Search results for: Naive Bayesian
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 455

Search results for: Naive Bayesian

35 Cognition in Context: Investigating the Impact of Persuasive Outcomes across Face-to-Face, Social Media and Virtual Reality Environments

Authors: Claire Tranter, Coral Dando

Abstract:

Gathering information from others is a fundamental goal for those concerned with investigating crime, and protecting national and international security. Persuading an individual to move from an opposing to converging viewpoint, and an understanding on the cognitive style behind this change can serve to increase understanding of traditional face-to-face interactions, as well as synthetic environments (SEs) often used for communication across varying geographical locations. SEs are growing in usage, and with this increase comes an increase in crime being undertaken online. Communication technologies can allow people to mask their real identities, supporting anonymous communication which can raise significant challenges for investigators when monitoring and managing these conversations inside SEs. To date, the psychological literature concerning how to maximise information-gain in SEs for real-world interviewing purposes is sparse, and as such this aspect of social cognition is not well understood. Here, we introduce an overview of a novel programme of PhD research which seeks to enhance understanding of cross-cultural and cross-gender communication in SEs for maximising information gain. Utilising a dyadic jury paradigm, participants interacted with a confederate who attempted to persuade them to the opposing verdict across three distinct environments: face-to-face, instant messaging, and a novel virtual reality environment utilising avatars. Participants discussed a criminal scenario, acting as a two-person (male; female) jury. Persuasion was manipulated by the confederate claiming an opposing viewpoint (guilty v. not guilty) to the naïve participants from the outset. Pre and post discussion data, and observational digital recordings (voice and video) of participant’ discussion performance was collected. Information regarding cognitive style was also collected to ascertain participants need for cognitive closure and biases towards jumping to conclusions. Findings revealed that individuals communicating via an avatar in a virtual reality environment reacted in a similar way, and thus equally persuasive, when compared to individuals communicating face-to-face. Anonymous instant messaging however created a resistance to persuasion in participants, with males showing a significant decline in persuasive outcomes compared to face to face. The findings reveal new insights particularly regarding the interplay of persuasion on gender and modality, with anonymous instant messaging enhancing resistance to persuasion attempts. This study illuminates how varying SE can support new theoretical and applied understandings of how judgments are formed and modified in response to advocacy.

Keywords: applied cognition, persuasion, social media, virtual reality

Procedia PDF Downloads 145
34 Clinical Audit on the Introduction of Apremilast into Ireland

Authors: F. O’Dowd, G. Murphy, M. Roche, E. Shudell, F. Keane, M. O’Kane

Abstract:

Intoduction: Apremilast (Otezla®) is an oral phosphodiesterase-4 (PDE4) inhibitor indicated for treatment of adult patients with moderate to severe plaque psoriasis who have contraindications to have failed or intolerant of standard systemic therapy and/or phototherapy; and adult patients with active psoriatic arthritis. Apremilast influences intracellular regulation of inflammatory mediators. Two randomized, placebo-controlled trials evaluating apremilast in 1426 patients with moderate to severe plague psoriasis (ESTEEM 1 and 2) demonstrated that the commonest adverse reactions (AE’s) leading to discontinuation were nausea (1.6%), diarrhoea (1.0%), and headaches (0.8%). The overall proportion of subjects discontinuing due to adverse reactions was 6.1%. At week 16 these trials demonstrated significant more apremilast-treated patients (33.1%) achieved the primary end point PASI-75 than placebo (5.3%). We began prescribing apremilast in July 2015. Aim: To evaluate efficacy and tolerability of apremilast in an Irish teaching hospital psoriasis population. Methods: A proforma documenting clinical evaluation parameters, prior treatment experience and AE’s; was completed prospectively on all patients commenced on apremilast since July 2015 – July 2017. Data was collected at week 0,6,12,24,36 and week 52 with 20/71 patients having passed week 52. Efficacy was assessed using Psoriasis Area and Severity Index (PASI) and Dermatology Life Quality Index (DLQI). AE’s documented included GI effects, infections, changes in weight and mood. Retrospective chart review and telephone review was utilised for missing data. Results: A total of 71 adult subjects (38 male, 33 female; age range 23-57), with moderate to severe psoriasis, were evaluated. Prior treatment: 37/71 (52%) were systemic/biologic/phototherapy naïve; 14/71 (20%) has prior phototherapy alone;20/71 (28%) had previous systemic/biologic exposure; 12/71 (17%) had both psoriasis and psoriatic arthritis. PASI responses: mean baseline PASI was 10.1 and DLQI was 15.Week 6: N=71, n=15 (21%) achieved PASI 75. Week 12: N= 48, n=6 (13%) achieved a PASI 100%; n=16 (34.5%) achieved a PASI 75. Week 24: N=40, n=10 (25%) achieved a PASI 100; n=15 (37.5%) achieved a PASI 75. Week 52: N= 20, n=4 (20%) achieved a PASI 100; n= 16 (80%) achieved a PASI 75. (N= number of pts having passed the time point indicated, n= number of pts (out of N) achieving PASI or DLQI responses at that time). DLQI responses: week 24: N= 40, n=30 (75%) achieved a DLQI score of 0; n=5 (12.5%) achieved a DLQI score of 1; n=1 (2.5%) achieved a DLQI score of 10 (due to lack of efficacy). Adverse Events: The proportion of patients that discontinued treatment due to AE’s was n=7 (9.8%). One patient experienced nausea alleviated by dose reduction; another developed significant dysgeusia for certain foods, both continued therapy. Two patients lost 2-3 kg. Conclusion: Initial Irish patient experience of Apremilast appears comparable to that observed in trials with good efficacy and tolerability.

Keywords: Apremilast, introduction, Ireland, clinical audit

Procedia PDF Downloads 149
33 Modelling Agricultural Commodity Price Volatility with Markov-Switching Regression, Single Regime GARCH and Markov-Switching GARCH Models: Empirical Evidence from South Africa

Authors: Yegnanew A. Shiferaw

Abstract:

Background: commodity price volatility originating from excessive commodity price fluctuation has been a global problem especially after the recent financial crises. Volatility is a measure of risk or uncertainty in financial analysis. It plays a vital role in risk management, portfolio management, and pricing equity. Objectives: the core objective of this paper is to examine the relationship between the prices of agricultural commodities with oil price, gas price, coal price and exchange rate (USD/Rand). In addition, the paper tries to fit an appropriate model that best describes the log return price volatility and estimate Value-at-Risk and expected shortfall. Data and methods: the data used in this study are the daily returns of agricultural commodity prices from 02 January 2007 to 31st October 2016. The data sets consists of the daily returns of agricultural commodity prices namely: white maize, yellow maize, wheat, sunflower, soya, corn, and sorghum. The paper applies the three-state Markov-switching (MS) regression, the standard single-regime GARCH and the two regime Markov-switching GARCH (MS-GARCH) models. Results: to choose the best fit model, the log-likelihood function, Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance information criterion (DIC) are employed under three distributions for innovations. The results indicate that: (i) the price of agricultural commodities was found to be significantly associated with the price of coal, price of natural gas, price of oil and exchange rate, (ii) for all agricultural commodities except sunflower, k=3 had higher log-likelihood values and lower AIC and BIC values. Thus, the three-state MS regression model outperformed the two-state MS regression model (iii) MS-GARCH(1,1) with generalized error distribution (ged) innovation performs best for white maize and yellow maize; MS-GARCH(1,1) with student-t distribution (std) innovation performs better for sorghum; MS-gjrGARCH(1,1) with ged innovation performs better for wheat, sunflower and soya and MS-GARCH(1,1) with std innovation performs better for corn. In conclusion, this paper provided a practical guide for modelling agricultural commodity prices by MS regression and MS-GARCH processes. This paper can be good as a reference when facing modelling agricultural commodity price problems.

Keywords: commodity prices, MS-GARCH model, MS regression model, South Africa, volatility

Procedia PDF Downloads 204
32 Epidemiological and Clinical Characteristics of Five Rare Pathological Subtypes of Hepatocellular Carcinoma

Authors: Xiaoyuan Chen

Abstract:

Background: This study aimed to characterize the epidemiological and clinical features of five rare subtypes of hepatocellular carcinoma (HCC) and to create a competing risk nomogram for predicting cancer-specific survival. Methods: This study used the Surveillance, Epidemiology, and End Results database to analyze the clinicopathological data of 50,218 patients with classic HCC and five rare subtypes (ICD-O-3 Histology Code=8170/3-8175/3) between 2004 and 2018. The annual percent change (APC) was calculated using Joinpoint regression, and a nomogram was developed based on multivariable competing risk survival analyses. The prognostic performance of the nomogram was evaluated using the Akaike information criterion, Bayesian information criterion, C-index, calibration curve, and area under the receiver operating characteristic curve. Decision curve analysis was used to assess the clinical value of the models. Results: The incidence of scirrhous carcinoma showed a decreasing trend (APC=-6.8%, P=0.025), while the morbidity of other rare subtypes remained stable from 2004 to 2018. The incidence-based mortality plateau in all subtypes during the period. Clear cell carcinoma was the most common subtype (n=551, 1.1%), followed by fibrolamellar (n=241, 0.5%), scirrhous (n=82, 0.2%), spindle cell (n=61, 0.1%), and pleomorphic (n=17, ~0%) carcinomas. Patients with fibrolamellar carcinoma were younger and more likely to have non-cirrhotic liver and better prognoses. Scirrhous carcinoma shared almost the same macro clinical characteristics and outcomes as classic HCC. Clear cell carcinoma tended to occur in the Asia-Pacific elderly male population, and more than half of them were large HCC (Size>5cm). Sarcomatoid (including spindle cell and pleomorphic) carcinoma was associated with larger tumor size, poorer differentiation, and more dismal prognoses. The pathological subtype, T stage, M stage, surgery, alpha-fetoprotein, and cancer history were identified as independent predictors in patients with rare subtypes. The nomogram showed good calibration, discrimination, and net benefits in clinical practice. Conclusion: The rare subtypes of HCC had distinct clinicopathological features and biological behaviors compared with classic HCC. Our findings could provide a valuable reference for clinicians. The constructed nomogram could accurately predict prognoses, which is beneficial for individualized management.

Keywords: hepatocellular carcinoma, pathological subtype, fibrolamellar carcinoma, scirrhous carcinoma, clear cell carcinoma, spindle cell carcinoma, pleomorphic carcinoma

Procedia PDF Downloads 80
31 Long-Term Exposure, Health Risk, and Loss of Quality-Adjusted Life Expectancy Assessments for Vinyl Chloride Monomer Workers

Authors: Tzu-Ting Hu, Jung-Der Wang, Ming-Yeng Lin, Jin-Luh Chen, Perng-Jy Tsai

Abstract:

The vinyl chloride monomer (VCM) has been classified as group 1 (human) carcinogen by the IARC. Workers exposed to VCM are known associated with the development of the liver cancer and hence might cause economical and health losses. Particularly, for those work for the petrochemical industry have been seriously concerned in the environmental and occupational health field. Considering assessing workers’ health risks and their resultant economical and health losses requires the establishment of long-term VCM exposure data for any similar exposure group (SEG) of interest, the development of suitable technologies has become an urgent and important issue. In the present study, VCM exposures for petrochemical industry workers were determined firstly based on the database of the 'Workplace Environmental Monitoring Information Systems (WEMIS)' provided by Taiwan OSHA. Considering the existence of miss data, the reconstruction of historical exposure techniques were then used for completing the long-term exposure data for SEGs with routine operations. For SEGs with non-routine operations, exposure modeling techniques, together with their time/activity records, were adopted for determining their long-term exposure concentrations. The Bayesian decision analysis (BDA) was adopted for conducting exposure and health risk assessments for any given SEG in the petrochemical industry. The resultant excessive cancer risk was then used to determine the corresponding loss of quality-adjusted life expectancy (QALE). Results show that low average concentrations can be found for SEGs with routine operations (e.g., VCM rectification 0.0973 ppm, polymerization 0.306 ppm, reaction tank 0.33 ppm, VCM recovery 1.4 ppm, control room 0.14 ppm, VCM storage tanks 0.095 ppm and wastewater treatment 0.390 ppm), and the above values were much lower than that of the permissible exposure limit (PEL; 3 ppm) of VCM promulgated in Taiwan. For non-routine workers, though their high exposure concentrations, their low exposure time and frequencies result in low corresponding health risks. Through the consideration of exposure assessment results, health risk assessment results, and QALE results simultaneously, it is concluded that the proposed method was useful for prioritizing SEGs for conducting exposure abatement measurements. Particularly, the obtained QALE results further indicate the importance of reducing workers’ VCM exposures, though their exposures were low as in comparison with the PEL and the acceptable health risk.

Keywords: exposure assessment, health risk assessment, petrochemical industry, quality-adjusted life years, vinyl chloride monomer

Procedia PDF Downloads 195
30 Impact of 6-Week Brain Endurance Training on Cognitive and Cycling Performance in Highly Trained Individuals

Authors: W. Staiano, S. Marcora

Abstract:

Introduction: It has been proposed that acute negative effect of mental fatigue (MF) could potentially become a training stimulus for the brain (Brain endurance training (BET)) to adapt and improve its ability to attenuate MF states during sport competitions. Purpose: The aim of this study was to test the efficacy of 6 weeks of BET on cognitive and cycling tests in a group of well-trained subjects. We hypothesised that combination of BET and standard physical training (SPT) would increase cognitive capacity and cycling performance by reducing rating of perceived exertion (RPE) and increase resilience to fatigue more than SPT alone. Methods: In a randomized controlled trial design, 26 well trained participants, after a familiarization session, cycled to exhaustion (TTE) at 80% peak power output (PPO) and, after 90 min rest, at 65% PPO, before and after random allocation to a 6 week BET or active placebo control. Cognitive performance was measured using 30 min of STROOP coloured task performed before cycling performance. During the training, BET group performed a series of cognitive tasks for a total of 30 sessions (5 sessions per week) with duration increasing from 30 to 60 min per session. Placebo engaged in a breathing relaxation training. Both groups were monitored for physical training and were naïve to the purpose of the study. Physiological and perceptual parameters of heart rate, lactate (LA) and RPE were recorded during cycling performances, while subjective workload (NASA TLX scale) was measured during the training. Results: Group (BET vs. Placebo) x Test (Pre-test vs. Post-test) mixed model ANOVA’s revealed significant interaction for performance at 80% PPO (p = .038) or 65% PPO (p = .011). In both tests, groups improved their TTE performance; however, BET group improved significantly more compared to placebo. No significant differences were found for heart rate during the TTE cycling tests. LA did not change significantly at rest in both groups. However, at completion of 65% TTE, it was significantly higher (p = 0.043) in the placebo condition compared to BET. RPE measured at ISO-time in BET was significantly lower (80% PPO, p = 0.041; 65% PPO p= 0.021) compared to placebo. Cognitive results in the STROOP task showed that reaction time in both groups decreased at post-test. However, BET decreased significantly (p = 0.01) more compared to placebo despite no differences accuracy. During training sessions, participants in the BET showed, through NASA TLX questionnaires, constantly significantly higher (p < 0.01) mental demand rates compared to placebo. No significant differences were found for physical demand. Conclusion: The results of this study provide evidences that combining BET and SPT seems to be more effective than SPT alone in increasing cognitive and cycling performance in well trained endurance participants. The cognitive overload produced during the 6-week training of BET can induce a reduction in perception of effort at a specific power, and thus improving cycling performance. Moreover, it provides evidence that including neurocognitive interventions will benefit athletes by increasing their mental resilience, without affecting their physical training load and routine.

Keywords: cognitive training, perception of effort, endurance performance, neuro-performance

Procedia PDF Downloads 121
29 Tracing Sources of Sediment in an Arid River, Southern Iran

Authors: Hesam Gholami

Abstract:

Elevated suspended sediment loads in riverine systems resulting from accelerated erosion due to human activities are a serious threat to the sustainable management of watersheds and ecosystem services therein worldwide. Therefore, mitigation of deleterious sediment effects as a distributed or non-point pollution source in the catchments requires reliable provenance information. Sediment tracing or sediment fingerprinting, as a combined process consisting of sampling, laboratory measurements, different statistical tests, and the application of mixing or unmixing models, is a useful technique for discriminating the sources of sediments. From 1996 to the present, different aspects of this technique, such as grouping the sources (spatial and individual sources), discriminating the potential sources by different statistical techniques, and modification of mixing and unmixing models, have been introduced and modified by many researchers worldwide, and have been applied to identify the provenance of fine materials in agricultural, rural, mountainous, and coastal catchments, and in large catchments with numerous lakes and reservoirs. In the last two decades, efforts exploring the uncertainties associated with sediment fingerprinting results have attracted increasing attention. The frameworks used to quantify the uncertainty associated with fingerprinting estimates can be divided into three groups comprising Monte Carlo simulation, Bayesian approaches and generalized likelihood uncertainty estimation (GLUE). Given the above background, the primary goal of this study was to apply geochemical fingerprinting within the GLUE framework in the estimation of sub-basin spatial sediment source contributions in the arid Mehran River catchment in southern Iran, which drains into the Persian Gulf. The accuracy of GLUE predictions generated using four different sets of statistical tests for discriminating three sub-basin spatial sources was evaluated using 10 virtual sediments (VS) samples with known source contributions using the root mean square error (RMSE) and mean absolute error (MAE). Based on the results, the contributions modeled by GLUE for the western, central and eastern sub-basins are 1-42% (overall mean 20%), 0.5-30% (overall mean 12%) and 55-84% (overall mean 68%), respectively. According to the mean absolute fit (MAF; ≥ 95% for all target sediment samples) and goodness-of-fit (GOF; ≥ 99% for all samples), our suggested modeling approach is an accurate technique to quantify the source of sediments in the catchments. Overall, the estimated source proportions can help watershed engineers plan the targeting of conservation programs for soil and water resources.

Keywords: sediment source tracing, generalized likelihood uncertainty estimation, virtual sediment mixtures, Iran

Procedia PDF Downloads 74
28 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 148
27 Correlation between the Levels of Some Inflammatory Cytokines/Haematological Parameters and Khorana Scores of Newly Diagnosed Ambulatory Cancer Patients

Authors: Angela O. Ugwu, Sunday Ocheni

Abstract:

Background: Cancer-associated thrombosis (CAT) is a cause of morbidity and mortality among cancer patients. Several risk factors for developing venous thromboembolism (VTE) also coexist with cancer patients, such as chemotherapy and immobilization, thus contributing to the higher risk of VTE in cancer patients when compared to non-cancer patients. This study aimed to determine if there is any correlation between levels of some inflammatory cytokines/haematological parameters and Khorana scores of newly diagnosed chemotherapy naïve ambulatory cancer patients (CNACP). Methods: This was a cross-sectional analytical study carried out from June 2021 to May 2022. Eligible newly diagnosed cancer patients 18 years and above (case group) were enrolled consecutively from the adult Oncology Clinics of the University of Nigeria Teaching Hospital, Ituku/Ozalla (UNTH). The control group was blood donors at UNTH Ituku/Ozalla, Enugu blood bank, and healthy members of the Medical and Dental Consultants Association of Nigeria (MDCAN), UNTH Chapter. Blood samples collected from the participants were assayed for IL-6, TNF-Alpha, and haematological parameters such as haemoglobin, white blood cell count (WBC), and platelet count. Data were entered into an Excel worksheet and were then analyzed using Statistical Package for Social Sciences (SPSS) computer software version 21.0 for windows. A P value of < 0.05 was considered statistically significant. Results: A total of 200 participants (100 cases and 100 controls) were included in the study. The overall mean age of the participants was 47.42 ±15.1 (range 20-76). The sociodemographic characteristics of the two groups, including age, sex, educational level, body mass index (BMI), and occupation, were similar (P > 0.05). Following One Way ANOVA, there were significant differences between the mean levels of interleukin-6 (IL-6) (p = 0.036) and tumor necrotic factor-α (TNF-α) (p = 0.001) in the three Khorana score groups of the case group. Pearson’s correlation analysis showed a significant positive correlation between the Khorana scores and IL-6 (r=0.28, p = 0.031), TNF-α (r= 0.254, p= 0.011), and PLR (r= 0.240, p=0.016). The mean serum levels of IL-6 were significantly higher in CNACP than in the healthy controls [8.98 (8-12) pg/ml vs. 8.43 (2-10) pg/ml, P=0.0005]. There were also significant differences in the mean levels of the haemoglobin (Hb) level (P < 0.001)); white blood cell (WBC) count ((P < 0.001), and platelet (PL) count (P = 0.005) between the two groups of participants. Conclusion: There is a significant positive correlation between the serum levels of IL-6, TNF-α, and PLR and the Khorana scores of CNACP. The mean serum levels of IL-6, TNF-α, PLR, WBC, and PL count were significantly higher in CNACP than in the healthy controls. Ambulatory cancer patients with high-risk Khorana scores may benefit from anti-inflammatory drugs because of the positive correlation with inflammatory cytokines. Recommendations: Ambulatory cancer patients with 2 Khorana scores may benefit from thromboprophylaxis since they have higher Khorana scores. A multicenter study with a heterogeneous population and larger sample size is recommended in the future to further elucidate the relationship between IL-6, TNF-α, PLR, and the Khorana scores among cancer patients in the Nigerian population.

Keywords: thromboprophylaxis, cancer, Khorana scores, inflammatory cytokines, haematological parameters

Procedia PDF Downloads 82
26 Predictive Modelling of Curcuminoid Bioaccessibility as a Function of Food Formulation and Associated Properties

Authors: Kevin De Castro Cogle, Mirian Kubo, Maria Anastasiadi, Fady Mohareb, Claire Rossi

Abstract:

Background: The bioaccessibility of bioactive compounds is a critical determinant of the nutritional quality of various food products. Despite its importance, there is a limited number of comprehensive studies aimed at assessing how the composition of a food matrix influences the bioaccessibility of a compound of interest. This knowledge gap has prompted a growing need to investigate the intricate relationship between food matrix formulations and the bioaccessibility of bioactive compounds. One such class of bioactive compounds that has attracted considerable attention is curcuminoids. These naturally occurring phytochemicals, extracted from the roots of Curcuma longa, have gained popularity owing to their purported health benefits and also well known for their poor bioaccessibility Project aim: The primary objective of this research project is to systematically assess the influence of matrix composition on the bioaccessibility of curcuminoids. Additionally, this study aimed to develop a series of predictive models for bioaccessibility, providing valuable insights for optimising the formula for functional foods and provide more descriptive nutritional information to potential consumers. Methods: Food formulations enriched with curcuminoids were subjected to in vitro digestion simulation, and their bioaccessibility was characterized with chromatographic and spectrophotometric techniques. The resulting data served as the foundation for the development of predictive models capable of estimating bioaccessibility based on specific physicochemical properties of the food matrices. Results: One striking finding of this study was the strong correlation observed between the concentration of macronutrients within the food formulations and the bioaccessibility of curcuminoids. In fact, macronutrient content emerged as a very informative explanatory variable of bioaccessibility and was used, alongside other variables, as predictors in a Bayesian hierarchical model that predicted curcuminoid bioaccessibility accurately (optimisation performance of 0.97 R2) for the majority of cross-validated test formulations (LOOCV of 0.92 R2). These preliminary results open the door to further exploration, enabling researchers to investigate a broader spectrum of food matrix types and additional properties that may influence bioaccessibility. Conclusions: This research sheds light on the intricate interplay between food matrix composition and the bioaccessibility of curcuminoids. This study lays a foundation for future investigations, offering a promising avenue for advancing our understanding of bioactive compound bioaccessibility and its implications for the food industry and informed consumer choices.

Keywords: bioactive bioaccessibility, food formulation, food matrix, machine learning, probabilistic modelling

Procedia PDF Downloads 68
25 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic

Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova

Abstract:

Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.

Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification

Procedia PDF Downloads 110
24 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines

Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka

Abstract:

To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.

Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps

Procedia PDF Downloads 153
23 Genetic Diversity Analysis in Ecological Populations of Persian Walnut

Authors: Masoud Sheidai, Fahimeh Koohdar, Hashem Sharifi

Abstract:

Juglans regia (L.) commonly known as Persian walnut of the genus Juglans L. (Juglandaceae) is one of the most important cultivated plant species due to its high-quality wood and edible nuts. The genetic diversity analysis is essential for conservation and management of tree species. Persian walnut is native from South-Eastern Europe to North-Western China through Tibet, Nepal, Northern India, Pakistan, and Iran. The species like Persian walnut, which has a wide range of geographical distribution, should harbor extensive genetic variability to adapt to environmental fluctuations they face. We aimed to study the population genetic structure of seven Persian walnut populations including three wild and four cultivated populations by using ISSR (Inter simple sequence repeats) and SRAP (Sequence related amplified polymorphism) molecular markers. We also aimed to compare the genetic variability revealed by ISSR neutral multilocus marker and rDNA ITS sequences. The studied populations differed in morphological features as the samples in each population were clustered together and were separate from the other populations. Three wild populations studied were placed close to each other. The mantel test after 5000 times permutation performed between geographical distance and morphological distance in Persian walnut populations produced significant correlation (r = 0.48, P = 0.002). Therefore, as the populations become farther apart, they become more divergent in morphological features. ISSR analysis produced 47 bands/ loci, while we obtained 15 SRAP bands. Gst and other differentiation statistics determined for these loci revealed that most of the ISSR and SRAP loci have very good discrimination power and can differentiate the studied populations. AMOVA performed for these loci produced a significant difference (< 0.05) supporting the above-said result. AMOVA produced significant genetic difference based on ISSR data among the studied populations (PhiPT = 0.52, P = 0.001). AMOVA revealed that 53% of the total variability is due to among population genetic difference, while 47% is due to within population genetic variability. The results showed that both multilocus molecular markers and ITS sequences can differentiate Persian walnut populations. The studied populations differed genetically and showed isolation by distance (IBD). ITS sequence based MP and Bayesian phylogenetic trees revealed that Iranian walnut cultivars form a distinct clade separated from the cultivars studied from elsewhere. Almost all clades obtained have high bootstrap value. The results indicated that a combination of multilpcus and sequencing molecular markers can be used in genetic differentiation of Persian walnut.

Keywords: genetic diversity, population, molecular markers, genetic difference

Procedia PDF Downloads 163
22 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 81
21 Quantifying Multivariate Spatiotemporal Dynamics of Malaria Risk Using Graph-Based Optimization in Southern Ethiopia

Authors: Yonas Shuke Kitawa

Abstract:

Background: Although malaria incidence has substantially fallen sharply over the past few years, the rate of decline varies by district, time, and malaria type. Despite this turn-down, malaria remains a major public health threat in various districts of Ethiopia. Consequently, the present study is aimed at developing a predictive model that helps to identify the spatio-temporal variation in malaria risk by multiple plasmodium species. Methods: We propose a multivariate spatio-temporal Bayesian model to obtain a more coherent picture of the temporally varying spatial variation in disease risk. The spatial autocorrelation in such a data set is typically modeled by a set of random effects that assign a conditional autoregressive prior distribution. However, the autocorrelation considered in such cases depends on a binary neighborhood matrix specified through the border-sharing rule. Over here, we propose a graph-based optimization algorithm for estimating the neighborhood matrix that merely represents the spatial correlation by exploring the areal units as the vertices of a graph and the neighbor relations as the series of edges. Furthermore, we used aggregated malaria count in southern Ethiopia from August 2013 to May 2019. Results: We recognized that precipitation, temperature, and humidity are positively associated with the malaria threat in the area. On the other hand, enhanced vegetation index, nighttime light (NTL), and distance from coastal areas are negatively associated. Moreover, nonlinear relationships were observed between malaria incidence and precipitation, temperature, and NTL. Additionally, lagged effects of temperature and humidity have a significant effect on malaria risk by either species. More elevated risk of P. falciparum was observed following the rainy season, and unstable transmission of P. vivax was observed in the area. Finally, P. vivax risks are less sensitive to environmental factors than those of P. falciparum. Conclusion: The improved inference was gained by employing the proposed approach in comparison to the commonly used border-sharing rule. Additionally, different covariates are identified, including delayed effects, and elevated risks of either of the cases were observed in districts found in the central and western regions. As malaria transmission operates in a spatially continuous manner, a spatially continuous model should be employed when it is computationally feasible.

Keywords: disease mapping, MSTCAR, graph-based optimization algorithm, P. falciparum, P. vivax, waiting matrix

Procedia PDF Downloads 82
20 Item-Trait Pattern Recognition of Replenished Items in Multidimensional Computerized Adaptive Testing

Authors: Jianan Sun, Ziwen Ye

Abstract:

Multidimensional computerized adaptive testing (MCAT) is a popular research topic in psychometrics. It is important for practitioners to clearly know the item-trait patterns of administered items when a test like MCAT is operated. Item-trait pattern recognition refers to detecting which latent traits in a psychological test are measured by each of the specified items. If the item-trait patterns of the replenished items in MCAT item pool are well detected, the interpretability of the items can be improved, which can further promote the abilities of the examinees who attending the MCAT to be accurately estimated. This research explores to solve the item-trait pattern recognition problem of the replenished items in MCAT item pool from the perspective of statistical variable selection. The popular multidimensional item response theory model, multidimensional two-parameter logistic model, is assumed to fit the response data of MCAT. The proposed method uses the least absolute shrinkage and selection operator (LASSO) to detect item-trait patterns of replenished items based on the essential information of item responses and ability estimates of examinees collected from a designed MCAT procedure. Several advantages of the proposed method are outlined. First, the proposed method does not strictly depend on the relative order between the replenished items and the selected operational items, so it allows the replenished items to be mixed into the operational items in reasonable order such as considering content constraints or other test requirements. Second, the LASSO used in this research improves the interpretability of the multidimensional replenished items in MCAT. Third, the proposed method can exert the advantage of shrinkage method idea for variable selection, so it can help to check item quality and key dimension features of replenished items and saves more costs of time and labors in response data collection than traditional factor analysis method. Moreover, the proposed method makes sure the dimensions of replenished items are recognized to be consistent with the dimensions of operational items in MCAT item pool. Simulation studies are conducted to investigate the performance of the proposed method under different conditions for varying dimensionality of item pool, latent trait correlation, item discrimination, test lengths and item selection criteria in MCAT. Results show that the proposed method can accurately detect the item-trait patterns of the replenished items in the two-dimensional and the three-dimensional item pool. Selecting enough operational items from the item pool consisting of high discriminating items by Bayesian A-optimality in MCAT can improve the recognition accuracy of item-trait patterns of replenished items for the proposed method. The pattern recognition accuracy for the conditions with correlated traits is better than those with independent traits especially for the item pool consisting of comparatively low discriminating items. To sum up, the proposed data-driven method based on the LASSO can accurately and efficiently detect the item-trait patterns of replenished items in MCAT.

Keywords: item-trait pattern recognition, least absolute shrinkage and selection operator, multidimensional computerized adaptive testing, variable selection

Procedia PDF Downloads 131
19 The Role of Virtual Reality in Mediating the Vulnerability of Distant Suffering: Distance, Agency, and the Hierarchies of Human Life

Authors: Z. Xu

Abstract:

Immersive virtual reality (VR) has gained momentum in humanitarian communication due to its utopian promises of co-presence, immediacy, and transcendence. These potential benefits have led the United Nations (UN) to tirelessly produce and distribute VR series to evoke global empathy and encourage policymakers, philanthropic business tycoons and citizens around the world to actually do something (i.e. give a donation). However, it is unclear whether or not VR can cultivate cosmopolitans with a sense of social responsibility towards the geographically, socially/culturally and morally mediated misfortune of faraway others. Drawing upon existing works on the mediation of distant suffering, this article constructs an analytical framework to articulate the issue. Applying this framework on a case study of five of the UN’s VR pieces, the article identifies three paradoxes that exist between cyber-utopian and cyber-dystopian narratives. In the “paradox of distance”, VR relies on the notions of “presence” and “storyliving” to implicitly link audiences spatially and temporally to distant suffering, creating global connectivity and reducing perceived distances between audiences and others; yet it also enables audiences to fully occupy the point of view of distant sufferers (creating too close/absolute proximity), which may cause them to feel naive self-righteousness or narcissism with their pleasures and desire, thereby destroying the “proper distance”. In the “paradox of agency”, VR simulates a superficially “real” encounter for visual intimacy, thereby establishing an “audiences–beneficiary” relationship in humanitarian communication; yet in this case the mediated hyperreality is not an authentic reality, and its simulation does not fill the gap between reality and the virtual world. In the “paradox of the hierarchies of human life”, VR enables an audience to experience virtually fundamental “freedom”, epitomizing an attitude of cultural relativism that informs a great deal of contemporary multiculturalism, providing vast possibilities for a more egalitarian representation of distant sufferers; yet it also takes the spectator’s personally empathic feelings as the focus of intervention, rather than structural inequality and political exclusion (an economic and political power relations of viewing). Thus, the audience can potentially remain trapped within the minefield of hegemonic humanitarianism. This study is significant in two respects. First, it advances the turn of digitalization in studies of media and morality in the polymedia milieu; it is motivated by the necessary call for a move beyond traditional technological environments to arrive at a more novel understanding of the asymmetry of power between the safety of spectators and the vulnerability of mediated sufferers. Second, it not only reminds humanitarian journalists and NGOs that they should not rely entirely on the richer news experience or powerful response-ability enabled by VR to gain a “moral bond” with distant sufferers, but also argues that when fully-fledged VR technology is developed, it can serve as a kind of alchemy and should not be underestimated merely as a “bugaboo” of an alarmist philosophical and fictional dystopia.

Keywords: audience, cosmopolitan, distant suffering, virtual reality, humanitarian communication

Procedia PDF Downloads 145
18 Coupling Strategy for Multi-Scale Simulations in Micro-Channels

Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier

Abstract:

With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.

Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling

Procedia PDF Downloads 168
17 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees

Authors: Alexandru-Ion Marinescu

Abstract:

There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.

Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution

Procedia PDF Downloads 120
16 Cancer Stem Cell-Associated Serum Proteins Obtained by Maldi TOF/TOF Mass Spectrometry in Women with Triple-Negative Breast Cancer

Authors: Javier Enciso-Benavides, Fredy Fabian, Carlos Castaneda, Luis Alfaro, Alex Choque, Aparicio Aguilar, Javier Enciso

Abstract:

Background: The use of biomarkers in breast cancer diagnosis, therapy, and prognosis has gained increasing interest. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and may cause relapse. Therefore, due to the importance of diagnosis, therapy, and prognosis, several biomarkers that characterize CSCs have been identified; however, in treatment-naïve triple-negative breast tumors, there is an urgent need to identify new biomarkers and therapeutic targets. According to this, the aim of this study was to identify serum proteins associated with cancer stem cells and pluripotency in women with triple-negative breast tumors in order to subsequently identify a biomarker for this type of breast tumor. Material and Methods: Whole blood samples from 12 women with histopathologically diagnosed triple-negative breast tumors were used after obtaining informed consent from the patient. Blood serum was obtained by conventional procedure and frozen at -80ºC. Identification of cancer stem cell-associated proteins was performed by matrix-assisted laser desorption/ionisation-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS), protein analysis was obtained using the AB Sciex TOF/TOF™ 5800 system (AB Sciex, USA). Sequences not aligned by ProteinPilot™ software were analyzed by Protein BLAST. Results: The following proteins related to pluripotency and cancer stem cells were identified by MALDI TOF/TOF mass spectrometry: A-chain, Serpin A12 [Homo sapiens], AIEBP [Homo sapiens], Alpha-one antitrypsin, AT {internal fragment} [human, partial peptide, 20 aa] [Homo sapiens], collagen alpha 1 chain precursor variant [Homo sapiens], retinoblastoma-associated protein variant [Homo sapiens], insulin receptor, CRA_c isoform [Homo sapiens], Hydroxyisourate hydrolase [Streptomyces scopuliridis], MUCIN-6 [Macaca mulatta], Alpha-actinin-3 [Chrysochloris asiatica], Polyprotein M, CRA_d isoform, partial [Homo sapiens], Transcription factor SOX-12 [Homo sapiens]. Recommendations: The serum proteins identified in this study should be investigated in the exosome of triple-negative breast cancer stem cells and in the blood serum of women without breast cancer. Subsequently, proteins found only in the blood serum of women with triple-negative breast cancer should be identified in situ in triple-negative breast cancer tissue in order to identify a biomarker to study the evolution of this type of cancer, or that could be a therapeutic target. Conclusions: Eleven cancer stem cell-related serum proteins were identified in 12 women with triple-negative breast cancer, of which MUCIN-6, retinoblastoma-associated protein variant, transcription factor SOX-12, and collagen alpha 1 chain are the most representative and have not been studied so far in this type of breast tumor. Acknowledgement: This work was supported by Proyecto CONCYTEC–Banco Mundial “Mejoramiento y Ampliacion de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovacion Tecnologica” 8682-PE (104-2018-FONDECYT-BM-IADT-AV).

Keywords: triple-negative breast cancer, MALDI TOF/TOF MS, serum proteins, cancer stem cells

Procedia PDF Downloads 216
15 Impact of α-Adrenoceptor Antagonists on Biochemical Relapse in Men Undergoing Radiotherapy for Localised Prostate Cancer

Authors: Briohny H. Spencer, Russ Chess-Williams, Catherine McDermott, Shailendra Anoopkumar-Dukie, David Christie

Abstract:

Background: Prostate cancer is the second most common cancer diagnosed in men worldwide and the most prevalent in Australian men. In 2015, it was estimated that approximately 18,000 new cases of prostate cancer were diagnosed in Australia. Currently, for localised disease, androgen depravation therapy (ADT) and radiotherapy are a major part of the curative management of prostate cancer. ADT acts to reduce the levels of circulating androgens, primarily testosterone and the locally produced androgen, dihydrotestosterone (DHT), or by preventing the subsequent activation of the androgen receptor. Thus, the growth of the cancerous cells can be reduced or ceased. Radiation techniques such as brachytherapy (radiation delivered directly to the prostate by transperineal implant) or external beam radiation therapy (exposure to a sufficient dose of radiation aimed at eradicating malignant cells) are also common techniques used in the treatment of this condition. Radiotherapy (RT) has significant limitations, including reduced effectiveness in treating malignant cells present in hypoxic microenvironments leading to radio-resistance and poor clinical outcomes and also the significant side effects for the patients. Alpha1-adrenoceptor antagonists are used for many prostate cancer patients to control lower urinary tract symptoms, due to the progression of the disease itself or may arise as an adverse effect of the radiotherapy treatment. In Australia, a significant number (not a majority) of patients receive a α1-ADR antagonist and four drugs are available including prazosin, terazosin, alfuzosin and tamsulosin. There is currently limited published data on the effects of α1-ADR antagonists during radiotherapy, but it suggests these medications may improve patient outcomes by enhancing the effect of radiotherapy. Aim: To determine the impact of α1-ADR antagonists treatments on time to biochemical relapse following radiotherapy. Methods: A retrospective study of male patients receiving radiotherapy for biopsy-proven localised prostate cancer was undertaken to compare cancer outcomes for drug-naïve patients and those receiving α1-ADR antagonist treatments. Ethical approval for the collection of data at Genesis CancerCare QLD was obtained and biochemical relapse (defined by a PSA rise of >2ng/mL above the nadir) was recorded in months. Rates of biochemical relapse, prostate specific antigen doubling time (PSADT) and Kaplan-Meier survival curves were also compared. Treatment groups were those receiving α1-ADR antagonists treatment before or concurrent with their radiotherapy. Data was statistically analysed using One-way ANOVA and results expressed as mean ± standard deviation. Major findings: The mean time to biochemical relapse for tamsulosin, prazosin, alfuzosin and controls were 45.3±17.4 (n=36), 41.5±19.6 (n=11), 29.3±6.02 (n=6) and 36.5±17.6 (n=16) months respectively. Tamsulosin, prazosin but not alfuzosin delayed time to biochemical relapse although the differences were not statistically significant. Conclusion: Preliminary data for the prior and/or concurrent use of tamsulosin and prazosin showed a positive trend in delaying time to biochemical relapse although no statistical significance was shown. Larger clinical studies are indicated and with thousands of patient records yet to be analysed, it may determine if there is a significant effect of these drugs on control of prostate cancer.

Keywords: alpha1-adrenoceptor antagonists, biochemical relapse, prostate cancer, radiotherapy

Procedia PDF Downloads 374
14 Production Factor Coefficients Transition through the Lens of State Space Model

Authors: Kanokwan Chancharoenchai

Abstract:

Economic growth can be considered as an important element of countries’ development process. For developing countries, like Thailand, to ensure the continuous growth of the economy, the Thai government usually implements various policies to stimulate economic growth. They may take the form of fiscal, monetary, trade, and other policies. Because of these different aspects, understanding factors relating to economic growth could allow the government to introduce the proper plan for the future economic stimulating scheme. Consequently, this issue has caught interest of not only policymakers but also academics. This study, therefore, investigates explanatory variables for economic growth in Thailand from 2005 to 2017 with a total of 52 quarters. The findings would contribute to the field of economic growth and become helpful information to policymakers. The investigation is estimated throughout the production function with non-linear Cobb-Douglas equation. The rate of growth is indicated by the change of GDP in the natural logarithmic form. The relevant factors included in the estimation cover three traditional means of production and implicit effects, such as human capital, international activity and technological transfer from developed countries. Besides, this investigation takes the internal and external instabilities into account as proxied by the unobserved inflation estimation and the real effective exchange rate (REER) of the Thai baht, respectively. The unobserved inflation series are obtained from the AR(1)-ARCH(1) model, while the unobserved REER of Thai baht is gathered from naive OLS-GARCH(1,1) model. According to empirical results, the AR(|2|) equation which includes seven significant variables, namely capital stock, labor, the imports of capital goods, trade openness, the REER of Thai baht uncertainty, one previous GDP, and the world financial crisis in 2009 dummy, presents the most suitable model. The autoregressive model is assumed constant estimator that would somehow cause the unbias. However, this is not the case of the recursive coefficient model from the state space model that allows the transition of coefficients. With the powerful state space model, it provides the productivity or effect of each significant factor more in detail. The state coefficients are estimated based on the AR(|2|) with the exception of the one previous GDP and the 2009 world financial crisis dummy. The findings shed the light that those factors seem to be stable through time since the occurrence of the world financial crisis together with the political situation in Thailand. These two events could lower the confidence in the Thai economy. Moreover, state coefficients highlight the sluggish rate of machinery replacement and quite low technology of capital goods imported from abroad. The Thai government should apply proactive policies via taxation and specific credit policy to improve technological advancement, for instance. Another interesting evidence is the issue of trade openness which shows the negative transition effect along the sample period. This could be explained by the loss of price competitiveness to imported goods, especially under the widespread implementation of free trade agreement. The Thai government should carefully handle with regulations and the investment incentive policy by focusing on strengthening small and medium enterprises.

Keywords: autoregressive model, economic growth, state space model, Thailand

Procedia PDF Downloads 151
13 A Computer-Aided System for Tooth Shade Matching

Authors: Zuhal Kurt, Meral Kurt, Bilge T. Bal, Kemal Ozkan

Abstract:

Shade matching and reproduction is the most important element of success in prosthetic dentistry. Until recently, shade matching procedure was implemented by dentists visual perception with the help of shade guides. Since many factors influence visual perception; tooth shade matching using visual devices (shade guides) is highly subjective and inconsistent. Subjective nature of this process has lead to the development of instrumental devices. Nowadays, colorimeters, spectrophotometers, spectroradiometers and digital image analysing systems are used for instrumental shade selection. Instrumental devices have advantages that readings are quantifiable, can obtain more rapidly and simply, objectively and precisely. However, these devices have noticeable drawbacks. For example, translucent structure and irregular surfaces of teeth lead to defects on measurement with these devices. Also between the results acquired by devices with different measurement principles may make inconsistencies. So, its obligatory to search for new methods for dental shade matching process. A computer-aided system device; digital camera has developed rapidly upon today. Currently, advances in image processing and computing have resulted in the extensive use of digital cameras for color imaging. This procedure has a much cheaper process than the use of traditional contact-type color measurement devices. Digital cameras can be taken by the place of contact-type instruments for shade selection and overcome their disadvantages. Images taken from teeth show morphology and color texture of teeth. In last decades, a new method was recommended to compare the color of shade tabs taken by a digital camera using color features. This method showed that visual and computer-aided shade matching systems should be used as concatenated. Recently using methods of feature extraction techniques are based on shape description and not used color information. However, color is mostly experienced as an essential property in depicting and extracting features from objects in the world around us. When local feature descriptors with color information are extended by concatenating color descriptor with the shape descriptor, that descriptor will be effective on visual object recognition and classification task. Therefore, the color descriptor is to be used in combination with a shape descriptor it does not need to contain any spatial information, which leads us to use local histograms. This local color histogram method is remain reliable under variation of photometric changes, geometrical changes and variation of image quality. So, coloring local feature extraction methods are used to extract features, and also the Scale Invariant Feature Transform (SIFT) descriptor used to for shape description in the proposed method. After the combination of these descriptors, the state-of-art descriptor named by Color-SIFT will be used in this study. Finally, the image feature vectors obtained from quantization algorithm are fed to classifiers such as Nearest Neighbor (KNN), Naive Bayes or Support Vector Machines (SVM) to determine label(s) of the visual object category or matching. In this study, SVM are used as classifiers for color determination and shade matching. Finally, experimental results of this method will be compared with other recent studies. It is concluded from the study that the proposed method is remarkable development on computer aided tooth shade determination system.

Keywords: classifiers, color determination, computer-aided system, tooth shade matching, feature extraction

Procedia PDF Downloads 448
12 Integration of Building Information Modeling Framework for 4D Constructability Review and Clash Detection Management of a Sewage Treatment Plant

Authors: Malla Vijayeta, Y. Vijaya Kumar, N. Ramakrishna Raju, K. Satyanarayana

Abstract:

Global AEC (architecture, engineering, and construction) industry has been coined as one of the most resistive domains in embracing technology. Although this digital era has been inundated with software tools like CAD, STADD, CANDY, Microsoft Project, Primavera etc. the key stakeholders have been working in siloes and processes remain fragmented. Unlike the yesteryears’ simpler project delivery methods, the current projects are of fast-track, complex, risky, multidisciplinary, stakeholder’s influential, statutorily regulative etc. pose extensive bottlenecks in preventing timely completion of projects. At this juncture, a paradigm shift surfaced in construction industry, and Building Information Modeling, aka BIM, has been a panacea to bolster the multidisciplinary teams’ cooperative and collaborative work leading to productive, sustainable and leaner project outcome. Building information modeling has been integrative, stakeholder engaging and centralized approach in providing a common platform of communication. A common misconception that BIM can be used for building/high rise projects in Indian Construction Industry, while this paper discusses of the implementation of BIM processes/methodologies in water and waste water industry. It elucidates about BIM 4D planning and constructability reviews of a Sewage Treatment Plant in India. Conventional construction planning and logistics management involves a blend of experience coupled with imagination. Even though the excerpts or judgments or lessons learnt gained from veterans might be predictive and helpful, but the uncertainty factor persists. This paper shall delve about the case study of real time implementation of BIM 4D planning protocols for one of the Sewage Treatment Plant of Dravyavati River Rejuvenation Project in India and develops a Time Liner to identify logistics planning and clash detection. With this BIM processes, we shall find that there will be significant reduction of duplication of tasks and reworks. Also another benefit achieved will be better visualization and workarounds during conception stage and enables for early involvement of the stakeholders in the Project Life cycle of Sewage Treatment Plant construction. Moreover, we have also taken an opinion poll of the benefits accrued utilizing BIM processes versus traditional paper based communication like 2D and 3D CAD tools. Thus this paper concludes with BIM framework for Sewage Treatment Plant construction which will achieve optimal construction co-ordination advantages like 4D construction sequencing, interference checking, clash detection checking and resolutions by primary engagement of all key stakeholders thereby identifying potential risks and subsequent creation of risk response strategies. However, certain hiccups like hesitancy in adoption of BIM technology by naïve users and availability of proficient BIM trainers in India poses a phenomenal impediment. Hence the nurture of BIM processes from conception, construction and till commissioning, operation and maintenance along with deconstruction of a project’s life cycle is highly essential for Indian Construction Industry in this digital era.

Keywords: integrated BIM workflow, 4D planning with BIM, building information modeling, clash detection and visualization, constructability reviews, project life cycle

Procedia PDF Downloads 122
11 Unifying RSV Evolutionary Dynamics and Epidemiology Through Phylodynamic Analyses

Authors: Lydia Tan, Philippe Lemey, Lieselot Houspie, Marco Viveen, Darren Martin, Frank Coenjaerts

Abstract:

Introduction: Human respiratory syncytial virus (hRSV) is the leading cause of severe respiratory tract infections in infants under the age of two. Genomic substitutions and related evolutionary dynamics of hRSV are of great influence on virus transmission behavior. The evolutionary patterns formed are due to a precarious interplay between the host immune response and RSV, thereby selecting the most viable and less immunogenic strains. Studying genomic profiles can teach us which genes and consequent proteins play an important role in RSV survival and transmission dynamics. Study design: In this study, genetic diversity and evolutionary rate analysis were conducted on 36 RSV subgroup B whole genome sequences and 37 subgroup A genome sequences. Clinical RSV isolates were obtained from nasopharyngeal aspirates and swabs of children between 2 weeks and 5 years old of age. These strains, collected during epidemic seasons from 2001 to 2011 in the Netherlands and Belgium by either conventional or 454-sequencing. Sequences were analyzed for genetic diversity, recombination events, synonymous/non-synonymous substitution ratios, epistasis, and translational consequences of mutations were mapped to known 3D protein structures. We used Bayesian statistical inference to estimate the rate of RSV genome evolution and the rate of variability across the genome. Results: The A and B profiles were described in detail and compared to each other. Overall, the majority of the whole RSV genome is highly conserved among all strains. The attachment protein G was the most variable protein and its gene had, similar to the non-coding regions in RSV, more elevated (two-fold) substitution rates than other genes. In addition, the G gene has been identified as the major target for diversifying selection. Overall, less gene and protein variability was found within RSV-B compared to RSV-A and most protein variation between the subgroups was found in the F, G, SH and M2-2 proteins. For the F protein mutations and correlated amino acid changes are largely located in the F2 ligand-binding domain. The small hydrophobic phosphoprotein and nucleoprotein are the most conserved proteins. The evolutionary rates were similar in both subgroups (A: 6.47E-04, B: 7.76E-04 substitution/site/yr), but estimates of the time to the most recent common ancestor were much lower for RSV-B (B: 19, A: 46.8 yrs), indicating that there is more turnover in this subgroup. Conclusion: This study provides a detailed description of whole RSV genome mutations, the effect on translation products and the first estimate of the RSV genome evolution tempo. The immunogenic G protein seems to require high substitution rates in order to select less immunogenic strains and other conserved proteins are most likely essential to preserve RSV viability. The resulting G gene variability makes its protein a less interesting target for RSV intervention methods. The more conserved RSV F protein with less antigenic epitope shedding is, therefore, more suitable for developing therapeutic strategies or vaccines.

Keywords: drug target selection, epidemiology, respiratory syncytial virus, RSV

Procedia PDF Downloads 414
10 Valorization of Surveillance Data and Assessment of the Sensitivity of a Surveillance System for an Infectious Disease Using a Capture-Recapture Model

Authors: Jean-Philippe Amat, Timothée Vergne, Aymeric Hans, Bénédicte Ferry, Pascal Hendrikx, Jackie Tapprest, Barbara Dufour, Agnès Leblond

Abstract:

The surveillance of infectious diseases is necessary to describe their occurrence and help the planning, implementation and evaluation of risk mitigation activities. However, the exact number of detected cases may remain unknown whether surveillance is based on serological tests because identifying seroconversion may be difficult. Moreover, incomplete detection of cases or outbreaks is a recurrent issue in the field of disease surveillance. This study addresses these two issues. Using a viral animal disease as an example (equine viral arteritis), the goals were to establish suitable rules for identifying seroconversion in order to estimate the number of cases and outbreaks detected by a surveillance system in France between 2006 and 2013, and to assess the sensitivity of this system by estimating the total number of outbreaks that occurred during this period (including unreported outbreaks) using a capture-recapture model. Data from horses which exhibited at least one positive result in serology using viral neutralization test between 2006 and 2013 were used for analysis (n=1,645). Data consisted of the annual antibody titers and the location of the subjects (towns). A consensus among multidisciplinary experts (specialists in the disease and its laboratory diagnosis, epidemiologists) was reached to consider seroconversion as a change in antibody titer from negative to at least 32 or as a three-fold or greater increase. The number of seroconversions was counted for each town and modeled using a unilist zero-truncated binomial (ZTB) capture-recapture model with R software. The binomial denominator was the number of horses tested in each infected town. Using the defined rules, 239 cases located in 177 towns (outbreaks) were identified from 2006 to 2013. Subsequently, the sensitivity of the surveillance system was estimated as the ratio of the number of detected outbreaks to the total number of outbreaks that occurred (including unreported outbreaks) estimated using the ZTB model. The total number of outbreaks was estimated at 215 (95% credible interval CrI95%: 195-249) and the surveillance sensitivity at 82% (CrI95%: 71-91). The rules proposed for identifying seroconversion may serve future research. Such rules, adjusted to the local environment, could conceivably be applied in other countries with surveillance programs dedicated to this disease. More generally, defining ad hoc algorithms for interpreting the antibody titer could be useful regarding other human and animal diseases and zoonosis when there is a lack of accurate information in the literature about the serological response in naturally infected subjects. This study shows how capture-recapture methods may help to estimate the sensitivity of an imperfect surveillance system and to valorize surveillance data. The sensitivity of the surveillance system of equine viral arteritis is relatively high and supports its relevance to prevent the disease spreading.

Keywords: Bayesian inference, capture-recapture, epidemiology, equine viral arteritis, infectious disease, seroconversion, surveillance

Procedia PDF Downloads 300
9 Effect of Climate Change on the Genomics of Invasiveness of the Whitefly Bemisia tabaci Species Complex by Estimating the Effective Population Size via a Coalescent Method

Authors: Samia Elfekih, Wee Tek Tay, Karl Gordon, Paul De Barro

Abstract:

Invasive species represent an increasing threat to food biosecurity, causing significant economic losses in agricultural systems. An example is the sweet potato whitefly, Bemisia tabaci, which is a complex of morphologically indistinguishable species causing average annual global damage estimated at US$2.4 billion. The Bemisia complex represents an interesting model for evolutionary studies because of their extensive distribution and potential for invasiveness and population expansion. Within this complex, two species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) have invaded well beyond their home ranges whereas others, such as Indian Ocean (IO) and Australia (AUS), have not. In order to understand why some Bemisia species have become invasive, genome-wide sequence scans were used to estimate population dynamics over time and relate these to climate. The Bayesian Skyline Plot (BSP) method as implemented in BEAST was used to infer the historical effective population size. In order to overcome sampling bias, the populations were combined based on geographical origin. The datasets used for this particular analysis are genome-wide SNPs (single nucleotide polymorphisms) called separately in each of the following groups: Sub-Saharan Africa (Burkina Faso), Europe (Spain, France, Greece and Croatia), USA (Arizona), Mediterranean-Middle East (Israel, Italy), Middle East-Central Asia (Turkmenistan, Iran) and Reunion Island. The non-invasive ‘AUS’ species endemic to Australia was used as an outgroup. The main findings of this study show that the BSP for the Sub-Saharan African MED population is different from that observed in MED populations from the Mediterranean Basin, suggesting evolution under a different set of environmental conditions. For MED, the effective size of the African (Burkina Faso) population showed a rapid expansion ≈250,000-310,000 years ago (YA), preceded by a period of slower growth. The European MED populations (i.e., Spain, France, Croatia, and Greece) showed a single burst of expansion at ≈160,000-200,000 YA. The MEAM1 populations from Israel and Italy and the ones from Iran and Turkmenistan are similar as they both show the earlier expansion at ≈250,000-300,000 YA. The single IO population lacked the latter expansion but had the earlier one. This pattern is shared with the Sub-Saharan African (Burkina Faso) MED, suggesting IO also faced a similar history of environmental change, which seems plausible given their relatively close geographical distributions. In conclusion, populations within the invasive species MED and MEAM1 exhibited signatures of population expansion lacking in non-invasive species (IO and AUS) during the Pleistocene, a geological epoch marked by repeated climatic oscillations with cycles of glacial and interglacial periods. These expansions strongly suggested the potential of some Bemisia species’ genomes to affect their adaptability and invasiveness.

Keywords: whitefly, RADseq, invasive species, SNP, climate change

Procedia PDF Downloads 127
8 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 129
7 Cognitive Decline in People Living with HIV in India and Correlation with Neurometabolites Using 3T Magnetic Resonance Spectroscopy (MRS): A Cross-Sectional Study

Authors: Kartik Gupta, Virendra Kumar, Sanjeev Sinha, N. Jagannathan

Abstract:

Introduction: A significant number of patients having human immunodeficiency virus (HIV) infection show a neurocognitive decline (NCD) ranging from minor cognitive impairment to severe dementia. The possible causes of NCD in HIV-infected patients include brain injury by HIV before cART, neurotoxic viral proteins and metabolic abnormalities. In the present study, we compared the level of NCD in asymptomatic HIV-infected patients with changes in brain metabolites measured by using magnetic resonance spectroscopy (MRS). Methods: 43 HIV-positive patients (30 males and 13 females) coming to ART center of the hospital and HIV-seronegative healthy subjects were recruited for the study. All the participants completed MRI and MRS examination, detailed clinical assessments and a battery of neuropsychological tests. All the MR investigations were carried out at 3.0T MRI scanner (Ingenia/Achieva, Philips, Netherlands). MRI examination protocol included the acquisition of T2-weighted imaging in axial, coronal and sagittal planes, T1-weighted, FLAIR, and DWI images in the axial plane. Patients who showed any apparent lesion on MRI were excluded from the study. T2-weighted images in three orthogonal planes were used to localize the voxel in left frontal lobe white matter (FWM) and left basal ganglia (BG) for single voxel MRS. Single voxel MRS spectra were acquired with a point resolved spectroscopy (PRESS) localization pulse sequence at an echo time (TE) of 35 ms and a repetition time (TR) of 2000 ms with 64 or 128 scans. Automated preprocessing and determination of absolute concentrations of metabolites were estimated using LCModel by water scaling method and the Cramer-Rao lower bounds for all metabolites analyzed in the study were below 15\%. Levels of total N-acetyl aspartate (tNAA), total choline (tCho), glutamate + glutamine (Glx), total creatine (tCr), were measured. Cognition was tested using a battery of tests validated for Indian population. The cognitive domains tested were the memory, attention-information processing, abstraction-executive, simple and complex perceptual motor skills. Z-scores normalized according to age, sex and education standard were used to calculate dysfunction in these individual domains. The NCD was defined as dysfunction with Z-score ≤ 2 in at least two domains. One-way ANOVA was used to compare the difference in brain metabolites between the patients and healthy subjects. Results: NCD was found in 23 (53%) patients. There was no significant difference in age, CD4 count and viral load between the two groups. Maximum impairment was found in the domains of memory and simple motor skills i.e., 19/43 (44%). The prevalence of deficit in attention-information processing, complex perceptual motor skills and abstraction-executive function was 37%, 35%, 33% respectively. Subjects with NCD had a higher level of Glutamate in the Frontal region (8.03 ± 2.30 v/s. 10.26 ± 5.24, p-value 0.001). Conclusion: Among newly diagnosed, ART-naïve retroviral disease patients from India, cognitive decline was found in 53\% patients using tests validated for this population. Those with neurocognitive decline had a significantly higher level of Glutamate in the left frontal region. There was no significant difference in age, CD4 count and viral load at initiation of ART between the two groups.

Keywords: HIV, neurocognitive decline, neurometabolites, magnetic resonance spectroscopy

Procedia PDF Downloads 214
6 One Species into Five: Nucleo-Mito Barcoding Reveals Cryptic Species in 'Frankliniella Schultzei Complex': Vector for Tospoviruses

Authors: Vikas Kumar, Kailash Chandra, Kaomud Tyagi

Abstract:

The insect order Thysanoptera includes small insects commonly called thrips. As insect vectors, only thrips are capable of Tospoviruses transmission (genus Tospovirus, family Bunyaviridae) affecting various crops. Currently, fifteen species of subfamily Thripinae (Thripidae) have been reported as vectors for tospoviruses. Frankliniella schultzei, which is reported as act as a vector for at least five tospovirses, have been suspected to be a species complex with more than one species. It is one of the historical unresolved issues where, two species namely, F. schultzei Trybom and F. sulphurea Schmutz were erected from South Africa and Srilanaka respectively. These two species were considered to be valid until 1968 when sulphurea was treated as colour morph (pale form) and synonymised under schultzei (dark form) However, these two have been considered as valid species by some of the thrips workers. Parallel studies have indicated that brown form of schultzei is a vector for tospoviruses while yellow form is a non-vector. However, recent studies have shown that yellow populations have also been documented as vectors. In view of all these facts, it is highly important to have a clear understanding whether these colour forms represent true species or merely different populations with different vector carrying capacities and whether there is some hidden diversity in 'Frankliniella schultzei species complex'. In this study, we aim to study the 'Frankliniella schultzei species complex' with molecular spectacles with DNA data from India and Australia and Africa. A total of fifty-five specimens was collected from diverse locations in India and Australia. We generated molecular data using partial fragments of mitochondrial cytochrome c oxidase I gene (mtCOI) and 28S rRNA gene. For COI dataset, there were seventy-four sequences, out of which data on fifty-five was generated in the current study and others were retrieved from NCBI. All the four different tree construction methods: neighbor-joining, maximum parsimony, maximum likelihood and Bayesian analysis, yielded the same tree topology and produced five cryptic species with high genetic divergence. For, rDNA, there were forty-five sequences, out of which data on thirty-nine was generated in the current study and others were retrieved from NCBI. The four tree building methods yielded four cryptic species with high bootstrap support value/posterior probability. Here we could not retrieve one cryptic species from South Africa as we could not generate data on rDNA from South Africa and sequence for rDNA from African region were not available in the database. The results of multiple species delimitation methods (barcode index numbers, automatic barcode gap discovery, general mixed Yule-coalescent, and Poisson-tree-processes) also supported the phylogenetic data and produced 5 and 4 Molecular Operational Taxonomic Units (MOTUs) for mtCOI and 28S dataset respectively. These results of our study indicate the likelihood that F. sulphurea may be a valid species, however, more morphological and molecular data is required on specimens from type localities of these two species and comparison with type specimens.

Keywords: DNA barcoding, species complex, thrips, species delimitation

Procedia PDF Downloads 129