Search results for: generalised linear model
18391 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model
Authors: Aid Abdelkrim
Abstract:
A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading
Procedia PDF Downloads 39618390 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines
Authors: Arun Goel
Abstract:
The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free over-fall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, support vector machine (Polynomial and rbf) models, and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free over-fall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.Keywords: air entrainment rate, dissolved oxygen, weir, SVM, regression
Procedia PDF Downloads 43618389 Modeling of Oligomerization of Ethylene in a Falling film Reactor for the Production of Linear Alpha Olefins
Authors: Adil A. Mohammed, Seif-Eddeen K. Fateen, Tamer S. Ahmed, Tarek M. Moustafa
Abstract:
Falling film were widely used for gas-liquid absorption and reaction process. Modeling of falling film for oligomerization of ethylene reaction to linear alpha olefins is developed. Although there are many researchers discuss modeling of falling film in many processes, there has been no publish study the simulation of falling film for the oligomerization of ethylene reaction to produce linear alpha olefins. The Comsol multiphysics software was used to simulate the mass transfer with chemical reaction in falling film absorption process. The effect of concentration profile absorption of the products through falling thickness is discussed. The effect of catalyst concentration, catalyst/co-catalyst ratio, and temperature is also studied. For the effect of the temperature, as it increase the concentration of C4 increase. For catalyst concentration and catalyst/co-catalyst ratio as they increases the concentration of C4 increases, till it reached almost constant value.Keywords: falling film, oligomerization, comsol mutiphysics, linear alpha olefins
Procedia PDF Downloads 46918388 A Fractional Derivative Model to Quantify Non-Darcy Flow in Porous and Fractured Media
Authors: Golden J. Zhang, Dongbao Zhou
Abstract:
Darcy’s law is the fundamental theory in fluid dynamics and engineering applications. Although Darcy linearity was found to be valid for slow, viscous flow, non-linear and non-Darcian flow has been well documented under both small and large velocity fluid flow. Various classical models were proposed and used widely to quantify non-Darcian flow, including the well-known Forchheimer, Izbash, and Swartzendruber models. Applications, however, revealed limitations of these models. Here we propose a general model built upon the Caputo fractional derivative to quantify non-Darcian flow for various flows (laminar to turbulence).Real-world applications and model comparisons showed that the new fractional-derivative model, which extends the fractional model proposed recently by Zhou and Yang (2018), can capture the non-Darcian flow in the relatively small velocity in low-permeability deposits and the relatively high velocity in high-permeability sand. A scale effect was also identified for non-Darcian flow in fractured rocks. Therefore, fractional calculus may provide an efficient tool to improve classical models to quantify fluid dynamics in aquatic environments.Keywords: fractional derivative, darcy’s law, non-darcian flow, fluid dynamics
Procedia PDF Downloads 12618387 Gentrification in Istanbul: The Twin Paradox
Authors: Tugce Caliskan
Abstract:
The gentrification literature in Turkey provided important insights regarding the analysis of the socio-spatial change in İstanbul mostly through the existing gentrification theories which were produced in Anglo-American literature. Yet early researches focused on the classical gentrification while failing to notice other place-specific forms of the phenomena. It was only after the mid-2000s that scholarly attention shifted to the recent discussions in the mainstream such as the neoliberal urban policies, government involvement, and resistance. Although these studies have considerable potential to contribute to the geography of gentrification, it seems that copying the linear timeline of Anglo-American conceptualization limited the space to introduce contextually nuanced way of process in Turkey. More specifically, the gentrification literature in Turkey acknowledged the linear timeline of the process drawing on the mainstream studies, and, made the spontaneous classical gentrification as the starting point in İstanbul at the expense of contextually specific forms of the phenomenon that took place in the same years. This paper is an attempt to understand place-specific forms of gentrification through the abandonment of the linear understanding of time. In this vein, this paper approaches the process as moving both linear and cyclical rather than the waves succeeded each other. Maintaining a dialectical relationship between the cyclical and the linear time, this paper investigates how the components of gentrification have been taken place in the cyclical timeline while becoming bolder in the linear timeline. This paper argues that taking the (re)investment in the secondary circuit of capital and class transformation as the core characteristics of gentrification, and accordingly, searching for these components beyond the linear timeline provide strategic value to decenter the perspectives, not merely for Turkish studies. In this vein, this strategy revealed that Western experience of gentrification did not travel, adopted or copied in Turkey but gentrification -as an abstract and general concept- has emerged as a product of different contextual, historical and temporal forces which must be considered within the framework of state-led urbanization as early as 1980 differing from the Global North trajectories.Keywords: comparative urbanism, geography of gentrification, linear and cyclical timeline, state-led gentrification
Procedia PDF Downloads 11518386 A Mathematical Model for a Two-Stage Assembly Flow-Shop Scheduling Problem with Batch Delivery System
Authors: Saeedeh Ahmadi Basir, Mohammad Mahdavi Mazdeh, Mohammad Namakshenas
Abstract:
Manufacturers often dispatch jobs in batches to reduce delivery costs. However, sending several jobs in batches can have a negative effect on other scheduling-related objective functions such as minimizing the number of tardy jobs which is often used to rate managers’ performance in many manufacturing environments. This paper aims to minimize the number of weighted tardy jobs and the sum of delivery costs of a two-stage assembly flow-shop problem in a batch delivery system. We present a mixed-integer linear programming (MILP) model to solve the problem. As this is an MILP model, the commercial solver (the CPLEX solver) is not guaranteed to find the optimal solution for large-size problems at a reasonable amount of time. We present several numerical examples to confirm the accuracy of the model.Keywords: scheduling, two-stage assembly flow-shop, tardy jobs, batched delivery system
Procedia PDF Downloads 45918385 Robust Diagnosis of an Electro-Mechanical Actuators, Bond Graph LFT Approach
Authors: A. Boulanoir, B. Ould Bouamama, A. Debiane, N. Achour
Abstract:
The paper deals with robust Fault Detection and isolation with respect to parameter uncertainties based on linear fractional transformation form (LFT) Bond graph. The innovative interest of the proposed methodology is the use only one representation for systematic generation of robust analytical redundancy relations and adaptive residual thresholds for sensibility analysis. Furthermore, the parameter uncertainties are introduced graphically in the bond graph model. The methodology applied to the nonlinear industrial Electro-Mechanical Actuators (EMA) used in avionic systems, has determined first the structural monitorability analysis (which component can be monitored) with given instrumentation architecture with any need of complex calculation and secondly robust fault indicators for online supervision.Keywords: bond graph (BG), electro mechanical actuators (EMA), fault detection and isolation (FDI), linear fractional transformation (LFT), mechatronic systems, parameter uncertainties, avionic system
Procedia PDF Downloads 34918384 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho
Abstract:
Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem
Procedia PDF Downloads 29418383 Design and Assessment of Base Isolated Structures under Spectrum-Compatible Bidirectional Earthquakes
Authors: Marco Furinghetti, Alberto Pavese, Michele Rinaldi
Abstract:
Concave Surface Slider devices have been more and more used in real applications for seismic protection of both bridge and building structures. Several research activities have been carried out, in order to investigate the lateral response of such a typology of devices, and a reasonably high level of knowledge has been reached. If radial analysis is performed, the frictional force is always aligned with respect to the restoring force, whereas under bidirectional seismic events, a bi-axial interaction of the directions of motion occurs, due to the step-wise projection of the main frictional force, which is assumed to be aligned to the trajectory of the isolator. Nonetheless, if non-linear time history analyses have to be performed, standard codes provide precise rules for the definition of an averagely spectrum-compatible set of accelerograms in radial conditions, whereas for bidirectional motions different combinations of the single components spectra can be found. Moreover, nowadays software for the adjustment of natural accelerograms are available, which lead to a higher quality of spectrum-compatibility and to a smaller dispersion of results for radial motions. In this endeavor a simplified design procedure is defined, for building structures, base-isolated by means of Concave Surface Slider devices. Different case study structures have been analyzed. In a first stage, the capacity curve has been computed, by means of non-linear static analyses on the fixed-base structures: inelastic fiber elements have been adopted and different direction angles of lateral forces have been studied. Thanks to these results, a linear elastic Finite Element Model has been defined, characterized by the same global stiffness of the linear elastic branch of the non-linear capacity curve. Then, non-linear time history analyses have been performed on the base-isolated structures, by applying seven bidirectional seismic events. The spectrum-compatibility of bidirectional earthquakes has been studied, by considering different combinations of single components and adjusting single records: thanks to the proposed procedure, results have shown a small dispersion and a good agreement in comparison to the assumed design values.Keywords: concave surface slider, spectrum-compatibility, bidirectional earthquake, base isolation
Procedia PDF Downloads 29218382 Enhancements to the Coupled Hydro-Mechanical Hypoplastic Model for Unsaturated Soils
Authors: Shanujah Mathuranayagam, William Fuentes, Samanthika Liyanapathirana
Abstract:
This paper introduces an enhanced version of the coupled hydro-mechanical hypoplastic model. The model is able to simulate volumetric collapse upon wetting and incorporates suction effects on stiffness and strength. Its mechanical constitutive equation links Bishop’s effective stress with strain and suction, featuring a normal consolidation line (NCL) with a compression index (λ) presenting a non-linear dependency with the degree of saturation. The Bulk modulus has been modified to ensure that under rapid volumetric collapse, the stress state remains at the NCL. The coupled model comprises eighteen parameters, with nine for the hydraulic component and nine for the mechanical component. Hydraulic parameters are calibrated with the use of water retention curves (IWRC) across varied soil densities, while mechanical parameters undergo calibration using isotropic and triaxial tests on both unsaturated and saturated samples. The model's performance is analyzed through the back-calculation of two experimental studies: (i) wetting under different vertical stresses for Lower Cromer Till and (ii) isotropic loading and triaxial loading for undisturbed loess. The results confirm that the proposed model is able to predict the hydro-mechanical behavior of unsaturated soils.Keywords: hypoplastic model, volumetric collapse, normal consolidation line, compression index (λ), degree of saturation, soil suction
Procedia PDF Downloads 6418381 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition
Authors: J. K. Adedeji, S. T. Ijatuyi
Abstract:
The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.Keywords: gravitational resistance, neural network, non-linear, pattern recognition
Procedia PDF Downloads 21218380 Stochastic Simulation of Random Numbers Using Linear Congruential Method
Authors: Melvin Ballera, Aldrich Olivar, Mary Soriano
Abstract:
Digital computers nowadays must be able to have a utility that is capable of generating random numbers. Usually, computer-generated random numbers are not random given predefined values such as starting point and end points, making the sequence almost predictable. There are many applications of random numbers such business simulation, manufacturing, services domain, entertainment sector and other equally areas making worthwhile to design a unique method and to allow unpredictable random numbers. Applying stochastic simulation using linear congruential algorithm, it shows that as it increases the numbers of the seed and range the number randomly produced or selected by the computer becomes unique. If this implemented in an environment where random numbers are very much needed, the reliability of the random number is guaranteed.Keywords: stochastic simulation, random numbers, linear congruential algorithm, pseudorandomness
Procedia PDF Downloads 31618379 Budgetary Performance Model for Managing Pavement Maintenance
Authors: Vivek Hokam, Vishrut Landge
Abstract:
An ideal maintenance program for an industrial road network is one that would maintain all sections at a sufficiently high level of functional and structural conditions. However, due to various constraints such as budget, manpower and equipment, it is not possible to carry out maintenance on all the needy industrial road sections within a given planning period. A rational and systematic priority scheme needs to be employed to select and schedule industrial road sections for maintenance. Priority analysis is a multi-criteria process that determines the best ranking list of sections for maintenance based on several factors. In priority setting, difficult decisions are required to be made for selection of sections for maintenance. It is more important to repair a section with poor functional conditions which includes uncomfortable ride etc. or poor structural conditions i.e. sections those are in danger of becoming structurally unsound. It would seem therefore that any rational priority setting approach must consider the relative importance of functional and structural condition of the section. The maintenance priority index and pavement performance models tend to focus mainly on the pavement condition, traffic criteria etc. There is a need to develop the model which is suitably used with respect to limited budget provisions for maintenance of pavement. Linear programming is one of the most popular and widely used quantitative techniques. A linear programming model provides an efficient method for determining an optimal decision chosen from a large number of possible decisions. The optimum decision is one that meets a specified objective of management, subject to various constraints and restrictions. The objective is mainly minimization of maintenance cost of roads in industrial area. In order to determine the objective function for analysis of distress model it is necessary to fix the realistic data into a formulation. Each type of repair is to be quantified in a number of stretches by considering 1000 m as one stretch. A stretch considered under study is having 3750 m length. The quantity has to be put into an objective function for maximizing the number of repairs in a stretch related to quantity. The distress observed in this stretch are potholes, surface cracks, rutting and ravelling. The distress data is measured manually by observing each distress level on a stretch of 1000 m. The maintenance and rehabilitation measured that are followed currently are based on subjective judgments. Hence, there is a need to adopt a scientific approach in order to effectively use the limited resources. It is also necessary to determine the pavement performance and deterioration prediction relationship with more accurate and economic benefits of road networks with respect to vehicle operating cost. The infrastructure of road network should have best results expected from available funds. In this paper objective function for distress model is determined by linear programming and deterioration model considering overloading is discussed.Keywords: budget, maintenance, deterioration, priority
Procedia PDF Downloads 20718378 Time-Frequency Modelling and Analysis of Faulty Rotor
Authors: B. X. Tchomeni, A. A. Alugongo, T. B. Tengen
Abstract:
In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT) and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect non-linear signal, and obtained results provide a useful tool method for detecting machinery faults.Keywords: Continuous wavelet, crack, discrete wavelet, high acceleration, low acceleration, nonlinear, rotor-stator, rub
Procedia PDF Downloads 34618377 Production Planning for Animal Food Industry under Demand Uncertainty
Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut
Abstract:
This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.Keywords: animal food, stochastic linear programming, aggregate planning, production planning, demand uncertainty
Procedia PDF Downloads 38018376 Logistic Regression Model versus Additive Model for Recurrent Event Data
Authors: Entisar A. Elgmati
Abstract:
Recurrent infant diarrhea is studied using daily data collected in Salvador, Brazil over one year and three months. A logistic regression model is fitted instead of Aalen's additive model using the same covariates that were used in the analysis with the additive model. The model gives reasonably similar results to that using additive regression model. In addition, the problem with the estimated conditional probabilities not being constrained between zero and one in additive model is solved here. Also martingale residuals that have been used to judge the goodness of fit for the additive model are shown to be useful for judging the goodness of fit of the logistic model.Keywords: additive model, cumulative probabilities, infant diarrhoea, recurrent event
Procedia PDF Downloads 63518375 A Variable Structural Control for a Flexible Lamina
Authors: Xuezhang Hou
Abstract:
A control problem of a flexible Lamina formulated by partial differential equations with viscoelastic boundary conditions is studied in this paper. The problem is written in standard form of linear infinite dimensional system in an appropriate energy Hilbert space. The semigroup approach of linear operators is adopted in investigating wellposedness of the closed loop system. A variable structural control for the system is proposed, and meanwhile an equivalent control method is applied to the thin plate system. A significant result on control theory that the thin plate can be approximated by ideal sliding mode in any accuracy in terms of semigroup approach is obtained.Keywords: partial differential equations, flexible lamina, variable structural control, semigroup of linear operators
Procedia PDF Downloads 8518374 Numerical Investigation of Geotextile Application in Clay Reinforcement in ABAQUS Software
Authors: Seyed Abolhasan Naeini, Eisa Aliagahei
Abstract:
Today, the use of geosynthetic materials in geotechnical activities is increasing significantly. One of the main uses of these materials is to increase the compressive strength of clay reinforced by geotextile layers. In the present study, the effect of clay reinforcement by geotextile layers in increasing the compressive strength of clay has been investigated using modeling in ABAQUS 6.11.3 software. For this purpose, the modified Drager Prager model has been chosen to simulate the stress-strain behavior of soil layers and the linear elastic model for the geotextile layer. Unreinforced samples and reinforced samples are modeled by geotextile layers (1, 2 and 3 geotextile layers) by software. In order to validate the results, an article in the same field was used and the numerical modeling results were calibrated with the laboratory results. Based on the obtained results, the software has a suitable capability for modeling and the results of the numerical model overlap with the laboratory results to a very acceptable extent, by increasing the number of geotextile layers, the error between the results of the laboratory sample and the software model increases. The highest amount of error is related to the sample reinforced with three layers of geotextile and is 7.3%.Keywords: Abaqus, cap model, clay, geotextile layer, reinforced soil
Procedia PDF Downloads 8818373 A Congenital Case of Dandy-Walker Malformation
Authors: Neerja Meena, Paresh Sukhani
Abstract:
Dandy walker malformation is a generalised disorder of mesenchymal development that affect both the cerebellum and overlying meninges. Classically dandy-walker malformation consists of a triad of- 1:vermian and hemispheric cerebellar hypoplasia 2:cystic dilatation of 4th ventricle 3: enlarged posterior fossa with the upward migration of tentorium(lambdoid- torcular inversion). Clinical presentation: four months old female child with hydrocephalus and neurological symptoms. Generally- early death is common in classic dandy walker malformation. However, if it is relatively mild and uncomplicated by other CNS anomalies, intelligence can be normal and neurologic deficits minimal. Usually, VP shunting is the treatment of choice for this hydrocephalus. Conclusion: MRI is the modality of choice to diagnose posterior fossa malformation. However, it can be ruled out through using during the antenatal check as the prognosis of this malformation is not good; it's better to diagnose it inutero.Keywords: Dandy Walker, Mri, Earlydaignosis, Treatment
Procedia PDF Downloads 7518372 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model
Authors: T. Sanches, K. Bousson
Abstract:
As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.Keywords: autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control
Procedia PDF Downloads 13818371 Generalized Approach to Linear Data Transformation
Authors: Abhijith Asok
Abstract:
This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.Keywords: data transformation, dummy dimension, linear transformation, scaling
Procedia PDF Downloads 29718370 The Growth Curve of Gompertz Model in Body Weight of Slovak Mixed-Sex Goose Breeds
Authors: Cyril Hrncar, Jozef Bujko, Widya P. B. Putra
Abstract:
The growth curve of poultry is important to evaluate the farming management system. This study was aimed to estimate the growth curve of body weight in goose. The growth curve in this study was estimated with non-linear Gompertz model through CurveExpert 1.4. software. Three Slovak mixed-sex goose breeds of Landes (L), Pomeranian (P) and Steinbacher (S) were used in this study. Total of 28 geese (10 L, 8 P and 10 S) were used to estimate the growth curve. Research showed that the asymptotic weight (A) in those geese were reached of 5332.51 g (L), 6186.14 g (P) and 5048.27 g (S). Thus, the maturing rate (k) in each breed were similar (0.05 g/day). The weight of inflection was reached of 1960.48 g (L), 2274.32 g (P) and 1855.98 g (S). The time of inflection (ti) was reached of 25.6 days (L), 26.2 days (P) and 27.80 days (S). The maximum growth rate (MGR) was reached of 98.02 g/day (L), 113.72 g/day (P) and 92.80 g/day (S). Hence, the coefficient of determination (R2) in Gompertz model was 0.99 for each breed. It can be concluded that Pomeranian geese had highest of growth trait than the other breeds.Keywords: body weight, growth curve, inflection, Slovak geese, Gompertz model
Procedia PDF Downloads 14618369 Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles
Authors: M-M. Mohamed Ahmed, Nacer K. M’Sirdi, Aziz Naamane
Abstract:
In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles.Keywords: autonomous vehicles, convoy, non-linear control, non-linear observer, sliding mode
Procedia PDF Downloads 14018368 Survival Data with Incomplete Missing Categorical Covariates
Authors: Madaki Umar Yusuf, Mohd Rizam B. Abubakar
Abstract:
The survival censored data with incomplete covariate data is a common occurrence in many studies in which the outcome is survival time. With model when the missing covariates are categorical, a useful technique for obtaining parameter estimates is the EM by the method of weights. The survival outcome for the class of generalized linear model is applied and this method requires the estimation of the parameters of the distribution of the covariates. In this paper, we propose some clinical trials with ve covariates, four of which have some missing values which clearly show that they were fully censored data.Keywords: EM algorithm, incomplete categorical covariates, ignorable missing data, missing at random (MAR), Weibull Distribution
Procedia PDF Downloads 40518367 Nonlinear Finite Element Analysis of Concrete Filled Steel I-Girder Bridge
Authors: Waheed Ahmad Safi, Shunichi Nakamura
Abstract:
Concrete filled steel I-girder (CFIG) bridge was proposed and the bending and shear strength was confirmed by experiments. The area surrounded by the upper and lower flanges and the web is filled with concrete in CFIG, which is used to the intermediate support of a continuous girder. Three-dimensional finite element models were established to simulate the bending and shear behaviors of CFIG and to clarify the load transfer mechanism. Steel plates and filled concrete were modeled as a three-dimensional 8-node solid element and steel reinforcement bars as a three-dimensional 2-node truss element. The elements were mostly divided into the 50 x 50 mm mesh size. The non-linear stress-strain relation is assumed for concrete in compression including the softening effect after the peak, and the stress increases linearly for concrete in tension until concrete cracking but then decreases due to tension stiffening effect. The stress-strain relation for steel plates was tri-linear and that for reinforcements was bi-linear. The concrete and the steel plates were rigidly connected. The developed FEM model was applied to simulate and analysis the bending behaviors of the CFIG specimens. The vertical displacements and the strains of steel plates and the filled concrete obtained by FEM agreed very well with the test results until the yield load. The specimens collapsed when the upper flange buckled or the concrete spalled off. These phenomena cannot be properly analyzed by FEM, which produces a small discrepancy at the ultimate states. The FEM model was also applied to simulate and analysis the shear tests of the CFIG specimens. The vertical displacements and strains of steel and concrete calculated by FEM model agreed well with the test results. A truss action was confirmed by the FEM and the experiment, clarifying that shear forces were mainly resisted by the tension strut of the steel plate and the compression strut of the filled concrete acting in the diagonal direction. A trail design with the CFIG was carried out for a four-span continuous highway bridge and the design method was established. Construction cost was estimated about 12% lower than that of a conventional steel I-section girder.Keywords: concrete filled steel I-girder, bending strength, FEM, limit states design, steel I-girder, shear strength
Procedia PDF Downloads 21918366 The Influences of Nurses’ Satisfaction on the Patient Satisfaction with and Loyalty to Korean University Hospitals
Authors: Sung Hee Ahn, Ju Rang Han
Abstract:
Background: With increasing importance in healthcare organization on patient satisfaction and nurses’ job satisfaction, many studies have been conducted. But no research has been administered how nurses’ satisfaction with healthcare organization influence patient satisfaction and loyalty. Purpose: This study aims to conceptualize nurses‘ satisfaction, patient satisfaction with and patient loyalty to hospitals using a hypothetical linear structural equation model, and to identify the significance of path coefficients and goodness of fit index of the structural equation model as well. Method: A total of 2,079 nurses and 6,776 patients recruited from 5 university hospitals in South Korea participated in this study. The data on nurses, including ward nurses and outpatient nurses, were collected from June 24th to July 12th, at the 204 departments of the 5 hospitals through an on-line survey. The data on the patients, including both inpatients and outpatients, were collected from September 30th to October 24th, 2013 at the 5 hospitals using a structured questionnaire. The variable of nurses’ satisfaction was measured using a scale evaluating internal client satisfaction, which is used in SSM Health Care System in the US. Patient satisfaction with the hospital and nurses and patient loyalty were measured by assessing the patient’s intention to revisit and to recommending the hospital to others using a visual analogue scale. The data were analyzed using SPSS version 21.0 and AMOS version 21.0. Result: The hypothetical model was fairly good in terms of goodness of fit (χ2= 64.897 (df=24, p <. 001), GFI=. 906, AGFI=.823, CFI=.921, NFI=.951, NNFI=.952. RMSEA=.114). The significance of path coefficients includes followings 1)The nurses’ satisfaction has significant influence on the patient satisfaction with nurses. 2)The patient satisfaction with nurses has significant influence on the patient satisfaction with the hospital. 3)The patient satisfaction with the hospital has significant influence on the patients’ revisit intention. 4)The patient satisfaction with the hospital has significant influence on the patients’ intention to the recommendations of the hospital. Conclusion: These results provide several practical implications to hospital administrators, who should incorporate ways of improving nurses' and patients' satisfaction with the hospital into their health care marketing strategies.Keywords: linear structural equation model, loyalty, nurse, patient satisfaction
Procedia PDF Downloads 44118365 Invasive Ranges of Gorse (Ulex europaeus) in South Australia and Sri Lanka Using Species Distribution Modelling
Authors: Champika S. Kariyawasam
Abstract:
The distribution of gorse (Ulex europaeus) plants in South Australia has been modelled using 126 presence-only location data as a function of seven climate parameters. The predicted range of U. europaeus is mainly along the Mount Lofty Ranges in the Adelaide Hills and on Kangaroo Island. Annual precipitation and yearly average aridity index appeared to be the highest contributing variables to the final model formulation. The Jackknife procedure was employed to identify the contribution of different variables to gorse model outputs and response curves were used to predict changes with changing environmental variables. Based on this analysis, it was revealed that the combined effect of one or more variables could make a completely different impact to the original variables on their own to the model prediction. This work also demonstrates the need for a careful approach when selecting environmental variables for projecting correlative models to climatically distinct area. Maxent acts as a robust model when projecting the fitted species distribution model to another area with changing climatic conditions, whereas the generalized linear model, bioclim, and domain models to be less robust in this regard. These findings are important not only for predicting and managing invasive alien gorse in South Australia and Sri Lanka but also in other countries of the invasive range.Keywords: invasive species, Maxent, species distribution modelling, Ulex europaeus
Procedia PDF Downloads 13418364 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards
Authors: Golnush Masghati-Amoli, Paul Chin
Abstract:
Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering
Procedia PDF Downloads 13318363 Finite Time Blow-Up and Global Solutions for a Semilinear Parabolic Equation with Linear Dynamical Boundary Conditions
Authors: Xu Runzhang, Yang Yanbing, Niu Yi, Zhang Mingyou, Liu Yu
Abstract:
For a class of semilinear parabolic equations with linear dynamical boundary conditions in a bounded domain, we obtain both global solutions and finite time blow-up solutions when the initial data varies in the phase space H1(Ω). Our main tools are the comparison principle, the potential well method and the concavity method. In particular, we discuss the behavior of the solutions with the initial data at critical and high energy level.Keywords: high energy level, critical energy level, linear dynamical boundary condition, semilinear parabolic equation
Procedia PDF Downloads 43618362 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks
Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher
Abstract:
Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.Keywords: neural networks, rainfall, prediction, climatic variables
Procedia PDF Downloads 488