Search results for: real
4821 Beneficial Ownership in Islamic Finance: The Need for Shari'ah Parameters
Authors: Nik Abdul Rahim Nik Abdul Ghani, Mat Noor Mat Zain, Ahmad Dahlan Salleh
Abstract:
Ownership of asset is an important aspect in ensuring the validity of sale contract. Nevertheless, in Islamic finance, the issue of beneficial ownership as practiced in the current system is seriously debated among Shariah scholars. It has been argued as violating the real concept of ownership (milkiyyah) in Shariah law. This article aims at studying the status of beneficial ownership from the Shariah perspective. This study begins with examining the meaning of ownership and its attributes from the Islamic point of view and followed by the discussion on the origin of beneficial ownership from the legal perspective. The approach that is applied to clarify the concept of beneficial ownership is content analysis. Subsequently, this study explains some current applications of beneficial ownership in Islamic finance to be analyzed further from the Shariah aspect. The research finding suggests that beneficial ownership should be recognized as a real ownership due to the fact that Shariah allows the transfer of ownership after the execution of offer (ijab) and acceptance (qabul).Keywords: beneficial ownership, ownership, Islamic finance, parameter
Procedia PDF Downloads 2704820 A Study on the Coefficient of Transforming Relative Lateral Displacement under Linear Analysis of Structure to Its Real Relative Lateral Displacement
Authors: Abtin Farokhipanah
Abstract:
In recent years, analysis of structures is based on ductility design in contradictory to strength design in surveying earthquake effects on structures. ASCE07-10 code offers to intensify relative drifts calculated from a linear analysis with Cd which is called (Deflection Amplification Factor) to obtain the real relative drifts which can be calculated using nonlinear analysis. This lateral drift should be limited to the code boundaries. Calculation of this amplification factor for different structures, comparing with ASCE07-10 code and offering the best coefficient are the purposes of this research. Following our target, short and tall building steel structures with various earthquake resistant systems in linear and nonlinear analysis should be surveyed, so these questions will be answered: 1. Does the Response Modification Coefficient (R) have a meaningful relation to Deflection Amplification Factor? 2. Does structure height, seismic zone, response spectrum and similar parameters have an effect on the conversion coefficient of linear analysis to real drift of structure? The procedure has used to conduct this research includes: (a) Study on earthquake resistant systems, (b) Selection of systems and modeling, (c) Analyzing modeled systems using linear and nonlinear methods, (d) Calculating conversion coefficient for each system and (e) Comparing conversion coefficients with the code offered ones and concluding results.Keywords: ASCE07-10 code, deflection amplification factor, earthquake engineering, lateral displacement of structures, response modification coefficient
Procedia PDF Downloads 3544819 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment
Authors: Michael Gidey Gebru
Abstract:
Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output
Procedia PDF Downloads 574818 Investigation of Norovirus Genogroups (GI, GII and GIV) in Stool of Pet Dogs with Diarrhea
Abstract:
Norovirus (NoV) infection is effective and contagious in humans and many animals such as calves, pigs, dogs, cats, monkeys. There is not enough evidence about the zoonotic transmission of NoV between humans and animals. However, the fact that contamination of foods and environment by animal/human waste happens in indirect way leads to consideration of the agent as a zoonotic character. In our study, we aim to search the presence of NoV infection, which is a major public health problem, in possessed dogs showing diarrhea symptoms, to detect its genotype and to study nutrition and life conditions. We searched the existence of human NoV GI, GII and GIV in the stool of 128 pet dogs in Burdur Province with diarrhoea in various sex, age and breed by using Real-Time PCR method. Human NoV GII was found in only 5 of the 128 dog stool samples (3.91%). In the study, it was determined that the owners of the dogs with NoV GII are middle aged or elderly people most of whom are male and that there were no children in their houses. As these dogs are treated like the owner’s child, it is assumed that they could be transmitted with NoV GII as a result of close interaction with their owner.Keywords: dog, human, norovirus, Real-Time PCR, stool
Procedia PDF Downloads 1514817 Molecular Characterization and Phylogenetic Analysis of Capripoxviruses from Outbreak in Iran 2021
Authors: Maryam Torabi, Habibi, Abdolahi, Mohammadi, Hassanzadeh, Darban Maghami, Baghi
Abstract:
Sheeppox Virus (SPPV) and goatpox virus (GTPV) are considerable diseases of sheep, and goats, caused by viruses of the Capripoxvirus (CaPV) genus. They are responsible for economic losses. Animal mortality, morbidity, cost of vaccinations, and restrictions in animal products’ trade are the reasons of economic losses. Control and eradication of CaPV depend on early detection of outbreaks so that molecular detection and genetic analysis could be effective to this aim. This study was undertaken to molecularly characterize SPPV and GTPV strains that have been circulating in Iran. 120 skin papules and nodule biopsies were collected from different regions of Iran and were examined for SPPV, GTPV viruses using TaqMan Real -Time PCR. Some of these amplified genes were sequenced, and phylogenetic trees were constructed. Out of the 120 samples analysed, 98 were positive for CaPV by Real- Time PCR (81.6%), and most of them wereSPPV. then 10 positive samples were sequenced and characterized by amplifying the ORF 103CaPV gene. sequencing and phylogenetic analysis for these positive samples revealed a high percentage of identity with SPPV isolated from different countries in Middle East. In conclusions, molecular characterization revealed nearly complete identity with all recent SPPVs strains in local countries that requires further studies to monitor the virus evolution and transmission pathways to better understand the virus pathobiology that will help for SPPV control.Keywords: molecular epidemiology, Real-Time PCR, phylogenetic analysis, capripoxviruses
Procedia PDF Downloads 1494816 An Examination of Earnings Management by Publicly Listed Targets Ahead of Mergers and Acquisitions
Authors: T. Elrazaz
Abstract:
This paper examines accrual and real earnings management by publicly listed targets around mergers and acquisitions. Prior literature shows that earnings management around mergers and acquisitions can have a significant economic impact because of the associated wealth transfers among stakeholders. More importantly, acting on behalf of their shareholders or pursuing their self-interests, managers of both targets and acquirers may be equally motivated to manipulate earnings prior to an acquisition to generate higher gains for their shareholders or themselves. Building on the grounds of information asymmetry, agency conflicts, stewardship theory, and the revelation principle, this study addresses the question of whether takeover targets employ accrual and real earnings management in the periods prior to the announcement of Mergers and Acquisitions (M&A). Additionally, this study examines whether acquirers are able to detect targets’ earnings management, and in response, adjust the acquisition premium paid in order not to face the risk of overpayment. This study uses an aggregate accruals approach in estimating accrual earnings management as proxied by estimated abnormal accruals. Additionally, real earnings management is proxied for by employing widely used models in accounting and finance literature. The results of this study indicate that takeover targets manipulate their earnings using accruals in the second year with an earnings release prior to the announcement of the M&A. Moreover, in partitioning the sample of targets according to the method of payment used in the deal, the results are restricted only to targets of stock-financed deals. These results are consistent with the argument that targets of cash-only or mixed-payment deals do not have the same strong motivations to manage their earnings as their stock-financed deals counterparts do additionally supporting the findings of prior studies that the method of payment in takeovers is value relevant. The findings of this study also indicate that takeover targets manipulate earnings upwards through cutting discretionary expenses the year prior to the acquisition while they do not do so by manipulating sales or production costs. Moreover, in partitioning the sample of targets according to the method of payment used in the deal, the results are restricted only to targets of stock-financed deals, providing further robustness to the results derived under the accrual-based models. Finally, this study finds evidence suggesting that acquirers are fully aware of the accrual-based techniques employed by takeover targets and can unveil such manipulation practices. These results are robust to alternative accrual and real earnings management proxies, as well as controlling for the method of payment in the deal.Keywords: accrual earnings management, acquisition premium, real earnings management, takeover targets
Procedia PDF Downloads 1154815 Detection of Muscle Swelling Using the Cnts-Based Poc Wearable Strain Sensor
Authors: Nadeem Qaiser, Sherjeel Munsif Khan, Muhammad Mustafa Hussian, Vincent Tung
Abstract:
One of the emerging fields in the detection of chronic diseases is based on the point-of-care (POC) early monitoring of the symptoms and thus provides a state-of-the-art personalized healthcare system. Nowadays, wearable and flexible sensors are being used for analyzing sweat, glucose, blood pressure, and other skin conditions. However, localized jaw-bone swelling called parotid-swelling caused by some viruses has never been tracked before. To track physical motion or deformations, strain sensors, especially piezoresistive ones, are widely used. This work, for the first time, reports carbon nanotubes (CNTs)-based piezoresistive sensing patch that is highly flexible and stretchable and can record muscle deformations in real-time. The developed patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. To calibrate the volumetric muscle expansion, we fabricated the pneumatic actuator that experienced volumetric expansion and thus redefined the gauge factor. Moreover, we employ a Bluetooth-low-energy system that can send information about muscle activity in real-time to a smartphone app. We utilized COMSOL calculations to reveal the mechanical robustness of the patch. The experiments showed the sensing patch's greater cyclability, making it a patch for personal healthcare and an excellent choice for monitoring the real-time POC monitoring of the human muscle swelling.Keywords: piezoresistive strain sensor, FEM simulations, CNTs sensor, flexible
Procedia PDF Downloads 884814 Localization of Geospatial Events and Hoax Prediction in the UFO Database
Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi
Abstract:
Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.Keywords: time-series clustering, feature extraction, hoax prediction, geospatial events
Procedia PDF Downloads 3774813 A Fast Community Detection Algorithm
Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun
Abstract:
Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.Keywords: complex network, social network, community detection, network hierarchy
Procedia PDF Downloads 2274812 Pattern of Stress Distribution in Different Ligature-Wire-Brackets Systems: A FE and Experimental Analysis
Authors: Afef Dridi, Salah Mezlini
Abstract:
Since experimental devices cannot calculate stress and deformation of complex structures. The Finite Element Method FEM has been widely used in several fields of research. One of these fields is orthodontics. The advantage of using such a method is the use of an accurate and non invasive method that allows us to have a sufficient data about the physiological reactions can happening in soft tissues. Most of researches done in this field were interested in the study of stresses and deformations induced by orthodontic apparatus in soft tissues (alveolar tissues). Only few studies were interested in the distribution of stress and strain in the orthodontic brackets. These studies, although they tried to be as close as possible to real conditions, their models did not reproduce the clinical cases. For this reason, the model generated by our research is the closest one to reality. In this study, a numerical model was developed to explore the stress and strain distribution under the application of real conditions. A comparison between different material properties was also done.Keywords: visco-hyperelasticity, FEM, orthodontic treatment, inverse method
Procedia PDF Downloads 2594811 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design
Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong
Abstract:
This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring
Procedia PDF Downloads 864810 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security
Authors: Shanshan Zhu, Mohammad Nasim
Abstract:
Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection
Procedia PDF Downloads 424809 Real Time Activity Recognition Framework for Health Monitoring Support in Home Environments
Authors: Shaikh Farhad Hossain, Liakot Ali
Abstract:
Technology advances accelerate the quality and type of services provided for health care and especially for monitoring health conditions. Sensors have turned out to be more effective to detect diverse physiological signs and can be worn on the human body utilizing remote correspondence modules. An assortment of programming devices have been created to help in preparing a difference rundown of essential signs by examining and envisioning information produced by different sensors. In this proposition, we presented a Health signs and Activity acknowledgment monitoring system. Utilizing off-the-rack sensors, we executed a movement location system for identifying five sorts of action: falling, lying down, sitting, standing, and walking. The framework collects and analyzes sensory data in real-time, and provides different feedback to the users. In addition, it can generate alerts based on the detected events and store the data collected to a medical server.Keywords: ADL, SVM, TRIL , MEMS
Procedia PDF Downloads 3974808 Enabling Citizen Participation in Urban Planning through Geospatial Gamification
Authors: Joanne F. Hayek
Abstract:
This study explores the use of gamification to promote citizen e-participation in urban planning. The research departs from a case study: the ‘Shape Your City’ web app designed and programmed by the author and presented as part of the 2021 Dubai Design Week to engage citizens in the co-creation of the future of their city through a gamified experience. The paper documents the design and development methodology of the web app and concludes with the findings of its pilot release. The case study explores the use of mobile interactive mapping, real-time data visualization, augmented reality, and machine learning as tools to enable co-planning. The paper also details the user interface design strategies employed to integrate complex cross-sector e-planning systems and make them accessible to citizens.Keywords: gamification, co-planning, citizen e-participation, mobile interactive mapping, real-time data visualization
Procedia PDF Downloads 1414807 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation
Authors: R. Nagarani
Abstract:
An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.Keywords: community detection, complex network, genetic algorithm, package, refactoring
Procedia PDF Downloads 4184806 Smart Automated Furrow Irrigation: A Preliminary Evaluation
Authors: Jasim Uddin, Rod Smith, Malcolm Gillies
Abstract:
Surface irrigation is the most popular irrigation method all over the world. However, two issues: low efficiency and huge labour involvement concern irrigators due to scarcity in recent years. To address these issues, a smart automated furrow is conceptualised that can be operated using digital devices like smartphone, iPad or computer and a preliminary evaluation was conducted in this study. The smart automated system is the integration of commercially available software and hardware. It includes real-time surface irrigation optimisation software (SISCO) and Rubicon Water’s surface irrigation automation hardware and software. The automated system consists of automatic water delivery system with 300 mm flexible pipes attached to both sides of a remotely controlled valve to operate the irrigation. A water level sensor to obtain the real-time inflow rate from the measured head in the channel, advance sensors to measure the advance time to particular points of an irrigated field, a solar-powered telemetry system including a base station to communicate all the field sensors with the main server. On the basis of field data, the software (SISCO) is optimised the ongoing irrigation and determine the optimum cut-off for particular irrigation and send this information to the control valve to stop the irrigation in a particular (cut-off) time. The preliminary evaluation shows that the automated surface irrigation worked reasonably well without manual intervention. The evaluation of farmers managed irrigation events show the potentials to save a significant amount of water and labour. A substantial amount of economic and social benefits are expected in rural industries by adopting this system. The future outcome of this work would be a fully tested commercial adaptive real-time furrow irrigation system able to compete with the pressurised alternative of centre pivot or lateral move machines on capital cost, water and labour savings but without the massive energy costs.Keywords: furrow irrigation, smart automation, infiltration, SISCO, real-time irrigation, adoptive control
Procedia PDF Downloads 4514805 Interest Rate Prediction with Taylor Rule
Authors: T. Bouchabchoub, A. Bendahmane, A. Haouriqui, N. Attou
Abstract:
This paper presents simulation results of Forex predicting model equations in order to give approximately a prevision of interest rates. First, Hall-Taylor (HT) equations have been used with Taylor rule (TR) to adapt them to European and American Forex Markets. Indeed, initial Taylor Rule equation is conceived for all Forex transactions in every States: It includes only one equation and six parameters. Here, the model has been used with Hall-Taylor equations, initially including twelve equations which have been reduced to only three equations. Analysis has been developed on the following base macroeconomic variables: Real change rate, investment wages, anticipated inflation, realized inflation, real production, interest rates, gap production and potential production. This model has been used to specifically study the impact of an inflation shock on macroeconomic director interest rates.Keywords: interest rate, Forex, Taylor rule, production, European Central Bank (ECB), Federal Reserve System (FED).
Procedia PDF Downloads 5274804 Jordan Curves in the Digital Plane with Respect to the Connectednesses given by Certain Adjacency Graphs
Authors: Josef Slapal
Abstract:
Digital images are approximations of real ones and, therefore, to be able to study them, we need the digital plane Z2 to be equipped with a convenient structure that behaves analogously to the Euclidean topology on the real plane. In particular, it is required that such a structure allows for a digital analogue of the Jordan curve theorem. We introduce certain adjacency graphs on the digital plane and prove digital Jordan curves for them thus showing that the graphs provide convenient structures on Z2 for the study and processing of digital images. Further convenient structures including the wellknown Khalimsky and Marcus-Wyse adjacency graphs may be obtained as quotients of the graphs introduced. Since digital Jordan curves represent borders of objects in digital images, the adjacency graphs discussed may be used as background structures on the digital plane for solving the problems of digital image processing that are closely related to borders like border detection, contour filling, pattern recognition, thinning, etc.Keywords: digital plane, adjacency graph, Jordan curve, quotient adjacency
Procedia PDF Downloads 3794803 Attack Redirection and Detection using Honeypots
Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat
Abstract:
A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner
Procedia PDF Downloads 1564802 Prevalence of Cytomegalovirus DNA in the Patients’ Serum with HIV using Real-Time PCR
Authors: Mohammadreza Aghasadeghi, Mojtaba Hamidi-Fard, Seyed Amir Sadeghi, Ashkan Noorbakhsh
Abstract:
Introduction: HIV is known as one of the most important pathogens and mortality in all human societies, but unfortunately, no definitive cure has been found for it. Due to its weakened immune system, this virus causes a variety of primary and secondary opportunistic infections. Cytomegalovirus (CMV) is one of the most relevant opportunistic viruses seen in HIV-positive people that cause various infections in HIV-positive people. This virus causes various infections in HIV-positive people, such as retinal infection (CMVR), gastrointestinal infections, diarrhea, severe weight loss, and cerebrospinal fluid problems. These various infections make it important to evaluate the prevalence of CMV in HIV-positive people to diagnose it quickly and in a timely manner. This infection in HIV-positive people reduces life expectancy and causes serious harm to patients. However, a simple test in HIV-positive people can prevent the virus from progressing. Material and Methods: In this study, we collected 200 blood samples (including 147 men and 53 women) from HIV-positive individuals and examined the frequency of CMV-DNA in these cases by real-time PCR method. In the next step, the data was analyzed by SPSS software, and then we obtained the relationship between age, sex, and the frequency of CMV in HIV-positive individuals. Results: The total frequency of CMV DNA was about 59%, which is a relatively high prevalence due to the age range of the subjects. The frequency in men was 61.2% and 52.8% in women. This frequency was also higher in males than females. We also observed more frequency in two age groups of 16 to 30 years and 31 to 45 years. Discussion: Due to the high prevalence of CMV in HIV-positive individuals and causing serious problems in this group of people, this study was shown that both the patients and the community should pay more attention to this issue. Ministry of Health, as a stakeholder organization, can make CMV DNA testing mandatory as soon as a person is HIV positive.Keywords: CMV, HIV, AIDS, real-time PCR, SPSS
Procedia PDF Downloads 2134801 Comparison of Nucleic Acid Extraction Platforms On Tissue Samples
Authors: Siti Rafeah Md Rafei, Karen Wang Yanping, Park Mi Kyoung
Abstract:
Tissue samples are precious supply for molecular studies or disease identification diagnosed using molecular assays, namely real-time PCR (qPCR). It is critical to establish the most favorable nucleic acid extraction that gives the PCR-amplifiable genomic DNA. Furthermore, automated nucleic acid extraction is an appealing alternative to labor-intensive manual methods. Operational complexity, defined as the number of steps required to obtain an extracted sample, is one of the criteria in the comparison. Here we are comparing the One BioMed’s automated X8 platform with the commercially available manual-operated kits from QIAGEN Mini Kit and Roche. We extracted DNA from rat fresh-frozen tissue (from different type of organs) in the matrices. After tissue pre-treatment, it is added to the One BioMed’s X8 pre-filled cartridge, and the QIAGEN QIAmp column respectively. We found that the results after subjecting the eluates to the Real Time PCR using BIORAD CFX are comparable.Keywords: DNA extraction, frozen tissue, PCR, qPCR, rat
Procedia PDF Downloads 1614800 Identification Algorithm of Critical Interface, Modelling Perils on Critical Infrastructure Subjects
Authors: Jiří. J. Urbánek, Hana Malachová, Josef Krahulec, Jitka Johanidisová
Abstract:
The paper deals with crisis situations investigation and modelling within the organizations of critical infrastructure. Every crisis situation has an origin in the emergency event occurrence in the organizations of energetic critical infrastructure especially. Here, the emergency events can be both the expected events, then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping or the unexpected event (Black Swan effect) – without pre-prepared scenario, but it needs operational coping of crisis situations as well. The forms, characteristics, behaviour and utilization of crisis scenarios have various qualities, depending on real critical infrastructure organization prevention and training processes. An aim is always better organizational security and continuity obtainment. This paper objective is to find and investigate critical/ crisis zones and functions in critical situations models of critical infrastructure organization. The DYVELOP (Dynamic Vector Logistics of Processes) method is able to identify problematic critical zones and functions, displaying critical interfaces among actors of crisis situations on the DYVELOP maps named Blazons. Firstly, for realization of this ability is necessary to derive and create identification algorithm of critical interfaces. The locations of critical interfaces are the flags of crisis situation in real organization of critical infrastructure. Conclusive, the model of critical interface will be displayed at real organization of Czech energetic crisis infrastructure subject in Black Out peril environment. The Blazons need live power Point presentation for better comprehension of this paper mission.Keywords: algorithm, crisis, DYVELOP, infrastructure
Procedia PDF Downloads 4094799 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics
Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris
Abstract:
The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.Keywords: cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization
Procedia PDF Downloads 1564798 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model
Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus
Abstract:
This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.Keywords: transformer, parametrical model of transformer, fault, sweep frequency response analysis, finite element method
Procedia PDF Downloads 4824797 RFID Based Student Attendance System
Authors: Aniket Tiwari, Ameya London
Abstract:
Web-based student attendance management system is required to assist the faculty and the lecturer for the time-consuming process. For this purpose, GSM/GPRS (Global System for Mobile Communication/General Packet Radio Service) based student’s attendance management system using RFID (Radio Frequency Identification) is a much convenient method to take the attendance. Student is provided with the RFID tags. When student comes near to the reader, it will sense the respective student and update attendance. The whole process is controlled using the microcontroller. The main advantage of this system is that it reduced the complexity comparison to student attendance system using RF technology. This system requires only one microcontroller for the operation, it is real time process. This paper reviews some of these monitoring systems and proposes a GPRS based student attendance system. The system can be easily accessed by the lecturers via the web and most importantly, the reports can be generated in real-time processing, thus, provides valuable information about the students’ commitments in attending the classes.Keywords: RFID reader, RFID tags, student, attendance
Procedia PDF Downloads 5074796 On the Framework of Contemporary Intelligent Mathematics Underpinning Intelligent Science, Autonomous AI, and Cognitive Computers
Authors: Yingxu Wang, Jianhua Lu, Jun Peng, Jiawei Zhang
Abstract:
The fundamental demand in contemporary intelligent science towards Autonomous AI (AI*) is the creation of unprecedented formal means of Intelligent Mathematics (IM). It is discovered that natural intelligence is inductively created rather than exhaustively trained. Therefore, IM is a family of algebraic and denotational mathematics encompassing Inference Algebra, Real-Time Process Algebra, Concept Algebra, Semantic Algebra, Visual Frame Algebra, etc., developed in our labs. IM plays indispensable roles in training-free AI* theories and systems beyond traditional empirical data-driven technologies. A set of applications of IM-driven AI* systems will be demonstrated in contemporary intelligence science, AI*, and cognitive computers.Keywords: intelligence mathematics, foundations of intelligent science, autonomous AI, cognitive computers, inference algebra, real-time process algebra, concept algebra, semantic algebra, applications
Procedia PDF Downloads 614795 The Second Smallest Eigenvalue of Complete Tripartite Hypergraph
Authors: Alfi Y. Zakiyyah, Hanni Garminia, M. Salman, A. N. Irawati
Abstract:
In the terminology of the hypergraph, there is a relation with the terminology graph. In the theory of graph, the edges connected two vertices. In otherwise, in hypergraph, the edges can connect more than two vertices. There is representation matrix of a graph such as adjacency matrix, Laplacian matrix, and incidence matrix. The adjacency matrix is symmetry matrix so that all eigenvalues is real. This matrix is a nonnegative matrix. The all diagonal entry from adjacency matrix is zero so that the trace is zero. Another representation matrix of the graph is the Laplacian matrix. Laplacian matrix is symmetry matrix and semidefinite positive so that all eigenvalues are real and non-negative. According to the spectral study in the graph, some that result is generalized to hypergraph. A hypergraph can be represented by a matrix such as adjacency, incidence, and Laplacian matrix. Throughout for this term, we use Laplacian matrix to represent a complete tripartite hypergraph. The aim from this research is to determine second smallest eigenvalues from this matrix and find a relation this eigenvalue with the connectivity of that hypergraph.Keywords: connectivity, graph, hypergraph, Laplacian matrix
Procedia PDF Downloads 4884794 A Patient-Centered Approach to Clinical Trial Development: Real-World Evidence from a Canadian Medical Cannabis Clinic
Authors: Lucile Rapin, Cynthia El Hage, Rihab Gamaoun, Maria-Fernanda Arboleda, Erin Prosk
Abstract:
Introduction: Sante Cannabis (SC), a Canadian group of clinics dedicated to medical cannabis, based in Montreal and in the province of Quebec, has served more than 8000 patients seeking cannabis-based treatment over the past five years. As randomized clinical trials with natural medical cannabis are scarce, real-world evidence offers the opportunity to fill research gaps between scientific evidence and clinical practice. Data on the use of medical cannabis products from SC patients were prospectively collected, leading to a large real-world database on the use of medical cannabis. The aim of this study was to report information on the profiles of both patients and prescribed medical cannabis products at SC clinics, and to assess the safety of medical cannabis among Canadian patients. Methods: This is an observational retrospective study of 1342 adult patients who were authorized with medical cannabis products between October 2017 and September 2019. Information regarding demographic characteristics, therapeutic indications for medical cannabis use, patterns in dosing and dosage form of medical cannabis and adverse effects over one-year follow-up (initial and 4 follow-up (FUP) visits) were collected. Results: 59% of SC patients were female, with a mean age of 56.7 (SD= 15.6, range= (19-97)). Cannabis products were authorized mainly for patients with a diagnosis of chronic pain (68.8% of patients), cancer (6.7%), neurological disorders (5.6%), and mood disorders (5.4 %). At initial visit, a large majority (70%) of patients were authorized exclusively medical cannabis products, 27% were authorized a combination of pharmaceutical cannabinoids and medical cannabis and 3% were prescribed only pharmaceutical cannabinoids. This pattern was recurrent over the one-year follow-up. Overall, oil was the preferred formulation (average over visits 72.5%) followed by a combination of oil and dry (average 19%), other routes of administration accounted for less than 4%. Patients were predominantly prescribed products with a balanced THC:CBD ratio (59%-75% across visits). 28% of patients reported at least one adverse effect (AE) at the 3-month follow-up visit and 12% at the six-month FUP visit. 84.8% of total AEs were mild and transient. No serious AE was reported. Overall, the most common side effects reported were dizziness (11.95% of total AEs), drowsiness (11.4%), dry mouth (5.5%), nausea (4.8%), headaches (4.6%), cough (4.4%), anxiety (4.1%) and euphoria (3.5%). Other adverse effects accounted for less than 3% of total AE. Conclusion: Our results confirm that the primary area of clinical use for medical cannabis is in pain management. Patients in this cohort are largely utilizing plant-based cannabis oil products with a balanced ratio of THC:CBD. Reported adverse effects were mild and included dizziness and drowsiness. This real-world data confirms the tolerable safety profile of medical cannabis and suggests medical indications not yet validated in controlled clinical trials. Such data offers an important opportunity for the investigation of the long-term effects of cannabinoid exposure in real-life conditions. Real-world evidence can be used to direct clinical trial research efforts on specific indications and dosing patterns for product development.Keywords: medical cannabis, safety, real-world data, Canada
Procedia PDF Downloads 1324793 Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling
Authors: Danlei Yang, Luofeng Huang
Abstract:
The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks.Keywords: digital twin, floating solar energy system, experiment setup, artificial intelligence
Procedia PDF Downloads 74792 Authoring of Augmented Reality Manuals for Not Physically Available Products
Authors: Vito M. Manghisi, Michele Gattullo, Alessandro Evangelista, Enricoandrea Laviola
Abstract:
In this work, we compared two solutions for displaying a demo version of an Augmented Reality (AR) manual when the real product is not available, opting to replace it with its computer-aided design (CAD) model. AR has been proved to be effective in maintenance and assembly operations by many studies in the literature. However, most of them present solutions for existing products, usually converting old, printed manuals into AR manuals. In this case, authoring consists of defining how to convey existing instructions through AR. It is not a simple choice, and demo versions are created to test the design goodness. However, this becomes impossible when the product is not physically available, as for new products. A solution could be creating an entirely virtual environment with the product and the instructions. However, in this way, user interaction is completely different from that in the real application, then it would be hard testing the usability of the AR manual. This work aims to propose and compare two different solutions for the displaying of a demo version of an AR manual to support authoring in case of a product that is not physically available. We used as a case study that of an innovative semi-hermetic compressor that has not yet been produced. The applications were developed for a handheld device, using Unity 3D. The main issue was how to show the compressor and attach instructions on it. In one approach, we used Vuforia natural feature tracking to attach a CAD model of the compressor to a 2D image that is a drawing in scale 1:1 of the top-view of the CAD model. In this way, during the AR manual demonstration, the 3D model of the compressor is displayed on the user's device in place of the real compressor, and all the virtual instructions are attached to it. In the other approach, we first created a support application that shows the CAD model of the compressor on a marker. Then, we registered a video of this application, moving around the marker, obtaining a video that shows the CAD model from every point of view. For the AR manual, we used the Vuforia model target (360° option) to track the CAD model of the compressor, as it was the real compressor. Then, during the demonstration, the video is shown on a fixed large screen, and instructions are displayed attached to it in the AR manual. The first solution presents the main drawback to keeping the printed image with everyone working on the authoring of the AR manual, but allows to show the product in a real scale and interaction during the demonstration is very simple. The second one does not need a printed marker during the demonstration but a screen. Still, the compressor model is resized, and interaction is awkward since the user has to play the video on the screen to rotate the compressor. The two solutions were evaluated together with the company, and the preferred was the first one due to a more natural interaction.Keywords: augmented reality, human computer interaction, operating instructions, maintenance, assembly
Procedia PDF Downloads 128