified 3 studies using (ADD-RS) with D-dimer as a diagnostic tool for AAS, involving 3261 patients were AAS was diagnosed in 559(17.14%) patients. Overall results showed that the pooled sensitivities were 97.6 (95% CI 0.95.6, 99.6) at (ADD-RS)≤1(low risk group) with D-dimer and 97.4(95% CI 0.95.4,, 99.4) at (ADD-RS)>1(High risk group) with D-dimer., the failure rate was 0.48% at low risk group and 4.3% at high risk group respectively. Conclusions: (ADD-RS) with D-dimer was a useful screening test with high sensitivity to exclude Acute Aortic Syndrome.Keywords: aortic dissection detection risk score, D-dimer, acute aortic syndrome, diagnostic accuracy
Procedia PDF Downloads 2157718 Extent of Derivative Usage, Firm Value and Risk: An Empirical Study on Pakistan Non-Financial Firms
Authors: Atia Alam
Abstract:
Growing liberalisation and intense market competition increase firm’s risk exposure and induce corporations to use derivatives extensively as a risk management instrument, which results in decrease in firm’s risk, and increase in value. Present study contributes towards existing literature by providing an in-depth analysis regarding the effect of extent of derivative usage on firm’s risk and value by using panel data models and seemingly unrelated regression technique. New evidence is established in current literature by dividing the sample data based on firm’s Exchange Rate (ER) and Interest Rate (IR) exposure. Analysis is performed for the effect of extent of derivative usage on firm’s risk and value and its variation with respect to the ER and IR exposure. Sample data consists of 166 Pakistani firms listed on Pakistan stock exchange for the period of 2004-2010. Results show that extensive usage of derivative instruments significantly increases firm value and reduces firm’s risk. Furthermore, comprehensive analysis depicts that Pakistani corporations having higher exchange rate exposure, with respect to foreign sales, and higher interest rate exposure, on the basis of industry adjusted leverage, have higher firm value and lower risk. Findings from seemingly unrelated regression also provide robustness to results obtained through panel data analysis. Study also highlights the role of derivative usage as a risk management instrument in high and low ER and IR risk and helps practitioners in understanding how value increasing effect of extent of derivative usage varies with the intensity of firm’s risk exposure.Keywords: extent of derivative usage, firm value, risk, Pakistan, non-financial firms
Procedia PDF Downloads 3567717 Heterogeneity, Asymmetry and Extreme Risk Perception; Dynamic Evolution Detection From Implied Risk Neutral Density
Authors: Abderrahmen Aloulou, Younes Boujelbene
Abstract:
The current paper displays a new method of extracting information content from options prices by eliminating biases caused by daily variation of contract maturity. Based on Kernel regression tool, this non-parametric technique serves to obtain a spectrum of interpolated options with constant maturity horizons from negotiated optional contracts on the S&P TSX 60 index. This method makes it plausible to compare daily risk neutral densities from which extracting time continuous indicators allows the detection traders attitudes’ evolution, such as, belief homogeneity, asymmetry and extreme Risk Perception. Our findings indicate that the applied method contribute to develop effective trading strategies and to adjust monetary policies through controlling trader’s reactions to economic and monetary news.Keywords: risk neutral densities, kernel, constant maturity horizons, homogeneity, asymmetry and extreme risk perception
Procedia PDF Downloads 4857716 Screening of Risk Phenotypes among Metabolic Syndrome Subjects in Adult Pakistani Population
Authors: Muhammad Fiaz, Muhammad Saqlain, Abid Mahmood, S. M. Saqlan Naqvi, Rizwan Aziz Qazi, Ghazala Kaukab Raja
Abstract:
Background: Metabolic Syndrome is a clustering of multiple risk factors including central obesity, hypertension, dyslipidemia and hyperglycemia. These risk phenotypes of metabolic syndrome (MetS) prevalent world-wide, Therefore we aimed to identify the frequency of risk phenotypes among metabolic syndrome subjects in local adult Pakistani population. Methods: Screening of subjects visiting out-patient department of medicine, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad was performed to assess the occurrence of risk phenotypes among MetS subjects in Pakistani population. The Metabolic Syndrome was defined based on International Diabetes Federation (IDF) criteria. Anthropometric and biochemical assay results were recorded. Data was analyzed using SPSS software (16.0). Results: Our results showed that dyslipidemia (31.50%) and hyperglycemia (30.50%) was most population specific risk phenotypes of MetS. The results showed the order of association of metabolic risk phenotypes to MetS as follows hyperglycemia>dyslipidemia>obesity >hypertension. Conclusion: The hyperglycemia and dyslipidemia were found be the major risk phenotypes among the MetS subjects and have greater chances of deceloping MetS among Pakistani Population.Keywords: dyslipidemia, hypertention, metabolic syndrome, obesity
Procedia PDF Downloads 2097715 Development of IDF Curves for Precipitation in Western Watershed of Guwahati, Assam
Authors: Rajarshi Sharma, Rashidul Alam, Visavino Seleyi, Yuvila Sangtam
Abstract:
The Intensity-Duration-Frequency (IDF) relationship of rainfall amounts is one of the most commonly used tools in water resources engineering for planning, design and operation of water resources project, or for various engineering projects against design floods. The establishment of such relationships was reported as early as in 1932 (Bernard). Since then many sets of relationships have been constructed for several parts of the globe. The objective of this research is to derive IDF relationship of rainfall for western watershed of Guwahati, Assam. These relationships are useful in the design of urban drainage works, e.g. storm sewers, culverts and other hydraulic structures. In the study, rainfall depth for 10 years viz. 2001 to 2010 has been collected from the Regional Meteorological Centre Borjhar, Guwahati. Firstly, the data has been used to construct the mass curve for duration of more than 7 hours rainfall to calculate the maximum intensity and to form the intensity duration curves. Gumbel’s frequency analysis technique has been used to calculate the probable maximum rainfall intensities for a period of 2 yr, 5 yr, 10 yr, 50 yr, 100 yr from the maximum intensity. Finally, regression analysis has been used to develop the intensity-duration-frequency (IDF) curve. Thus, from the analysis the values for the constants ‘a’,‘b’ &‘c’ have been found out. The values of ‘a’ for which the sum of the squared deviation is minimum has been found out to be 40 and when the corresponding value of ‘c’ and ‘b’ for the minimum squared deviation of ‘a’ are 0.744 and 1981.527 respectively. The results obtained showed that in all the cases the correlation coefficient is very high indicating the goodness of fit of the formulae to estimate IDF curves in the region of interest.Keywords: intensity-duration-frequency relationship, mass curve, regression analysis, correlation coefficient
Procedia PDF Downloads 2447714 Forest Fire Risk Mapping Using Analytic Hierarchy Process and GIS-Based Application: A Case Study in Hua Sai District, Thailand
Authors: Narissara Nuthammachot, Dimitris Stratoulias
Abstract:
Fire is one of the main causes of environmental and ecosystem change. Therefore, it is a challenging task for fire risk assessment fire potential mapping. The study area is Hua Sai district, Nakorn Sri Thammarat province, which covers in a part of peat swamp forest areas. 55 fire points in peat swamp areas were reported from 2012 to 2016. Analytic Hierarchy Process (AHP) and Geographic Information System (GIS) methods were selected for this study. The risk fire area map was arranged on these factors; elevation, slope, aspect, precipitation, distance from the river, distance from town, and land use. The results showed that the predicted fire risk areas are found to be in appreciable reliability with past fire events. The fire risk map can be used for the planning and management of fire areas in the future.Keywords: analytic hierarchy process, fire risk assessment, geographic information system, peat swamp forest
Procedia PDF Downloads 2107713 A Resource Survey of Lateritic Soils and Impact Evaluation toward Community Members Living Nearby the Excavation Pits
Authors: Ratchasak Suvannatsiri
Abstract:
The objectives of the research are to find the basic engineering properties of lateritic soil and to predict the impact on community members who live nearby the excavation pits in the area of Amphur Pak Thor, Ratchaburi Province in the western area of Thailand. The research was conducted by collecting soil samples from four excavation pits for basic engineering properties, testing and collecting questionnaire data from 120 community members who live nearby the excavation pits, and applying statistical analysis. The results found that the basic engineering properties of lateritic soil can be classified into silt soil type which is cohesionless as the loess or collapsible soil which is not suitable to be used for a pavement structure for commuting highway because it could lead to structural and functional failure in the long run. In terms of opinion from community members toward the impact, the highest impact was on the dust from excavation activities. The prediction from the logistic regression in terms of impact on community members was at 84.32 which can be adapted and applied onto other areas with the same context as a guideline for risk prevention and risk communication since it could impact the infrastructures and also impact the health of community members.Keywords: lateritic soil, excavation pits, engineering properties, impact on community members
Procedia PDF Downloads 455