Search results for: Renewable
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1364

Search results for: Renewable

944 A Multicriteria Evaluation Framework for Enhancing Women's Participation in SIDS Renewable Energy Sector

Authors: Carolina Mayen Huerta, Clara Ivanescu, Paloma Marcos

Abstract:

Due to their unique geographic challenges and the imperative to combat climate change, Small Island Developing States (SIDS) are experiencing rapid growth in the renewable energy (RE) sector. However, women's representation in formal employment within this burgeoning field remains significantly lower than their male counterparts. Conventional methodologies often overlook critical geographic data that influence women's job prospects. To address this gap, this paper introduces a Multicriteria Evaluation (MCE) framework designed to identify spatially enabling environments and restrictions affecting women's access to formal employment and business opportunities in the SIDS' RE sector. The proposed MCE framework comprises 24 key factors categorized into four dimensions: Individual, Contextual, Accessibility, and Place Characterization. "Individual factors" encompass personal attributes influencing women's career development, including caregiving responsibilities, exposure to domestic violence, and disparities in education. "Contextual factors" pertain to the legal and policy environment, influencing workplace gender discrimination, financial autonomy, and overall gender empowerment. "Accessibility factors" evaluate women's day-to-day mobility, considering travel patterns, access to public transport, educational facilities, RE job opportunities, healthcare facilities, and financial services. Finally, "Place Characterization factors" enclose attributes of geographical locations or environments. This dimension includes walkability, public transport availability, safety, electricity access, digital inclusion, fragility, conflict, violence, water and sanitation, and climatic factors in specific regions. The analytical framework proposed in this paper incorporates a spatial methodology to visualize regions within countries where conducive environments for women to access RE jobs exist. In areas where these environments are absent, the methodology serves as a decision-making tool to reinforce critical factors, such as transportation, education, and internet access, which currently hinder access to employment opportunities. This approach is designed to equip policymakers and institutions with data-driven insights, enabling them to make evidence-based decisions that consider the geographic dimensions of disparity. These insights, in turn, can help ensure the efficient allocation of resources to achieve gender equity objectives.

Keywords: gender, women, spatial analysis, renewable energy, access

Procedia PDF Downloads 83
943 Development of Solar Energy Resources for Land along the Transportation Infrastructure: Taking the Lan-Xin Railway in the Silk Road Economic Belt as an Example

Authors: Dan Han, Yukun Zhang, Jie Zheng, Rui Zhang

Abstract:

Making full use of space along transportation infrastructure to develop renewable energy sources, especially solar energy resources, has become a research focus in relevant fields. In recent years, relevant international researches can be classified into three stages of theoretical and technical exploration, exploratory practice as well as planning implementation. Compared with traditional solar energy development mode, the development of solar energy resources in places along the transportation infrastructure has special advantages, which can also bring forth new opportunities for the development of green transportation. 'Road Integrated Photovoltaic', a development model of combining transport and new energy, has been actively studied and applied in developed countries, but it was still in its infancy in China. 'New Silk Road Economic Belt' has great advantage to carry out the 'Road Integrated Photovoltaic' because of the rich solar energy resources in its path, the shortages of renewable energy, the constraints of agricultural land and other reasons. Especially the massive amount of construction of transportation infrastructure brought by Silk Road Economic Belt, large area of developable land along the transportation line will be generated. Abundant solar energy recourses along the Silk Road will provide extremely superb practical opportunities to the land development along transportation infrastructure. We take PVsyst, GIS and Google map software for simulation of its potential by taking Lan-Xin Railway as an example, so potential electrical energy generation can be quantified and further analyzed. Research of 'New Silk Road Economic Belt' combined with 'Road Integrated Photovoltaic' is a creative development for the along transport and energy infrastructure. It not only can make full use of solar radiation and land in its path, but also bring more long-term advantages and benefits.

Keywords: land use, silk road economic belt, solar energy, transportation infrastructure

Procedia PDF Downloads 241
942 Energy Harvesting and Storage System for Marine Applications

Authors: Sayem Zafar, Mahmood Rahi

Abstract:

Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.

Keywords: energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine

Procedia PDF Downloads 137
941 A Proteomic Approach for Discovery of Microbial Cellulolytic Enzymes

Authors: M. S. Matlala, I. Ignatious

Abstract:

Environmental sustainability has taken the center stage in human life all over the world. Energy is the most essential component of our life. The conventional sources of energy are non-renewable and have a detrimental environmental impact. Therefore, there is a need to move from conventional to non-conventional renewable energy sources to satisfy the world’s energy demands. The study aimed at screening for microbial cellulolytic enzymes using a proteomic approach. The objectives were to screen for microbial cellulases with high specific activity and separate the cellulolytic enzymes using a combination of zymography and two-dimensional (2-D) gel electrophoresis followed by tryptic digestion, Matrix-assisted Laser Desorption Ionisation-Time of Flight (MALDI-TOF) and bioinformatics analysis. Fungal and bacterial isolates were cultured in M9 minimal and Mandel media for a period of 168 hours at 60°C and 30°C with cellobiose and Avicel as carbon sources. Microbial cells were separated from supernatants through centrifugation, and the crude enzyme from the cultures was used for the determination of cellulase activity, zymography, SDS-PAGE, and two-dimensional gel electrophoresis. Five isolates, with lytic action on carbon sources studied, were a bacterial strain (BARK) and fungal strains (VCFF1, VCFF14, VCFF17, and VCFF18). Peak cellulase production by the selected isolates was found to be 3.8U/ml, 2.09U/ml, 3.38U/ml, 3.18U/ml, and 1.95U/ml, respectively. Two-dimensional gel protein maps resulted in the separation and quantitative expression of different proteins by the microbial isolates. MALDI-TOF analysis and database search showed that the expressed proteins in this study closely relate to different glycoside hydrolases produced by other microbial species with an acceptable confidence level of 100%.

Keywords: cellulases, energy, two-dimensional gel electrophoresis, matrix-assisted laser desorption ionisation-time of flight, MALDI-TOF MS

Procedia PDF Downloads 133
940 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 108
939 Cycle-Oriented Building Components and Constructions Made from Paper Materials

Authors: Rebecca Bach, Evgenia Kanli, Nihat Kiziltoprak, Linda Hildebrand, Ulrich Knaack, Jens Schneider

Abstract:

The building industry has a high demand for resources and at the same time is responsible for a significant amount of waste created worldwide. Today's building components need to contribute to the protection of natural resources without creating waste. This is defined in the product development phase and impacts the product’s degree of being cycle-oriented. Paper-based materials show advantage due to their renewable origin and their ability to incorporate different functions. Besides the ecological aspects like renewable origin and recyclability the main advantages of paper materials are its light-weight but stiff structure, the optimized production processes and good insulation values. The main deficits from building technology’s perspective are the material's vulnerability to humidity and water as well as inflammability. On material level, those problems can be solved by coatings or through material modification. On construction level intelligent setup and layering of a building component can improve and also solve these issues. The target of the present work is to provide an overview of developed building components and construction typologies mainly made from paper materials. The research is structured in four parts: (1) functions and requirements, (2) preselection of paper-based materials, (3) development of building components and (4) evaluation. As part of the research methodology at first the needs of the building sector are analyzed with the aim to define the main areas of application and consequently the requirements. Various paper materials are tested in order to identify to what extent the requirements are satisfied and determine potential optimizations or modifications, also in combination with other construction materials. By making use of the material’s potentials and solving the deficits on material and on construction level, building components and construction typologies are developed. The evaluation and the calculation of the structural mechanics and structural principals will show that different construction typologies can be derived. Profiles like paper tubes can be used at best for skeleton constructions. Massive structures on the other hand can be formed by plate-shaped elements like solid board or honeycomb. For insulation purposes corrugated cardboard or cellulose flakes have the best properties, while layered solid board can be applied to prevent inner condensation. Enhancing these properties by material combinations for instance with mineral coatings functional constructions mainly out of paper materials were developed. In summary paper materials offer a huge variety of possible applications in the building sector. By these studies a general base of knowledge about how to build with paper was developed and is to be reinforced by further research.

Keywords: construction typologies, cycle-oriented construction, innovative building material, paper materials, renewable resources

Procedia PDF Downloads 275
938 Hybrid Energy System for the German Mining Industry: An Optimized Model

Authors: Kateryna Zharan, Jan C. Bongaerts

Abstract:

In recent years, economic attractiveness of renewable energy (RE) for the mining industry, especially for off-grid mines, and a negative environmental impact of fossil energy are stimulating to use RE for mining needs. Being that remote area mines have higher energy expenses than mines connected to a grid, integration of RE may give a mine economic benefits. Regarding the literature review, there is a lack of business models for adopting of RE at mine. The main aim of this paper is to develop an optimized model of RE integration into the German mining industry (GMI). Hereby, the GMI with amount of around 800 mill. t. annually extracted resources is included in the list of the 15 major mining country in the world. Accordingly, the mining potential of Germany is evaluated in this paper as a perspective market for RE implementation. The GMI has been classified in order to find out the location of resources, quantity and types of the mines, amount of extracted resources, and access of the mines to the energy resources. Additionally, weather conditions have been analyzed in order to figure out where wind and solar generation technologies can be integrated into a mine with the highest efficiency. Despite the fact that the electricity demand of the GMI is almost completely covered by a grid connection, the hybrid energy system (HES) based on a mix of RE and fossil energy is developed due to show environmental and economic benefits. The HES for the GMI consolidates a combination of wind turbine, solar PV, battery and diesel generation. The model has been calculated using the HOMER software. Furthermore, the demonstrated HES contains a forecasting model that predicts solar and wind generation in advance. The main result from the HES such as CO2 emission reduction is estimated in order to make the mining processing more environmental friendly.

Keywords: diesel generation, German mining industry, hybrid energy system, hybrid optimization model for electric renewables, optimized model, renewable energy

Procedia PDF Downloads 343
937 Direct Current Grids in Urban Planning for More Sustainable Urban Energy and Mobility

Authors: B. Casper

Abstract:

The energy transition towards renewable energies and drastically reduced carbon dioxide emissions in Germany drives multiple sectors into a transformation process. Photovoltaic and on-shore wind power are predominantly feeding in the low and medium-voltage grids. The electricity grid is not laid out to allow an increasing feed-in of power in low and medium voltage grids. Electric mobility is currently in the run-up phase in Germany and still lacks a significant amount of charging stations. The additional power demand by e-mobility cannot be supplied by the existing electric grids in most cases. The future demands in heating and cooling of commercial and residential buildings are increasingly generated by heat-pumps. Yet the most important part in the energy transition is the storage of surplus energy generated by photovoltaic and wind power sources. Water electrolysis is one way to store surplus energy known as power-to-gas. With the vehicle-to-grid technology, the upcoming fleet of electric cars could be used as energy storage to stabilize the grid. All these processes use direct current (DC). The demand of bi-directional flow and higher efficiency in the future grids can be met by using DC. The Flexible Electrical Networks (FEN) research campus at RWTH Aachen investigates interdisciplinary about the advantages, opportunities, and limitations of DC grids. This paper investigates the impact of DC grids as a technological innovation on the urban form and urban life. Applying explorative scenario development, analyzation of mapped open data sources on grid networks and research-by-design as a conceptual design method, possible starting points for a transformation to DC medium voltage grids could be found. Several fields of action have emerged in which DC technology could become a catalyst for future urban development: energy transition in urban areas, e-mobility, and transformation of the network infrastructure. The investigation shows a significant potential to increase renewable energy production within cities with DC grids. The charging infrastructure for electric vehicles will predominantly be using DC in the future because fast and ultra fast charging can only be achieved with DC. Our research shows that e-mobility, combined with autonomous driving has the potential to change the urban space and urban logistics fundamentally. Furthermore, there are possible win-win-win solutions for the municipality, the grid operator and the inhabitants: replacing overhead transmission lines by underground DC cables to open up spaces in contested urban areas can lead to a positive example of how the energy transition can contribute to a more sustainable urban structure. The outlook makes clear that target grid planning and urban planning will increasingly need to be synchronized.

Keywords: direct current, e-mobility, energy transition, grid planning, renewable energy, urban planning

Procedia PDF Downloads 126
936 Biodiesel Production from Yellow Oleander Seed Oil

Authors: S. Rashmi, Devashish Das, N. Spoorthi, H. V. Manasa

Abstract:

Energy is essential and plays an important role for overall development of a nation. The global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment, renewable and carbon neutral biodiesel are necessary for environment and economic sustainability. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. Fossil fuels remain the dominant source of primary energy, accounting for 84% of the overall increase in demand. Today biodiesel has come to mean a very specific chemical modification of natural oils. Objectives: To produce biodiesel from yellow oleander seed oil, to test the yield of biodiesel using different types of catalyst (KOH & NaOH). Methodology: Oil is extracted from dried yellow oleander seeds using Soxhlet extractor and oil expeller (bulk). The FFA content of the oil is checked and depending on the FFA value either two steps or single step process is followed to produce biodiesel. Two step processes includes esterfication and transesterification, single step includes only transesterification. The properties of biodiesel are checked. Engine test is done for biodiesel produced. Result: It is concluded that biodiesel quality parameters such as yield(85% & 90%), flash point(1710C & 1760C),fire point(1950C & 1980C), viscosity(4.9991 and 5.21 mm2/s) for the biodiesel from seed oil of Thevetiaperuviana produced by using KOH & NaOH respectively. Thus the seed oil of Thevetiaperuviana is a viable feedstock for good quality fuel.The outcomes of our project are a substitute for conventional fuel, to reduce petro diesel requirement,improved performance in terms of emissions. Future prospects: Optimization of biodiesel production using response surface method.

Keywords: yellow oleander seeds, biodiesel, quality parameters, renewable sources

Procedia PDF Downloads 446
935 Synthesis of Low-Cost Porous Silicon Carbide Foams from Renewable Sources

Authors: M. A. Bayona, E. M. Cordoba, V. R. Guiza

Abstract:

Highly porous carbon-based foams are used in a wide range of industrial applications, which include absorption, catalyst supports, thermal insulation, and biomaterials, among others. Particularly, silicon carbide (SiC) based foams have shown exceptional potential for catalyst support applications, due to their chemical inertness, large frontal area, low resistance to flow, low-pressure drop, as well as high resistance to temperature and corrosion. These properties allow the use of SiC foams in harsh environments with high durability. Commonly, SiC foams are fabricated from polysiloxane, SiC powders and phenolic resins, which can be costly or highly toxic to the environment. In this work, we propose a low-cost method for the fabrication of highly porous, three-dimensional SiC foams via template replica, using recycled polymeric sponges as sacrificial templates. A sucrose-based resin combined with a Si-containing pre-ceramic polymer was used as the precursor. Polymeric templates were impregnated with the precursor solution, followed by thermal treatment at 1500 °C under an inert atmosphere. Several synthesis parameters, such as viscosity and composition of the precursor solution (Si: Sucrose molar ratio), and the porosity of the template, were evaluated in terms of their effect on the morphology, composition and mechanical resistance of the resulting SiC foams. The synthesized composite foams exhibited a highly porous (50-90%) and interconnected structure, containing 30-90% SiC with a mechanical compressive strength between 0.01-0.1 MPa. The methodology employed here allowed the fabrication of foams with a varied concentration of SiC and with morphological and mechanical properties that contribute to the development of materials of high relevance in the industry, while using low-cost, renewable sources such as table sugar, and providing a recycling alternative for polymeric sponges.

Keywords: catalyst support, polymer replica technique, reticulated porous ceramics, silicon carbide

Procedia PDF Downloads 123
934 Developments and Implementation of Biomaterials in Textile Coating and Finishing

Authors: David De Smet, Myriam Vanneste

Abstract:

There is a constant need for the improvement of materials applied in textile industries. Nowadays there is a tendency for “bio, eco, natural and environmental friendly” consciousness of the consumer resulting in various textile labels. Materials, totally based on CO2-neutral renewable resources (biopolymers), respond very well to this tendency. Proteins and PLA were evaluated as binders for textile coatings. Much attention is paid to the functionalization of textiles, therefore bio-additves are examined to introduce abrasion resistance, antimicrobial and flame retardant properties.

Keywords: biomaterial, textile, coating, finishing

Procedia PDF Downloads 712
933 A Modular Reactor for Thermochemical Energy Storage Examination of Ettringite-Based Materials

Authors: B. Chen, F. Kuznik, M. Horgnies, K. Johannes, V. Morin, E. Gengembre

Abstract:

More attention on renewable energy has been done after the achievement of Paris Agreement against climate change. Solar-based technology is supposed to be one of the most promising green energy technologies for residential buildings since its widely thermal usage for hot water and heating. However, the seasonal mismatch between its production and consumption makes buildings need an energy storage system to improve the efficiency of renewable energy use. Indeed, there exist already different kinds of energy storage systems using sensible or latent heat. With the consideration of energy dissipation during storage and low energy density for above two methods, thermochemical energy storage is then recommended. Recently, ettringite (3CaO∙Al₂O₃∙3CaSO₄∙32H₂O) based materials have been reported as potential thermochemical storage materials because of high energy density (~500 kWh/m³), low material cost (700 €/m³) and low storage temperature (~60-70°C), compared to reported salt hydrates like SrBr₂·6H₂O (42 k€/m³, ~80°C), LaCl₃·7H₂O (38 k€/m³, ~100°C) and MgSO₄·7H₂O (5 k€/m³, ~150°C). Therefore, they have the possibility to be largely used in building sector with being coupled to normal solar panel systems. On the other side, the lack in terms of extensive examination leads to poor knowledge on their thermal properties and limit maturity of this technology. The aim of this work is to develop a modular reactor adapting to thermal characterizations of ettringite-based material particles of different sizes. The filled materials in the reactor can be self-compacted vertically to ensure hot air or humid air goes through homogenously. Additionally, quick assembly and modification of reactor, like LEGO™ plastic blocks, make it suitable to distinct thermochemical energy storage material samples with different weights (from some grams to several kilograms). In our case, quantity of stored and released energy, best work conditions and even chemical durability of ettringite-based materials have been investigated.

Keywords: dehydration, ettringite, hydration, modular reactor, thermochemical energy storage

Procedia PDF Downloads 138
932 Guidelines for the Sustainable Development of Agriphotovoltaics in Orchard Cultivation: An Approach for Their Harmonious Application in the Natural, Landscape and Socio-Cultural Context of South Tyrol

Authors: Fabrizio Albion

Abstract:

In response to the escalating recognition of the need to combat climate change, renewable energy sources (RES), particularly solar energy, have witnessed exponential growth. The intricate nature of agriphotovoltaics, which combines agriculture and solar energy production, demands rapid legislative and technological development, facing various challenges and multifaceted design. This complexity is also represented by its application for orchard cultivation (APVO), which, in the first part of this research, was studied in its environmental, economic, and sociocultural aspects. Insights from literature, case studies, and consultations with experts contributed valuable perspectives, forming a robust foundation for understanding and integrating APVO into rural environments, including those in the South Tyrolean context. For its harmonious integration into the sensitive Alpine landscape, the second part was then dedicated to the development of guidelines, from the identification of the requirements to be defined as APVO to its design flexibilities for being integrated into the context. As a basis for further considerations, the drafting of these guidelines was preceded by a program of interviews conducted to investigate the social perceptions of farmers, citizens and tourists on the potential integration of APVO in the fruit-growing valleys of the province. Conclusive results from the data collected in the first phase are, however, still pending. Due to ongoing experiments and data collection, the current results, although being generally positive, cannot guarantee a definitive exclusion of potential negative impacts on the crop. The guidelines developed should, therefore, be understood as an initial exploration, providing a basis for future updates, also in synergy with the evolution of existing local projects.

Keywords: agriphotovoltaics, Alpin agricultural landscapes, landscape impact assessment, renewable energy

Procedia PDF Downloads 17
931 Implementation of Ecological and Energy-Efficient Building Concepts

Authors: Robert Wimmer, Soeren Eikemeier, Michael Berger, Anita Preisler

Abstract:

A relatively large percentage of energy and resource consumption occurs in the building sector. This concerns the production of building materials, the construction of buildings and also the energy consumption during the use phase. Therefore, the overall objective of this EU LIFE project “LIFE Cycle Habitation” (LIFE13 ENV/AT/000741) is to demonstrate innovative building concepts that significantly reduce CO₂emissions, mitigate climate change and contain a minimum of grey energy over their entire life cycle. The project is being realised with the contribution of the LIFE financial instrument of the European Union. The ultimate goal is to design and build prototypes for carbon-neutral and “LIFE cycle”-oriented residential buildings and make energy-efficient settlements the standard of tomorrow in line with the EU 2020 objectives. To this end, a resource and energy-efficient building compound is being built in Böheimkirchen, Lower Austria, which includes 6 living units and a community area as well as 2 single family houses with a total usable floor surface of approximately 740 m². Different innovative straw bale construction types (load bearing and pre-fabricated non loadbearing modules) together with a highly innovative energy-supply system, which is based on the maximum use of thermal energy for thermal energy services, are going to be implemented. Therefore only renewable resources and alternative energies are used to generate thermal as well as electrical energy. This includes the use of solar energy for space heating, hot water and household appliances like dishwasher or washing machine, but also a cooking place for the community area operated with thermal oil as heat transfer medium on a higher temperature level. Solar collectors in combination with a biomass cogeneration unit and photovoltaic panels are used to provide thermal and electric energy for the living units according to the seasonal demand. The building concepts are optimised by support of dynamic simulations. A particular focus is on the production and use of modular prefabricated components and building parts made of regionally available, highly energy-efficient, CO₂-storing renewable materials like straw bales. The building components will be produced in collaboration by local SMEs that are organised in an efficient way. The whole building process and results are monitored and prepared for knowledge transfer and dissemination including a trial living in the residential units to test and monitor the energy supply system and to involve stakeholders into evaluation and dissemination of the applied technologies and building concepts. The realised building concepts should then be used as templates for a further modular extension of the settlement in a second phase.

Keywords: energy-efficiency, green architecture, renewable resources, sustainable building

Procedia PDF Downloads 149
930 New Biobased(Furanic-Sulfonated) Poly(esteramide)s

Authors: Souhir Abid

Abstract:

The growing interest in vegetal biomass as an alternative for fossil resources has stimulated the development of numerous classes of monomers. Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons (i) firstly environmental concerns, and (ii) secondly the use of monomers from renewable feedstock is a steadily growing field of interest in order to reduce the amount of petroleum consumed in the chemical industry and to open new high-value-added markets to agriculture. Furanic polymers have been considered as alternative environmentally friendly polymers. In our earlier work, modifying furanic polyesters by incorporation of amide functions along their backbone, lead to a particular class of polymer ‘poly(ester-amide)s’, was investigated to combine the excellent mechanical properties of polyamides and the biodegradability of polyesters. As a continuation of our studies on this family of polymer, a series of furanic poly(ester-amide)s bearing sulfonate groups in the main chain were synthesized from 5,5’-Isopropylidene-bis(ethyl 2-furoate), dimethyl 5-sodiosulfoisophthalate, ethylene glycol and hexamethylene diamine by melt polycondensation using zinc acetate as a catalyst. In view of the complexity of the NMR spectrum analysis of the resulting sulfonated poly(ester-amide)s, we found that it is useful to prepare initially the corresponding homopolymers: sulfonated polyesters and polyamides. Structural data of these polymers will be used as a basic element in 1H NMR characterization. The hydrolytic degradation in acidic aqueous conditions (pH = 4,35 ) at 37 °C over the period of four weeks show that the mechanism of the hydrolysis of poly(ester amide)s was elucidated in relation with the microstructure. The strong intermolecular hydrogen bonding interactions between amide functions and water molecules increases the hydrophilicity of the macromolecular chains and consequently their hydrolytic degradation.

Keywords: furan, hydrolytic degradation, polycondensation, poly(ester amide)

Procedia PDF Downloads 294
929 Designing Sustainable and Energy-Efficient Urban Network: A Passive Architectural Approach with Solar Integration and Urban Building Energy Modeling (UBEM) Tools

Authors: A. Maghoul, A. Rostampouryasouri, MR. Maghami

Abstract:

The development of an urban design and power network planning has been gaining momentum in recent years. The integration of renewable energy with urban design has been widely regarded as an increasingly important solution leading to climate change and energy security. Through the use of passive strategies and solar integration with Urban Building Energy Modeling (UBEM) tools, architects and designers can create high-quality designs that meet the needs of clients and stakeholders. To determine the most effective ways of combining renewable energy with urban development, we analyze the relationship between urban form and renewable energy production. The procedure involved in this practice include passive solar gain (in building design and urban design), solar integration, location strategy, and 3D models with a case study conducted in Tehran, Iran. The study emphasizes the importance of spatial and temporal considerations in the development of sector coupling strategies for solar power establishment in arid and semi-arid regions. The substation considered in the research consists of two parallel transformers, 13 lines, and 38 connection points. Each urban load connection point is equipped with 500 kW of solar PV capacity and 1 kWh of battery Energy Storage (BES) to store excess power generated from solar, injecting it into the urban network during peak periods. The simulations and analyses have occurred in EnergyPlus software. Passive solar gain involves maximizing the amount of sunlight that enters a building to reduce the need for artificial lighting and heating. Solar integration involves integrating solar photovoltaic (PV) power into smart grids to reduce emissions and increase energy efficiency. Location strategy is crucial to maximize the utilization of solar PV in an urban distribution feeder. Additionally, 3D models are made in Revit, and they are keys component of decision-making in areas including climate change mitigation, urban planning, and infrastructure. we applied these strategies in this research, and the results show that it is possible to create sustainable and energy-efficient urban environments. Furthermore, demand response programs can be used in conjunction with solar integration to optimize energy usage and reduce the strain on the power grid. This study highlights the influence of ancient Persian architecture on Iran's urban planning system, as well as the potential for reducing pollutants in building construction. Additionally, the paper explores the advances in eco-city planning and development and the emerging practices and strategies for integrating sustainability goals.

Keywords: energy-efficient urban planning, sustainable architecture, solar energy, sustainable urban design

Procedia PDF Downloads 76
928 Modified 'Perturb and Observe' with 'Incremental Conductance' Algorithm for Maximum Power Point Tracking

Authors: H. Fuad Usman, M. Rafay Khan Sial, Shahzaib Hamid

Abstract:

The trend of renewable energy resources has been amplified due to global warming and other environmental related complications in the 21st century. Recent research has very much emphasized on the generation of electrical power through renewable resources like solar, wind, hydro, geothermal, etc. The use of the photovoltaic cell has become very public as it is very useful for the domestic and commercial purpose overall the world. Although a single cell gives the low voltage output but connecting a number of cells in a series formed a complete module of the photovoltaic cells, it is becoming a financial investment as the use of it fetching popular. This also reduced the prices of the photovoltaic cell which gives the customers a confident of using this source for their electrical use. Photovoltaic cell gives the MPPT at single specific point of operation at a given temperature and level of solar intensity received at a given surface whereas the focal point changes over a large range depending upon the manufacturing factor, temperature conditions, intensity for insolation, instantaneous conditions for shading and aging factor for the photovoltaic cells. Two improved algorithms have been proposed in this article for the MPPT. The widely used algorithms are the ‘Incremental Conductance’ and ‘Perturb and Observe’ algorithms. To extract the maximum power from the source to the load, the duty cycle of the convertor will be effectively controlled. After assessing the previous techniques, this paper presents the improved and reformed idea of harvesting maximum power point from the photovoltaic cells. A thoroughly go through of the previous ideas has been observed before constructing the improvement in the traditional technique of MPP. Each technique has its own importance and boundaries at various weather conditions. An improved technique of implementing the use of both ‘Perturb and Observe’ and ‘Incremental Conductance’ is introduced.

Keywords: duty cycle, MPPT (Maximum Power Point Tracking), perturb and observe (P&O), photovoltaic module

Procedia PDF Downloads 176
927 Analysing the Stability of Electrical Grid for Increased Renewable Energy Penetration by Focussing on LI-Ion Battery Storage Technology

Authors: Hemendra Singh Rathod

Abstract:

Frequency is, among other factors, one of the governing parameters for maintaining electrical grid stability. The quality of an electrical transmission and supply system is mainly described by the stability of the grid frequency. Over the past few decades, energy generation by intermittent sustainable sources like wind and solar has seen a significant increase globally. Consequently, controlling the associated deviations in grid frequency within safe limits has been gaining momentum so that the balance between demand and supply can be maintained. Lithium-ion battery energy storage system (Li-Ion BESS) has been a promising technology to tackle the challenges associated with grid instability. BESS is, therefore, an effective response to the ongoing debate whether it is feasible to have an electrical grid constantly functioning on a hundred percent renewable power in the near future. In recent years, large-scale manufacturing and capital investment into battery production processes have made the Li-ion battery systems cost-effective and increasingly efficient. The Li-ion systems require very low maintenance and are also independent of geographical constraints while being easily scalable. The paper highlights the use of stationary and moving BESS for balancing electrical energy, thereby maintaining grid frequency at a rapid rate. Moving BESS technology, as implemented in the selected railway network in Germany, is here considered as an exemplary concept for demonstrating the same functionality in the electrical grid system. Further, using certain applications of Li-ion batteries, such as self-consumption of wind and solar parks or their ancillary services, wind and solar energy storage during low demand, black start, island operation, residential home storage, etc. offers a solution to effectively integrate the renewables and support Europe’s future smart grid. EMT software tool DIgSILENT PowerFactory has been utilised to model an electrical transmission system with 100% renewable energy penetration. The stability of such a transmission system has been evaluated together with BESS within a defined frequency band. The transmission system operators (TSO) have the superordinate responsibility for system stability and must also coordinate with the other European transmission system operators. Frequency control is implemented by TSO by maintaining a balance between electricity generation and consumption. Li-ion battery systems are here seen as flexible, controllable loads and flexible, controllable generation for balancing energy pools. Thus using Li-ion battery storage solution, frequency-dependent load shedding, i.e., automatic gradual disconnection of loads from the grid, and frequency-dependent electricity generation, i.e., automatic gradual connection of BESS to the grid, is used as a perfect security measure to maintain grid stability in any case scenario. The paper emphasizes the use of stationary and moving Li-ion battery storage for meeting the demands of maintaining grid frequency and stability for near future operations.

Keywords: frequency control, grid stability, li-ion battery storage, smart grid

Procedia PDF Downloads 150
926 Energy System Analysis Using Data-Driven Modelling and Bayesian Methods

Authors: Paul Rowley, Adam Thirkill, Nick Doylend, Philip Leicester, Becky Gough

Abstract:

The dynamic performance of all energy generation technologies is impacted to varying degrees by the stochastic properties of the wider system within which the generation technology is located. This stochasticity can include the varying nature of ambient renewable energy resources such as wind or solar radiation, or unpredicted changes in energy demand which impact upon the operational behaviour of thermal generation technologies. An understanding of these stochastic impacts are especially important in contexts such as highly distributed (or embedded) generation, where an understanding of issues affecting the individual or aggregated performance of high numbers of relatively small generators is especially important, such as in ESCO projects. Probabilistic evaluation of monitored or simulated performance data is one technique which can provide an insight into the dynamic performance characteristics of generating systems, both in a prognostic sense (such as the prediction of future performance at the project’s design stage) as well as in a diagnostic sense (such as in the real-time analysis of underperforming systems). In this work, we describe the development, application and outcomes of a new approach to the acquisition of datasets suitable for use in the subsequent performance and impact analysis (including the use of Bayesian approaches) for a number of distributed generation technologies. The application of the approach is illustrated using a number of case studies involving domestic and small commercial scale photovoltaic, solar thermal and natural gas boiler installations, and the results as presented show that the methodology offers significant advantages in terms of plant efficiency prediction or diagnosis, along with allied environmental and social impacts such as greenhouse gas emission reduction or fuel affordability.

Keywords: renewable energy, dynamic performance simulation, Bayesian analysis, distributed generation

Procedia PDF Downloads 495
925 A Levelized Cost Analysis for Solar Energy Powered Sea Water Desalination in the Arabian Gulf Region

Authors: Abdullah Kaya, Muammer Koc

Abstract:

A levelized cost analysis of solar energy powered seawater desalination in The Emirate of Abu Dhabi is conducted to show that clean and renewable desalination is economically viable. The Emirate heavily relies on seawater desalination for its freshwater needs due to limited freshwater resources available. This trend is expected to increase further due to growing population and economic activity, rapid decline in limited freshwater reserves, and aggravating effects of climate change. Seawater desalination in Abu Dhabi is currently done through thermal desalination technologies such as multi-stage flash (MSF) and multi-effect distillation (MED) which are coupled with thermal power plants known as co-generation. Our analysis indicates that these thermal desalination methods are inefficient regarding energy consumption and harmful to the environment due to CO₂ emissions and other dangerous byproducts. Therefore, utilization of clean and renewable desalination options has become a must for The Emirate for the transition to a sustainable future. The rapid decline in the cost of solar PV system for energy production and RO technology for desalination makes the combination of these two an ideal option for a future of sustainable desalination in the Emirate of Abu Dhabi. A Levelized cost analysis for water produced by solar PV + RO system indicates that Abu Dhabi is well positioned to utilize this technological combination for cheap and clean desalination for the coming years. It has been shown that cap-ex cost of solar PV powered RO system has potential to go as low as to 101 million US $ (1111 $/m³) at best case considering the recent technological developments. The levelized cost of water (LCW) values fluctuate between 0.34 $/m³ for the baseline case and 0.27 $/m³ for the best case. Even the highly conservative case yields LCW cheaper than 100% from all thermal desalination methods currently employed in the Emirate. Exponential cost decreases in both solar PV and RO sectors along with increasing economic scale globally signal the fact that a cheap and clean desalination can be achieved by the combination of these technologies.

Keywords: solar PV, RO desalination, sustainable desalination, levelized cost of analysis, Emirate of Abu Dhabi

Procedia PDF Downloads 163
924 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 122
923 Design, Control and Implementation of 3.5 kW Bi-Directional Energy Harvester for Intelligent Green Energy Management System

Authors: P. Ramesh, Aby Joseph, Arya G. Lal, U. S. Aji

Abstract:

Integration of distributed green renewable energy sources in addition with battery energy storage is an inevitable requirement in a smart grid environment. To achieve this, an Intelligent Green Energy Management System (i-GEMS) needs to be incorporated to ensure coordinated operation between supply and load demand based on the hierarchy of Renewable Energy Sources (RES), battery energy storage and distribution grid. A bi-directional energy harvester is an integral component facilitating Intelligent Green Energy Management System (i-GEMS) and it is required to meet the technical challenges mentioned as follows: (1) capability for bi-directional mode of operation (buck/boost) (2) reduction of circuit parasitic to suppress voltage spikes (3) converter startup problem (4) high frequency magnetics (5) higher power density (6) mode transition issues during battery charging and discharging. This paper is focused to address the above mentioned issues and targeted to design, develop and implement a bi-directional energy harvester with galvanic isolation. In this work, the hardware architecture for bi-directional energy harvester rated 3.5 kW is developed with Isolated Full Bridge Boost Converter (IFBBC) as well as Dual Active Bridge (DAB) Converter configuration using modular power electronics hardware which is identical for both solar PV array and battery energy storage. In IFBBC converter, the current fed full bridge circuit is enabled and voltage fed full bridge circuit is disabled through Pulse Width Modulation (PWM) pulses for boost mode of operation and vice-versa for buck mode of operation. In DAB converter, all the switches are in active state so as to adjust the phase shift angle between primary full bridge and secondary full bridge which in turn decides the power flow directions depending on modes (boost/buck) of operation. Here, the control algorithm is developed to ensure the regulation of the common DC link voltage and maximum power extraction from the renewable energy sources depending on the selected mode (buck/boost) of operation. The circuit analysis and simulation study are conducted using PSIM 9.0 in three scenarios which are - 1.IFBBC with passive clamp, 2. IFBBC with active clamp, 3. DAB converter. In this work, a common hardware prototype for bi-directional energy harvester with 3.5 kW rating is built for IFBBC and DAB converter configurations. The power circuit is equipped with right choice of MOSFETs, gate drivers with galvanic isolation, high frequency transformer, filter capacitors, and filter boost inductor. The experiment was conducted for IFBBC converter with passive clamp under boost mode and the prototype confirmed the simulation results showing the measured efficiency as 88% at 2.5 kW output power. The digital controller hardware platform is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the bi-directional energy harvester is written in C language and developed using code composer studio. The comprehensive analyses of the power circuit design, control strategy for battery charging/discharging under buck/boost modes and comparative performance evaluation using simulation and experimental results will be presented.

Keywords: bi-directional energy harvester, dual active bridge, isolated full bridge boost converter, intelligent green energy management system, maximum power point tracking, renewable energy sources

Procedia PDF Downloads 140
922 Hybrid Renewable Energy System Development Towards Autonomous Operation: The Deployment Potential in Greece

Authors: Afroditi Zamanidou, Dionysios Giannakopoulos, Konstantinos Manolitsis

Abstract:

A notable amount of electrical energy demand in many countries worldwide is used to cover public energy demand for road, square and other public spaces’ lighting. Renewable energy can contribute in a significant way to the electrical energy demand coverage for public lighting. This paper focuses on the sizing and design of a hybrid energy system (HES) exploiting the solar-wind energy potential to meet the electrical energy needs of lighting roads, squares and other public spaces. Moreover, the proposed HES provides coverage of the electrical energy demand for a Wi-Fi hotspot and a charging hotspot for the end-users. Alongside the sizing of the energy production system of the proposed HES, in order to ensure a reliable supply without interruptions, a storage system is added and sized. Multiple scenarios of energy consumption are assumed and applied in order to optimize the sizing of the energy production system and the energy storage system. A database with meteorological prediction data for 51 areas in Greece is developed in order to assess the possible deployment of the proposed HES. Since there are detailed meteorological prediction data for all 51 areas under investigation, the use of these data is evaluated, comparing them to real meteorological data. The meteorological prediction data are exploited to form three hourly production profiles for each area for every month of the year; minimum, average and maximum energy production. The energy production profiles are combined with the energy consumption scenarios and the sizing results of the energy production system and the energy storage system are extracted and presented for every area. Finally, the economic performance of the proposed HES in terms of Levelized cost of energy is estimated by calculating and assessing construction, operation and maintenance costs.

Keywords: energy production system sizing, Greece’s deployment potential, meteorological prediction data, wind-solar hybrid energy system, levelized cost of energy

Procedia PDF Downloads 154
921 Wood Energy, Trees outside Forests and Agroforestry Wood Harvesting and Conversion Residues Preparing and Storing

Authors: Adeiza Matthew, Oluwadamilola Abubakar

Abstract:

Wood energy, also known as wood fuel, is a renewable energy source that is derived from woody biomass, which is organic matter that is harvested from forests, woodlands, and other lands. Woody biomass includes trees, branches, twigs, and other woody debris that can be used as fuel. Wood energy can be classified based on its sources, such as trees outside forests, residues from wood harvesting and conversion, and energy plantations. There are several policy frameworks that support the use of wood energy, including participatory forest management and agroforestry. These policies aim to promote the sustainable use of woody biomass as a source of energy while also protecting forests and wildlife habitats. There are several options for using wood as a fuel, including central heating systems, pellet-based systems, wood chip-based systems, log boilers, fireplaces, and stoves. Each of these options has its own benefits and drawbacks, and the most appropriate option will depend on factors such as the availability of woody biomass, the heating needs of the household or facility, and the local climate. In order to use wood as a fuel, it must be harvested and stored properly. Hardwood or softwood can be used as fuel, and the heating value of firewood depends on the species of tree and the degree of moisture content. Proper harvesting and storage of wood can help to minimize environmental impacts and improve wildlife habitats. The use of wood energy has several environmental impacts, including the release of greenhouse gases during combustion and the potential for air pollution from combustion by-products. However, wood energy can also have positive environmental impacts, such as the sequestration of carbon in trees and the reduction of reliance on fossil fuels. The regulation and legislation of wood energy vary by country and region, and there is an ongoing debate about the potential use of wood energy in renewable energy technologies. Wood energy is a renewable energy source that can be used to generate electricity, heat, and transportation fuels. Woody biomass is abundant and widely available, making it a potentially significant source of energy for many countries. The use of wood energy can create local economic and employment opportunities, particularly in rural areas. Wood energy can be used to reduce reliance on fossil fuels and reduce greenhouse gas emissions. Properly managed forests can provide a sustained supply of woody biomass for energy, helping to reduce the risk of deforestation and habitat loss. Wood energy can be produced using a variety of technologies, including direct combustion, co-firing with fossil fuels, and the production of biofuels. The environmental impacts of wood energy can be minimized through the use of best practices in harvesting, transportation, and processing. Wood energy is regulated and legislated at the national and international levels, and there are various standards and certification systems in place to promote sustainable practices. Wood energy has the potential to play a significant role in the transition to a low-carbon economy and the achievement of climate change mitigation goals.

Keywords: biomass, timber, charcoal, firewood

Procedia PDF Downloads 100
920 Graphene-Intercalated P4Se3@CNF Hybrid Electrode for Sustainable Energy Storage Solution: Enabling High Energy Density and Ultra-long Cyclic Stability

Authors: Daya Rani

Abstract:

Non-metal-based compounds have emerged as promising electrodes in recent years to replace scarce and expensive transition-metals for energy storage applications. Herein, a simple electro-spinning technique followed by carbonization is used to create tetraphosphorus triselenide(P4Se3)nano-flakes encapsulated in carbon nanofiber (P4Se3@CNF) to obtain a binder-free, metal-free and flexible hybrid electrode with high electrical conductivity and cyclic stability. A remarkable capacitive performance (5.5-folds@P4Se3) of 810Fg-1/[email protected] has been obtained using P4Se3@CNF electrode with an excellent rate capability compared to pristine(P4Se3) which is further supported by theoretical calculations via intercalating graphene within bare P4Se3 flakes inducing partial charge redistribution in hetero-structure. A flexible pouch-type hybrid-supercapacitor followed by coin-cell has been manufactured offering exceptional energy-density without sacrificing power density and ultra-long durability over 35000 and 100000-cycles with capacitance-retention of 99.77% and 100%, respectively. It has been demonstrated that as-fabricated device has practical usefulness towards renewable energy harvesting and storage via integrating commercial solar cell module with supercapattery array that can enlighten the blue LED approximately for 31minutes, rotate the homemade windmill device, power Arduino and glow “INST” against 2minutes of charging. This work demonstrates a facile route towards the development of metal-free electrochemical renewable energy storage/transfer devices offering an inevitable adoption in industrial platforms.

Keywords: metal free, carbon nano-fiber, pouch-type hybrid super-capacitor, nano-flakes

Procedia PDF Downloads 22
919 Performance Study of Experimental Ferritic Alloy with High Content of Molybdenum in Corrosive Environment of Soybean Methyl Biodiesel

Authors: Maurício N. Kleinberg, Ana P. R. N. Barroso, Frederico R. Silva, Natasha l. Gomes, Rodrigo F. Guimarães, Marcelo M. V. Parente, Jackson Q. Malveira

Abstract:

Increased production of biofuels, especially biodiesel, as an option to replace the diesel derived from oil is already a reality in countries seeking a renewable and environmentally friendly fuel, as is the case in Brazil. However, it is known that the use of fuels, renewable or not, implies that it is in contact with various metallic materials which may cause corrosion. In the search for more corrosion resistant materials has been experimentally observed that the addition of molybdenum in ferritic steels increases their protective character without significantly burdening the cost of production. In order to evaluate the effect of adding molybdenum, samples of commercial steel (austenitic, ferritic and carbon steel) and the experimental ferritic alloy with a high molybdenum content (5.3%) were immersed separately into biodiesel derived from transesterification of soy oil to monitor the corrosion process of these metal samples, and in parallel to analyze the oxidative degradation of biodiesel itself. During the immersion time of 258 days, biodiesel samples were taken for analysis of acidity, kinematic viscosity, density and refraction. Likewise, the metal samples were taken from the biodiesel to be weighed and microstructurally analyzed by light microscopy. The results obtained at the end of 258 days shown that biodiesel presented a considerable increase on the values of the studied parameters for all the samples. However, this increase was not able to produce significant mass loss in metallic samples. As regards the microstructural analysis, it showed the onset of surface oxidation on the carbon steel sample. As for the other samples, no significant surface changes were shown. These results are consistent with literature for short immersion times. It is concluded that the increase in the values of the studied parameters is not significant yet, probably due to the low time of immersion and exposure of the samples. Thus, it is necessary to continue the tests so that the objectives of this work are achieved.

Keywords: biodiesel, corrosion, immersion, experimental alloy

Procedia PDF Downloads 439
918 Biogas Production from Zebra Manure and Winery Waste Co-Digestion

Authors: Wicleffe Musingarimi

Abstract:

Currently, the rising energy demand as a result of an increase in the world’s population and the sustainable use of abundant natural resources are key issues facing many developed and developing countries including South Africa. Most of the energy to meet this growing demand comes from fossil fuel. Use of fossil fuels has led to environmental problems such air pollution, climate change, and acid rain. In addition, fossil fuels are facing continual depletion, which has led to the rise in oil prices, leading to the global economies melt down. Hence development of alternative clean and renewable energy source is a global priority. Renewable biomass from forest products, agricultural crops, and residues, as well as animal and municipal waste are promising alternatives. South Africa is one of the leading wine producers in the world; leading to a lot of winery waste (ww) being produced which can be used in anaerobic digestion (AD) to produce biogas. Biogas was produced from batch anaerobic digestion of zebra manure (zm) and batch anaerobic co-digestion of winery waste (ww) and zebra manure through water displacement. The batch digester with slurry of winery waste and zebra manure in the weight ratio of 1:2 was operated in a 1L container at 37°C for 30days. Co-digestion of winery waste and zebra manure produced higher amount of biogas as compared to zebra manure alone and winery waste alone. No biogas was produced by batch anaerobic digestion of winery waste alone. Chemical analysis of C/N ratio and total solids (TS) of zebra manure was 21.89 and 25.2 respectively. These values of C/N ratio and TS were quite high compared to values of other studied manures. Zebra manure also revealed unusually high concentration of Fe reaching 3600pm compared to other studies of manure. PCR with communal DNA of the digestate gave a positive hit for the presence of archaea species using standard archea primers; suggesting the presence of methanogens. Methanogens are key microbes in the production of biogas. Therefore, this study demonstrated the potential of zebra manure as an inoculum in the production of biogas.

Keywords: anaerobic digestion, biogas, co-digestion, methanogens

Procedia PDF Downloads 225
917 Efficiency Enhancement in Solar Panel

Authors: R. S. Arun Raj

Abstract:

In today's climate of growing energy needs and increasing environmental issues, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is the solar energy. The SUN provides every hour as much energy as mankind consumes in one year. This paper clearly explains about the solar panel design and new models and methodologies that can be implemented for better utilization of solar energy. Minimisation of losses in solar panel as heat is my innovative idea revolves around. The pay back calculations by implementation of solar panels is also quoted.

Keywords: on-grid and off-grid systems, pyro-electric effect, pay-back calculations, solar panel

Procedia PDF Downloads 594
916 S. cerevisiae Strains Co-Cultured with Isochrysis Galbana Create Greater Biomass for Biofuel Production than Nannochloropsis sp.

Authors: Madhalasa Iyer

Abstract:

The increase in sustainable practices have encouraged the research and production of alternative fuels. New techniques of bio flocculation with the addition of yeast and bacteria strains have increased the efficiency of biofuel production. Fatty acid methyl ester (FAME) analysis in previous research has indicated that yeast can serve as a plausible enhancer for microalgal lipid production. The research hopes to identify the yeast and microalgae treatment group that produces the largest algae biomass. The mass of the dried algae is used as a proxy for TAG production correlating to the cultivation of biofuels. The study uses a model bioreactor created and built using PVC pipes, 8-port sprinkler system manifold, CO2 aquarium tank, and disposable water bottles to grow the microalgae. Nannochloropsis sp., and Isochrysis galbanawere inoculated separately in experimental group 1 and 2 with no treatments and in experimental groups 3 and 4 with each algaeco-cultured with Saccharomyces cerevisiae in the medium of standard garden stone fertilizer. S. cerevisiae was grown in a petri dish with nutrient agar medium before inoculation. A Secchi stick was used before extraction to collect data for the optical density of the microalgae. The biomass estimator was then used to measure the approximate production of biomass. The microalgae were grown and extracted with a french press to analyze secondary measurements using the dried biomass. The experimental units of Isochrysis galbana treated with the baker’s yeast strains showed an increase in the overall mass of the dried algae. S. cerevisiae proved to be an accurate and helpful addition to the solution to provide for the growth of algae. The increase in productivity of this fuel source legitimizes the possible replacement of non-renewable sources with more promising renewable alternatives. This research furthers the notion that yeast and mutants can be engineered to be employed in efficient biofuel creation.

Keywords: biofuel, co-culture, S. cerevisiae, microalgae, yeast

Procedia PDF Downloads 108
915 The Temperature Influence for Gasification in the Advanced Biomass Gasifier

Authors: Narsimhulu Sanke, D. N. Reddy

Abstract:

The paper is to discuss about the influence of the temperature in the advanced biomass gasifier for gasification, when tested four different biomass fuels individually in the gasification laboratory of Centre for Energy Technology (CET). The gasifier is developed in CET to test any kind of biomass fuel for gasification without changing the gasifier. The gasifier can be used for batch operations and observed and found that there were no operational problems.

Keywords: biomass fuels, temperature, advanced downdraft gasifier, tar, renewable energy sources

Procedia PDF Downloads 493