Search results for: robot programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1375

Search results for: robot programming

955 Grid Computing for Multi-Objective Optimization Problems

Authors: Aouaouche Elmaouhab, Hassina Beggar

Abstract:

Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.

Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing

Procedia PDF Downloads 485
954 Approximate Spring Balancing for the Arm of a Humanoid Robot to Reduce Actuator Torque

Authors: Apurva Patil, Ashay Aswale, Akshay Kulkarni, Shubham Bharadiya

Abstract:

The potential benefit of gravity compensation of linkages in mechanisms using springs to reduce actuator requirements is well recognized, but practical applications have been elusive. Although existing methods provide exact spring balance, they require additional masses or auxiliary links, or all the springs used originate from the ground, which makes the resulting device bulky and space-inefficient. This paper uses a method of static balancing of mechanisms with conservative loads such as gravity and spring loads using non-zero-free-length springs with child–parent connections and no auxiliary links. Application of this method to the developed arm of a humanoid robot is presented here. Spring balancing is particularly important in this case because the serial chain of linkages has to work against gravity.This work involves approximate spring balancing of the open-loop chain of linkages using minimization of potential energy variance. It uses the approach of flattening the potential energy distribution over the workspace and fuses it with numerical optimization. The results show the considerable reduction in actuator torque requirement with practical spring design and arrangement. Reduced actuator torque facilitates the use of lower end actuators which are generally smaller in weight and volume thereby lowering the space requirements and the total weight of the arm. This is particularly important for humanoid robots where the parent actuator has to handle the weight of the subsequent actuators as well. Actuators with lower actuation requirements are more energy efficient, thereby reduce the energy consumption of the mechanism. Lower end actuators are lower in cost and facilitate the development of low-cost devices. Although the method provides only an approximate balancing, it is versatile, flexible in choosing appropriate control variables that are relevant to the design problem and easy to implement. The true potential of this technique lies in the fact that it uses a very simple optimization to find the spring constant, free-length of the spring and the optimal attachment points subject to the optimization constraints. Also, it uses physically realizable non-zero-free-length springs directly, thereby reducing the complexity involved in simulating zero-free-length springs from non-zero-free-length springs. This method allows springs to be attached to the preceding parent link, which makes the implementation of spring balancing practical. Because auxiliary linkages can be avoided, the resultant arm of the humanoid robot is compact. The cost benefits and reduced complexity can be significant advantages in the development of this arm of the humanoid robot.

Keywords: actuator torque, child-parent connections, spring balancing, the arm of a humanoid robot

Procedia PDF Downloads 244
953 Apps Reduce the Cost of Construction

Authors: Ali Mohammadi

Abstract:

Every construction that is done, the most important part of attention for employers and contractors is its cost, and they always try to reduce costs so that they can compete in the market, so they estimate the cost of construction before starting their activities. The costs can be generally divided into four parts: the materials used, the equipment used, the manpower required, and the time required. In this article, we are trying to talk about the three items of equipment, manpower, and time, and examine how the use of apps can reduce the cost of construction, while due to various reasons, it has received less attention in the field of app design. Also, because we intend to use these apps in construction and they are used by engineers and experts, we define these apps as engineering apps because the idea of ​​their design must be by an engineer who works in that field. Also, considering that most engineers are familiar with programming during their studies, they can design the apps they need using simple programming software.

Keywords: layout, as-bilt, monitoring, maps

Procedia PDF Downloads 65
952 Ta-DAH: Task Driven Automated Hardware Design of Free-Flying Space Robots

Authors: Lucy Jackson, Celyn Walters, Steve Eckersley, Mini Rai, Simon Hadfield

Abstract:

Space robots will play an integral part in exploring the universe and beyond. A correctly designed space robot will facilitate OOA, satellite servicing and ADR. However, problems arise when trying to design such a system as it is a highly complex multidimensional problem into which there is little research. Current design techniques are slow and specific to terrestrial manipulators. This paper presents a solution to the slow speed of robotic hardware design, and generalizes the technique to free-flying space robots. It presents Ta-DAH Design, an automated design approach that utilises a multi-objective cost function in an iterative and automated pipeline. The design approach leverages prior knowledge and facilitates the faster output of optimal designs. The result is a system that can optimise the size of the base spacecraft, manipulator and some key subsystems for any given task. Presented in this work is the methodology behind Ta-DAH Design and a number optimal space robot designs.

Keywords: space robots, automated design, on-orbit operations, hardware design

Procedia PDF Downloads 72
951 Self-Propelled Intelligent Robotic Vehicle Based on Octahedral Dodekapod to Move in Active Branched Pipelines with Variable Cross-Sections

Authors: Sergey N. Sayapin, Anatoly P. Karpenko, Suan H. Dang

Abstract:

Comparative analysis of robotic vehicles for pipe inspection is presented in this paper. The promising concept of self-propelled intelligent robotic vehicle (SPIRV) based on octahedral dodekapod for inspection and operation in active branched pipelines with variable cross-sections is reasoned. SPIRV is able to move in pipeline, regardless of its spatial orientation. SPIRV can also be used to move along the outside of the pipelines as well as in space between surfaces of annular tubes. Every one of faces of the octahedral dodekapod can clamp/unclamp a thing with a closed loop surface of various forms as well as put pressure on environmental surface of contact. These properties open new possibilities for its applications in SPIRV. We examine design principles of octahedral dodekapod as future intelligent building blocks for various robotic vehicles that can self-move and self-reconfigure.

Keywords: Modular robot, octahedral dodekapod, pipe inspection robot, spatial parallel structure

Procedia PDF Downloads 501
950 Mapping Context, Roles, and Relations for Adjudicating Robot Ethics

Authors: Adam J. Bowen

Abstract:

Abstract— Should robots have rights or legal protections. Often debates concerning whether robots and AI should be afforded rights focus on conditions of personhood and the possibility of future advanced forms of AI satisfying particular intrinsic cognitive and moral attributes of rights-holding persons. Such discussions raise compelling questions about machine consciousness, autonomy, and value alignment with human interests. Although these are important theoretical concerns, especially from a future design perspective, they provide limited guidance for addressing the moral and legal standing of current and near-term AI that operate well below the cognitive and moral agency of human persons. Robots and AI are already being pressed into service in a wide range of roles, especially in healthcare and biomedical contexts. The design and large-scale implementation of robots in the context of core societal institutions like healthcare systems continues to rapidly develop. For example, we bring them into our homes, hospitals, and other care facilities to assist in care for the sick, disabled, elderly, children, or otherwise vulnerable persons. We enlist surgical robotic systems in precision tasks, albeit still human-in-the-loop technology controlled by surgeons. We also entrust them with social roles involving companionship and even assisting in intimate caregiving tasks (e.g., bathing, feeding, turning, medicine administration, monitoring, transporting). There have been advances to enable severely disabled persons to use robots to feed themselves or pilot robot avatars to work in service industries. As the applications for near-term AI increase and the roles of robots in restructuring our biomedical practices expand, we face pressing questions about the normative implications of human-robot interactions and collaborations in our collective worldmaking, as well as the moral and legal status of robots. This paper argues that robots operating in public and private spaces be afforded some protections as either moral patients or legal agents to establish prohibitions on robot abuse, misuse, and mistreatment. We already implement robots and embed them in our practices and institutions, which generates a host of human-to-machine and machine-to-machine relationships. As we interact with machines, whether in service contexts, medical assistance, or home health companions, these robots are first encountered in relationship to us and our respective roles in the encounter (e.g., surgeon, physical or occupational therapist, recipient of care, patient’s family, healthcare professional, stakeholder). This proposal aims to outline a framework for establishing limiting factors and determining the extent of moral or legal protections for robots. In doing so, it advocates for a relational approach that emphasizes the priority of mapping the complex contextually sensitive roles played and the relations in which humans and robots stand to guide policy determinations by relevant institutions and authorities. The relational approach must also be technically informed by the intended uses of the biomedical technologies in question, Design History Files, extensive risk assessments and hazard analyses, as well as use case social impact assessments.

Keywords: biomedical robots, robot ethics, robot laws, human-robot interaction

Procedia PDF Downloads 120
949 Supplier Selection by Considering Cost and Reliability

Authors: K. -H. Yang

Abstract:

Supplier selection problem is one of the important issues of supply chain problems. Two categories of methodologies include qualitative and quantitative approaches which can be applied to supplier selection problems. However, due to the complexities of the problem and lacking of reliable and quantitative data, qualitative approaches are more than quantitative approaches. This study considers operational cost and supplier’s reliability factor and solves the problem by using a quantitative approach. A mixed integer programming model is the primary analytic tool. Analyses of different scenarios with variable cost and reliability structures show that the effectiveness of this approach to the supplier selection problem.

Keywords: mixed integer programming, quantitative approach, supplier’s reliability, supplier selection

Procedia PDF Downloads 384
948 Improving Student Programming Skills in Introductory Computer and Data Science Courses Using Generative AI

Authors: Genady Grabarnik, Serge Yaskolko

Abstract:

Generative Artificial Intelligence (AI) has significantly expanded its applicability with the incorporation of Large Language Models (LLMs) and become a technology with promise to automate some areas that were very difficult to automate before. The paper describes the introduction of generative Artificial Intelligence into Introductory Computer and Data Science courses and analysis of effect of such introduction. The generative Artificial Intelligence is incorporated in the educational process two-fold: For the instructors, we create templates of prompts for generation of tasks, and grading of the students work, including feedback on the submitted assignments. For the students, we introduce them to basic prompt engineering, which in turn will be used for generation of test cases based on description of the problems, generating code snippets for the single block complexity programming, and partitioning into such blocks of an average size complexity programming. The above-mentioned classes are run using Large Language Models, and feedback from instructors and students and courses’ outcomes are collected. The analysis shows statistically significant positive effect and preference of both stakeholders.

Keywords: introductory computer and data science education, generative AI, large language models, application of LLMS to computer and data science education

Procedia PDF Downloads 58
947 Dynamic Ad-hoc Topologies for Mobile Robot Navigation Based on Non-Uniform Grid Maps

Authors: Peter Sauer, Thomas Hinze, Petra Hofstedt

Abstract:

To avoid obstacles in the surrounding environment and to navigate to a given target belong to the most important tasks for mobile robots. According to these tasks different data structures are suitable. To avoid near obstacles, occupancy grid maps are an ideal representation of the surroundings. For less fine grained tasks, such as navigating from one room to another in an apartment, pure grid maps are inappropriate. Grid maps are very detailed, calculating paths to navigate between rooms based on grid maps would take too long. Instead, graph-based data structures, so-called topologies, turn out to be a proper choice for such tasks. In this paper we present two methods to dynamically create topologies from grid maps. Both methods are based on non-uniform grid maps. The topologies are generated on-the-fly and can easily be modified to represent changes in the environment. This allows a hybrid approach to control mobile robots, where, depending on the situation and the current task, either the grid map or the generated topology may be used.

Keywords: robot navigation, occupancy grids, topological maps, dynamic map creation

Procedia PDF Downloads 563
946 Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems

Authors: Amirhossein Khazali, Mohsen Kalantar

Abstract:

Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios.

Keywords: energy and reserve market, energy storage device, stochastic programming, wind generation

Procedia PDF Downloads 574
945 Parallel Computing: Offloading Matrix Multiplication to GPU

Authors: Bharath R., Tharun Sai N., Bhuvan G.

Abstract:

This project focuses on developing a Parallel Computing method aimed at optimizing matrix multiplication through GPU acceleration. Addressing algorithmic challenges, GPU programming intricacies, and integration issues, the project aims to enhance efficiency and scalability. The methodology involves algorithm design, GPU programming, and optimization techniques. Future plans include advanced optimizations, extended functionality, and integration with high-level frameworks. User engagement is emphasized through user-friendly interfaces, open- source collaboration, and continuous refinement based on feedback. The project's impact extends to significantly improving matrix multiplication performance in scientific computing and machine learning applications.

Keywords: matrix multiplication, parallel processing, cuda, performance boost, neural networks

Procedia PDF Downloads 58
944 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils

Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente

Abstract:

Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.

Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi

Procedia PDF Downloads 543
943 Developing Computational Thinking in Early Childhood Education

Authors: Kalliopi Kanaki, Michael Kalogiannakis

Abstract:

Nowadays, in the digital era, the early acquisition of basic programming skills and knowledge is encouraged, as it facilitates students’ exposure to computational thinking and empowers their creativity, problem-solving skills, and cognitive development. More and more researchers and educators investigate the introduction of computational thinking in K-12 since it is expected to be a fundamental skill for everyone by the middle of the 21st century, just like reading, writing and arithmetic are at the moment. In this paper, a doctoral research in the process is presented, which investigates the infusion of computational thinking into science curriculum in early childhood education. The whole attempt aims to develop young children’s computational thinking by introducing them to the fundamental concepts of object-oriented programming in an enjoyable, yet educational framework. The backbone of the research is the digital environment PhysGramming (an abbreviation of Physical Science Programming), which provides children the opportunity to create their own digital games, turning them from passive consumers to active creators of technology. PhysGramming deploys an innovative hybrid schema of visual and text-based programming techniques, with emphasis on object-orientation. Through PhysGramming, young students are familiarized with basic object-oriented programming concepts, such as classes, objects, and attributes, while, at the same time, get a view of object-oriented programming syntax. Nevertheless, the most noteworthy feature of PhysGramming is that children create their own digital games within the context of physical science courses, in a way that provides familiarization with the basic principles of object-oriented programming and computational thinking, even though no specific reference is made to these principles. Attuned to the ethical guidelines of educational research, interventions were conducted in two classes of second grade. The interventions were designed with respect to the thematic units of the curriculum of physical science courses, as a part of the learning activities of the class. PhysGramming was integrated into the classroom, after short introductory sessions. During the interventions, 6-7 years old children worked in pairs on computers and created their own digital games (group games, matching games, and puzzles). The authors participated in these interventions as observers in order to achieve a realistic evaluation of the proposed educational framework concerning its applicability in the classroom and its educational and pedagogical perspectives. To better examine if the objectives of the research are met, the investigation was focused on six criteria; the educational value of PhysGramming, its engaging and enjoyable characteristics, its child-friendliness, its appropriateness for the purpose that is proposed, its ability to monitor the user’s progress and its individualizing features. In this paper, the functionality of PhysGramming and the philosophy of its integration in the classroom are both described in detail. Information about the implemented interventions and the results obtained is also provided. Finally, several limitations of the research conducted that deserve attention are denoted.

Keywords: computational thinking, early childhood education, object-oriented programming, physical science courses

Procedia PDF Downloads 120
942 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots

Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu

Abstract:

The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.

Keywords: deep reinforcement learning, interpretation, motion control, legged robots

Procedia PDF Downloads 21
941 2D-Modeling with Lego Mindstorms

Authors: Miroslav Popelka, Jakub Nozicka

Abstract:

The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.

Keywords: LEGO Mindstorms, ultrasonic sensor, real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software

Procedia PDF Downloads 473
940 Stability Analysis and Experimental Evaluation on Maxwell Model of Impedance Control

Authors: Le Fu, Rui Wu, Gang Feng Liu, Jie Zhao

Abstract:

Normally, impedance control methods are based on a model that connects a spring and damper in parallel. The series connection, namely the Maxwell model, has emerged as a counterpart and draw the attention of robotics researchers. In the theoretical analysis, it turns out that the two pattern are both equivalents to some extent, but notable differences of response characteristics exist, especially in the effect of damping viscosity. However, this novel impedance control design is lack of validation on realistic robot platforms. In this study, stability analysis and experimental evaluation are achieved using a 3-fingered Barrett® robotic hand BH8-282 endowed with tactile sensing, mounted on a torque-controlled lightweight and collaborative robot KUKA® LBR iiwa 14 R820. Object handover and incoming objects catching tasks are executed for validation and analysis. Experimental results show that the series connection pattern has much better performance in natural impact or shock absorption, which indicate promising applications in robots’ safe and physical interaction with humans and objects in various environments.

Keywords: impedance control, Maxwell model, force control, dexterous manipulation

Procedia PDF Downloads 497
939 Simulating Drilling Using a CAD System

Authors: Panagiotis Kyratsis, Konstantinos Kakoulis

Abstract:

Nowadays, the rapid development of CAD systems’ programming environments results in the creation of multiple downstream applications, which are developed and becoming increasingly available. CAD based manufacturing simulations is gradually following the same trend. Drilling is the most popular hole-making process used in a variety of industries. A specially built piece of software that deals with the drilling kinematics is presented. The cutting forces are calculated based on the tool geometry, the cutting conditions and the tool/work piece materials. The results are verified by experimental work. Finally, the response surface methodology (RSM) is applied and mathematical models of the total thrust force and the thrust force developed because of the main cutting edges are proposed.

Keywords: CAD, application programming interface, response surface methodology, drilling, RSM

Procedia PDF Downloads 470
938 A Redesigned Pedagogy in Introductory Programming Reduces Failure and Withdrawal Rates by Half

Authors: Said Fares, Mary Fares

Abstract:

It is well documented that introductory computer programming courses are difficult and that failure rates are high. The aim of this project was to reduce the high failure and withdrawal rates in learning to program. This paper presents a number of changes in module organization and instructional delivery system in teaching CS1. Daily out of class help sessions and tutoring services were applied, interactive lectures and laboratories, online resources, and timely feedback were introduced. Five years of data of 563 students in 21 sections was collected and analyzed. The primary results show that the failure and withdrawal rates were cut by more than half. Student surveys indicate a positive evaluation of the modified instructional approach, overall satisfaction with the course and consequently, higher success and retention rates.

Keywords: failure rate, interactive learning, student engagement, CS1

Procedia PDF Downloads 307
937 Automated Java Testing: JUnit versus AspectJ

Authors: Manish Jain, Dinesh Gopalani

Abstract:

Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit.

Keywords: aspect oriented programming, AspectJ, aspects, JU-nit, software testing

Procedia PDF Downloads 331
936 Towards Developing a Self-Explanatory Scheduling System Based on a Hybrid Approach

Authors: Jian Zheng, Yoshiyasu Takahashi, Yuichi Kobayashi, Tatsuhiro Sato

Abstract:

In the study, we present a conceptual framework for developing a scheduling system that can generate self-explanatory and easy-understanding schedules. To this end, a user interface is conceived to help planners record factors that are considered crucial in scheduling, as well as internal and external sources relating to such factors. A hybrid approach combining machine learning and constraint programming is developed to generate schedules and the corresponding factors, and accordingly display them on the user interface. Effects of the proposed system on scheduling are discussed, and it is expected that scheduling efficiency and system understandability will be improved, compared with previous scheduling systems.

Keywords: constraint programming, factors considered in scheduling, machine learning, scheduling system

Procedia PDF Downloads 324
935 Deterministic and Stochastic Modeling of a Micro-Grid Management for Optimal Power Self-Consumption

Authors: D. Calogine, O. Chau, S. Dotti, O. Ramiarinjanahary, P. Rasoavonjy, F. Tovondahiniriko

Abstract:

Mafate is a natural circus in the north-western part of Reunion Island, without an electrical grid and road network. A micro-grid concept is being experimented in this area, composed of a photovoltaic production combined with electrochemical batteries, in order to meet the local population for self-consumption of electricity demands. This work develops a discrete model as well as a stochastic model in order to reach an optimal equilibrium between production and consumptions for a cluster of houses. The management of the energy power leads to a large linearized programming system, where the time interval of interest is 24 hours The experimental data are solar production, storage energy, and the parameters of the different electrical devices and batteries. The unknown variables to evaluate are the consumptions of the various electrical services, the energy drawn from and stored in the batteries, and the inhabitants’ planning wishes. The objective is to fit the solar production to the electrical consumption of the inhabitants, with an optimal use of the energies in the batteries by satisfying as widely as possible the users' planning requirements. In the discrete model, the different parameters and solutions of the linear programming system are deterministic scalars. Whereas in the stochastic approach, the data parameters and the linear programming solutions become random variables, then the distributions of which could be imposed or established by estimation from samples of real observations or from samples of optimal discrete equilibrium solutions.

Keywords: photovoltaic production, power consumption, battery storage resources, random variables, stochastic modeling, estimations of probability distributions, mixed integer linear programming, smart micro-grid, self-consumption of electricity.

Procedia PDF Downloads 110
934 Performance Evaluation of Using Genetic Programming Based Surrogate Models for Approximating Simulation Complex Geochemical Transport Processes

Authors: Hamed K. Esfahani, Bithin Datta

Abstract:

Transport of reactive chemical contaminant species in groundwater aquifers is a complex and highly non-linear physical and geochemical process especially for real life scenarios. Simulating this transport process involves solving complex nonlinear equations and generally requires huge computational time for a given aquifer study area. Development of optimal remediation strategies in aquifers may require repeated solution of such complex numerical simulation models. To overcome this computational limitation and improve the computational feasibility of large number of repeated simulations, Genetic Programming based trained surrogate models are developed to approximately simulate such complex transport processes. Transport process of acid mine drainage, a hazardous pollutant is first simulated using a numerical simulated model: HYDROGEOCHEM 5.0 for a contaminated aquifer in a historic mine site. Simulation model solution results for an illustrative contaminated aquifer site is then approximated by training and testing a Genetic Programming (GP) based surrogate model. Performance evaluation of the ensemble GP models as surrogate models for the reactive species transport in groundwater demonstrates the feasibility of its use and the associated computational advantages. The results show the efficiency and feasibility of using ensemble GP surrogate models as approximate simulators of complex hydrogeologic and geochemical processes in a contaminated groundwater aquifer incorporating uncertainties in historic mine site.

Keywords: geochemical transport simulation, acid mine drainage, surrogate models, ensemble genetic programming, contaminated aquifers, mine sites

Procedia PDF Downloads 276
933 Applying the Extreme-Based Teaching Model in Post-Secondary Online Classroom Setting: A Field Experiment

Authors: Leon Pan

Abstract:

The first programming course within post-secondary education has long been recognized as a challenging endeavor for both educators and students alike. Historically, these courses have exhibited high failure rates and a notable number of dropouts. Instructors often lament students' lack of effort in their coursework, and students often express frustration that the teaching methods employed are not effective. Drawing inspiration from the successful principles of Extreme Programming, this study introduces an approach—the Extremes-based teaching model — aimed at enhancing the teaching of introductory programming courses. To empirically determine the effectiveness of the model, a comparison was made between a section taught using the extreme-based model and another utilizing traditional teaching methods. Notably, the extreme-based teaching class required students to work collaboratively on projects while also demanding continuous assessment and performance enhancement within groups. This paper details the application of the extreme-based model within the post-secondary online classroom context and presents the compelling results that emphasize its effectiveness in advancing the teaching and learning experiences. The extreme-based model led to a significant increase of 13.46 points in the weighted total average and a commendable 10% reduction in the failure rate.

Keywords: extreme-based teaching model, innovative pedagogical methods, project-based learning, team-based learning

Procedia PDF Downloads 59
932 Fundamental Study on Reconstruction of 3D Image Using Camera and Ultrasound

Authors: Takaaki Miyabe, Hideharu Takahashi, Hiroshige Kikura

Abstract:

The Government of Japan and Tokyo Electric Power Company Holdings, Incorporated (TEPCO) are struggling with the decommissioning of Fukushima Daiichi Nuclear Power Plants, especially fuel debris retrieval. In fuel debris retrieval, amount of fuel debris, location, characteristics, and distribution information are important. Recently, a survey was conducted using a robot with a small camera. Progress report in remote robot and camera research has speculated that fuel debris is present both at the bottom of the Pressure Containment Vessel (PCV) and inside the Reactor Pressure Vessel (RPV). The investigation found a 'tie plate' at the bottom of the containment, this is handles on the fuel rod. As a result, it is assumed that a hole large enough to allow the tie plate to fall is opened at the bottom of the reactor pressure vessel. Therefore, exploring the existence of holes that lead to inside the RCV is also an issue. Investigations of the lower part of the RPV are currently underway, but no investigations have been made inside or above the PCV. Therefore, a survey must be conducted for future fuel debris retrieval. The environment inside of the RPV cannot be imagined due to the effect of the melted fuel. To do this, we need a way to accurately check the internal situation. What we propose here is the adaptation of a technology called 'Structure from Motion' that reconstructs a 3D image from multiple photos taken by a single camera. The plan is to mount a monocular camera on the tip of long-arm robot, reach it to the upper part of the PCV, and to taking video. Now, we are making long-arm robot that has long-arm and used at high level radiation environment. However, the environment above the pressure vessel is not known exactly. Also, fog may be generated by the cooling water of fuel debris, and the radiation level in the environment may be high. Since camera alone cannot provide sufficient sensing in these environments, we will further propose using ultrasonic measurement technology in addition to cameras. Ultrasonic sensor can be resistant to environmental changes such as fog, and environments with high radiation dose. these systems can be used for a long time. The purpose is to develop a system adapted to the inside of the containment vessel by combining a camera and an ultrasound. Therefore, in this research, we performed a basic experiment on 3D image reconstruction using a camera and ultrasound. In this report, we select the good and bad condition of each sensing, and propose the reconstruction and detection method. The results revealed the strengths and weaknesses of each approach.

Keywords: camera, image processing, reconstruction, ultrasound

Procedia PDF Downloads 104
931 Optimal Scheduling for Energy Storage System Considering Reliability Constraints

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

This paper propose the method for optimal scheduling for battery energy storage system with reliability constraint of energy storage system in reliability aspect. The optimal scheduling problem is solved by dynamic programming with proposed transition matrix. Proposed optimal scheduling method guarantees the minimum fuel cost within specific reliability constraint. For evaluating proposed method, the timely capacity outage probability table (COPT) is used that is calculated by convolution of probability mass function of each generator. This study shows the result of optimal schedule of energy storage system.

Keywords: energy storage system (ESS), optimal scheduling, dynamic programming, reliability constraints

Procedia PDF Downloads 406
930 Designing Online Professional Development Courses Using Video-Based Instruction to Teach Robotics and Computer Science

Authors: Alaina Caulkett, Audra Selkowitz, Lauren Harter, Aimee DeFoe

Abstract:

Educational robotics is an effective tool for teaching and learning STEM curricula. Yet, most traditional professional development programs do not cover engineering, coding, or robotics. This paper will give an overview of how and why the VEX Professional Development Plus Introductory Training courses were developed to provide guided, simple professional development in the area of robotics and computer science instruction. These training courses guide educators through learning the basics of VEX robotics platforms, including VEX 123, GO, IQ, and EXP. Because many educators do not have experience teaching robotics or computer science, this course is meant to simulate one on one training or tutoring through video-based instruction. These videos, led by education professionals, can be watched at any time, which allows educators to watch at their own pace and create their own personalized professional development timeline. This personalization expands beyond the course itself into an online community where educators at different points in the self-paced course can converse with one another or with instructors from the videos and learn from a growing community of practice. By the end of each course, educators are armed with the skills to introduce robotics or computer science in their classroom or educational setting. The design of the course was guided by a variation of the Understanding by Design (UbD) framework and included hands-on activities and challenges to keep educators engaged and excited about robotics. Some of the concepts covered include, but are not limited to, following build instructions, building a robot, updating firmware, coding the robot to drive and turn autonomously, coding a robot using multiple methods, and considerations for teaching robotics and computer science in the classroom, and more. A secondary goal of this research is to discuss how this professional development approach can serve as an example in the larger educational community and explore ways that it could be further researched or used in the future.

Keywords: computer science education, online professional development, professional development, robotics education, video-based instruction

Procedia PDF Downloads 100
929 Decomposition-Based Pricing Technique for Solving Large-Scale Mixed IP

Authors: M. Babul Hasan

Abstract:

Management sciences (MS), big group of companies and industries or government policies (GP) is affiliated with a huge number of decision ingredients and complicated restrictions. Every factor in MS, every product in Industries or decision in GP is not always bankable in practice. After formulating these models there arises large-scale mixed integer programming (MIP) problem. In this paper, we developed decomposition-based pricing procedure to filter the unnecessary decision ingredients from MIP where the variables in huge number will be abated and the complicacy of restrictions will be elementary. A real life numerical example has been illustrated to demonstrate the methods. We develop the computer techniques for these methods by using a mathematical programming language (AMPL).

Keywords: Lagrangian relaxation, decomposition, sub-problem, master-problem, pricing, mixed IP, AMPL

Procedia PDF Downloads 505
928 A Study of Using Multiple Subproblems in Dantzig-Wolfe Decomposition of Linear Programming

Authors: William Chung

Abstract:

This paper is to study the use of multiple subproblems in Dantzig-Wolfe decomposition of linear programming (DW-LP). Traditionally, the decomposed LP consists of one LP master problem and one LP subproblem. The master problem and the subproblem is solved alternatively by exchanging the dual prices of the master problem and the proposals of the subproblem until the LP is solved. It is well known that convergence is slow with a long tail of near-optimal solutions (asymptotic convergence). Hence, the performance of DW-LP highly depends upon the number of decomposition steps. If the decomposition steps can be greatly reduced, the performance of DW-LP can be improved significantly. To reduce the number of decomposition steps, one of the methods is to increase the number of proposals from the subproblem to the master problem. To do so, we propose to add a quadratic approximation function to the LP subproblem in order to develop a set of approximate-LP subproblems (multiple subproblems). Consequently, in each decomposition step, multiple subproblems are solved for providing multiple proposals to the master problem. The number of decomposition steps can be reduced greatly. Note that each approximate-LP subproblem is nonlinear programming, and solving the LP subproblem must faster than solving the nonlinear multiple subproblems. Hence, using multiple subproblems in DW-LP is the tradeoff between the number of approximate-LP subproblems being formed and the decomposition steps. In this paper, we derive the corresponding algorithms and provide some simple computational results. Some properties of the resulting algorithms are also given.

Keywords: approximate subproblem, Dantzig-Wolfe decomposition, large-scale models, multiple subproblems

Procedia PDF Downloads 166
927 Inventory Management System of Seasonal Raw Materials of Feeds at San Jose Batangas through Integer Linear Programming and VBA

Authors: Glenda Marie D. Balitaan

Abstract:

The branch of business management that deals with inventory planning and control is known as inventory management. It comprises keeping track of supply levels and forecasting demand, as well as scheduling when and how to plan. Keeping excess inventory results in a loss of money, takes up physical space, and raises the risk of damage, spoilage, and loss. On the other hand, too little inventory frequently causes operations to be disrupted and raises the possibility of low customer satisfaction, both of which can be detrimental to a company's reputation. The United Victorious Feed mill Corporation's present inventory management practices were assessed in terms of inventory level, warehouse allocation, ordering frequency, shelf life, and production requirement. To help the company achieve their optimal level of inventory, a mathematical model was created using Integer Linear Programming. Due to the season, the goal function was to reduce the cost of purchasing US Soya and Yellow Corn. Warehouse space, annual production requirements, and shelf life were all considered. To ensure that the user only uses one application to record all relevant information, like production output and delivery, the researcher built a Visual Basic system. Additionally, the technology allows management to change the model's parameters.

Keywords: inventory management, integer linear programming, inventory management system, feed mill

Procedia PDF Downloads 83
926 The Comparative Study of Binary Artifact Repository Managers

Authors: Evgeny Chugunnyy, Alena Gerasimova, Kirill Chernyavskiy, Alexander Krasnov

Abstract:

One of the primary component of Continuous deployment (CD) is a binary artifact repository — the place where artifacts are stored with metadata in a structured way. The binary artifact repository manager (BARM) is a software, which implements this repository logic and exposes a public application programming interface (API) for managing these artifacts. Almost every programming language ecosystem has its own artifact repository kind. During creating Artipie — BARM constructor and server, we analyzed and implemented a lot of different artifact repositories. In this paper we present criterias for comparing artifact repositories, and analyze the most popular repositories using these metrics. We also describe some of the notable features of different repositories. This paper aimed to help people who are creating, maintaining or optimizing software repository and CI tools.

Keywords: artifact, repository, continuous deployment, build automation, artifacts management

Procedia PDF Downloads 150