Search results for: Multi Crop Thresher
4771 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop
Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares
Abstract:
Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.Keywords: agriculture, composting, soil, sugar beet lime, wastewater
Procedia PDF Downloads 3224770 Multi-Perspective Learning in a Real Production Plant Using Experiential Learning in Heterogeneous Groups to Develop System Competencies for Production System Improvements
Authors: Marlies Achenbach
Abstract:
System competencies play a key role to ensure an effective and efficient improvement of production systems. Thus, there can be observed an increasing demand for developing system competencies in industry as well as in engineering education. System competencies consist of the following two main abilities: Evaluating the current state of a production system and developing a target state. The innovative course ‘multi-perspective learning in a real production plant (multi real)’ is developed to create a learning setting that supports the development of these system competencies. Therefore, the setting combines two innovative aspects: First, the Learning takes place in heterogeneous groups formed by students as well as professionals and managers from industry. Second, the learning takes place in a real production plant. This paper presents the innovative didactic concept of ‘multi real’ in detail, which will initially be implemented in October/November 2016 in the industrial engineering, logistics and mechanical master’s program at TU Dortmund University.Keywords: experiential learning, heterogeneous groups, improving production systems, system competencies
Procedia PDF Downloads 4244769 Assesment of the Economic Potential of Lead Contaminated Brownfield for Growth of Oil Producing Crop Like Helianthus annus (Sunflower)
Authors: Shahenaz Sidi, S. K. Tank
Abstract:
When sparsely used industrial and commercial facilities are retired or abandoned, one of the biggest issues that arise is what to do with the remaining land. This land, referred to as a ‘Brownfield site’ or simply ‘Brownfield’ is often contaminated with waste and pollutants left behind by the defunct industrial facilities and factories that stand on the land. Phytoremediation has been proved a promising greener and cleaner technology in remediating the land unlike other chemical excavation methods. Helianthus annus is a hyper accumulator of lead. Helianthus annus can be used for remediation procedures in metal contaminated soils. It is a fast-growing crop which would favour soil stabilization. Its tough leaves and stems are rarely eaten by animals. The seeds (actively eaten by birds) have very low concentrations of potentially toxic elements, and represent low risk for the food web. The study is conducted to determine the phytoextraction potentials of the plant and the eventual seed harvesting and commercial oil production on remediated soil.Keywords: Brownfield, phytoextraction, helianthus, oil, commercial
Procedia PDF Downloads 3364768 Multi-Omics Investigation of Ferroptosis-Related Gene Expression in Ovarian Aging and the Impact of Nutritional Intervention
Authors: Chia-Jung Li, Kuan-Hao Tsui
Abstract:
As women age, the quality of their oocytes deteriorates irreversibly, leading to reduced fertility. To better understand the role of Ferroptosis-related genes in ovarian aging, we employed a multi-omics analysis approach, including spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsies. Our study identified excess lipid peroxide accumulation in aging germ cells, metal ion accumulation via oxidative reduction, and the interaction between ferroptosis and cellular energy metabolism. We used multi-histological prediction of ferroptosis key genes to evaluate 75 patients with ovarian aging insufficiency and then analyzed changes in hub genes after supplementing with DHEA, Ubiquinol CoQ10, and Cleo-20 T3 for two months. Our results demonstrated a significant increase in TFRC, GPX4, NCOA4, and SLC3A2, which were consistent with our multi-component prediction. We theorized that these supplements increase the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), thereby increasing antioxidant enzyme GPX4 levels and reducing lipid peroxide accumulation and ferroptosis. Overall, our findings suggest that supplementation intervention significantly improves IVF outcomes in senescent cells by enhancing metal ion and energy metabolism and enhancing oocyte quality in aging women.Keywords: multi-omics, nutrients, ferroptosis, ovarian aging
Procedia PDF Downloads 1014767 Effect of Botanical and Synthetic Insecticide on Different Insect Pests and Yield of Pea (Pisum sativum)
Authors: Muhammad Saeed, Nazeer Ahmed, Mukhtar Alam, Fazli Subhan, Muhammad Adnan, Fazli Wahid, Hidayat Ullah, Rafiullah
Abstract:
The present experiment evaluated different synthetic insecticides against Jassid (Amrasca devastations) on pea crop at Agriculture Research Institute Tarnab, Peshawar Khyber Pakhtunkhwa. The field was prepared to cultivate okra crop in Randomized Complete Block (RCB) Design having six treatments with four replications. Plant to plant and row to row distance was kept at 15 cm and 30 cm, respectively. Pre and post spray data were recorded randomly from the top, middle and bottom leaves of five selected plants. Five synthetic insecticides, namely Confidor (Proponil), a neonicotinoid insecticide, Chlorpyrifos (chlorinated organophosphate (OP) insecticide), Lazer (dinitroaniline) (Pendimethaline), Imidacloprid (neonicotinoids insecticide) and Thiodan (Endosulfan, organochlorine insecticide), were used against infestation of aphids, pea pod borer, stem fly, leaf minor and pea weevil. Each synthetic insecticide showed significantly more effectiveness than control (untreated plots) but was non-significant among each other. The lowest population density was recorded in the plot treated with synthetic insecticide i.e. Confidor (0.6175 liter.ha-1) (4.24 aphids plant⁻¹) which is followed by Imidacloprid (0.6175 liter.ha⁻¹) (4.64 pea pod borer plant⁻¹), Thiodan (1.729 liter.ha⁻¹) (4.78 leaf minor plant⁻¹), Lazer (2.47 liter.ha-1) (4.91 pea weevil plant⁻¹), Chlorpyrifos (1.86 liter.ha⁻¹) (5.11 stem fly plant⁻¹), respectively while the highest population was recorded from the control plot. It is concluded from the data that the residual effect decreases with time after the application of spray, which may be less dangerous to the environment and human beings and can effectively manage this dread.Keywords: okra crop, jassids, Confidor, imidacloprid, chlorpyrifos, laser, Thiodan
Procedia PDF Downloads 834766 A Transformer-Based Approach for Multi-Human 3D Pose Estimation Using Color and Depth Images
Authors: Qiang Wang, Hongyang Yu
Abstract:
Multi-human 3D pose estimation is a challenging task in computer vision, which aims to recover the 3D joint locations of multiple people from multi-view images. In contrast to traditional methods, which typically only use color (RGB) images as input, our approach utilizes both color and depth (D) information contained in RGB-D images. We also employ a transformer-based model as the backbone of our approach, which is able to capture long-range dependencies and has been shown to perform well on various sequence modeling tasks. Our method is trained and tested on the Carnegie Mellon University (CMU) Panoptic dataset, which contains a diverse set of indoor and outdoor scenes with multiple people in varying poses and clothing. We evaluate the performance of our model on the standard 3D pose estimation metrics of mean per-joint position error (MPJPE). Our results show that the transformer-based approach outperforms traditional methods and achieves competitive results on the CMU Panoptic dataset. We also perform an ablation study to understand the impact of different design choices on the overall performance of the model. In summary, our work demonstrates the effectiveness of using a transformer-based approach with RGB-D images for multi-human 3D pose estimation and has potential applications in real-world scenarios such as human-computer interaction, robotics, and augmented reality.Keywords: multi-human 3D pose estimation, RGB-D images, transformer, 3D joint locations
Procedia PDF Downloads 784765 Effect of BYMV on Faba Bean Productivity in Libya
Authors: Abdullah S. El-Ammari, Omar M. El-Sanousi, Fathi S. El-Mesmari
Abstract:
One distinct virus namely bean yellow mosaic potyvirus (BYMV) was isolated from naturally infected faba bean plants and identified through the serological reaction, mechanical transmission, host range and symptomology. To study the effect of BYMV on faba bean crop productivity, the experiment was carried out in naturally infected field in a completely randomized design with two treatments (the early infected plants and the lately infected plants). T- test was used to analyze the data. plants of each treatment were harvested when the pods were fully ripened. Early infection significantly reduced the yield of broad bean crop leading to 85.04% yield loss in productivity of seeds per plant, 72.42% yield loss in number of pods per plants, 31.58% yield loss in number of seeds per pod and 18.2% yield loss in weight of seeds per plant.Keywords: bean yellow mosaic potyvirus, faba bean, productivity, libya
Procedia PDF Downloads 3144764 Management Effects on Different Sustainable Agricultural with Diverse Topography
Authors: Kusay Wheib, Alexandra Krvchenko
Abstract:
Crop yields are influenced by many factors, including natural ones, such as soil and environmental characteristics of the agricultural land, as well as manmade ones, such as management applications. One of the factors that frequently affect crop yields in undulating Midwest landscapes is topography, which controls the movement of water and nutrients necessary for plant life. The main objective of this study is to examine how field topography influences performance of different management practices in undulated terrain of southwest Michigan. A total of 26 agricultural fields, ranging in size from 1.1 to 7.4 ha, from the Scale-Up at Kellogg Biological Station were included in the study. The two studied factors were crop species with three levels, i.e., corn (Zea mays L.) soybean (Glycine max L.), and wheat (Triticum aestivum L.), and management practice with three levels, i.e., conventional, low input, and organic managements. They were compared under three contrasting topographical settings, namely, summit (includes summits and shoulders), slope (includes backslopes), and depression (includes footslope and toeslope). Yield data of years 2007 through 2012 was processed, cleaned, and filtered, average yield then was calculated for each field, topographic setting, and year. Topography parameters, including terrain, slope, curvature, flow direction and wetness index were computed under ArcGIS environment for each topographic class of each field to seek their effects on yield. Results showed that topographical depressions produced greatest yields in most studied fields, while managements with chemical inputs, both low input and conventional, resulted in higher yields than the organic management.Keywords: sustainable agriculture, precision agriculture, topography, yield
Procedia PDF Downloads 1114763 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design
Authors: Do-Jin Jang, Sung-Ah Kim
Abstract:
A kinetic façade responds to user requirements and environmental conditions. In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization
Procedia PDF Downloads 5144762 Performance of Growing Rahaji Bulls Fed Diets Containing Similar Concentrates and Different Crop Residues in a Semi-Arid Environment
Authors: Husaini Sama
Abstract:
The study was conducted, in a 120 - day’s trial, to monitor the performance of growing Rahaji bulls fed different crop residues. There were four experimental treatments, each containing three (3) bull-calves. The first three (experimental) diets were prepared with rice straw, millet stalks and a combination of the two in equal proportions. These 3 diets were supplemented with concentrates. Treatments 1, 2 and 3 consisted of rice straw, millet stalk and combination of rice straw and millet stalk in equal ratio, respectively as basal feeds, while, Treatment 4 (containing standard diet of cow pea haulms, rice straw and wheat offal) served as control to compare with the other treatments. Data on feed intake and livability was collected on daily basis and that of live weight gain and feed conversion ratio were collected fortnightly, but data on apparent nutrient retention trial was collected towards the end of the experiment. Water was offered ad libitum. Records obtained were subjected to statistical analysis using SPSS (1988) software package in accordance with a Completely Randomized Design (CRD). Results obtained indicated that feed intake was significantly higher (P<0.05) for calves on treatments 3 and 4 compared to those on treatments 1and 2. The study observed that it was cheaper to formulate diets 2 and 3 than the other 2 diets. The control diet (T4) was observed to be relatively more expensive than the other 3 formulated diets. It was concluded from the findings that, concentrate containing combination of rice straw and cereal stalks was economical and satisfactory for feeding growing Rahaji bulls in this ecological zone (Semi-arid environment).Keywords: rahaji bulls, crop residues, concentrates, semi-arid environment
Procedia PDF Downloads 1854761 Designing State Feedback Multi-Target Controllers by the Use of Particle Swarm Optimization Algorithm
Authors: Seyedmahdi Mousavihashemi
Abstract:
One of the most important subjects of interest in researches is 'improving' which result in various algorithms. In so many geometrical problems we are faced with target functions which should be optimized. In group practices, all the functions’ cooperation lead to convergence. In the study, the optimization algorithm of dense particles is used. Usage of the algorithm improves the given performance norms. The results reveal that usage of swarm algorithm for reinforced particles in designing state feedback improves the given performance norm and in optimized designing of multi-target state feedback controlling, the network will maintain its bearing structure. The results also show that PSO is usable for optimization of state feedback controllers.Keywords: multi-objective, enhanced, feedback, optimization, algorithm, particle, design
Procedia PDF Downloads 4944760 Construction Contractor Pre-Qualification Using Multi-Attribute Utility Theory: A Multiplicative Approach
Authors: B. Vikram, Y. Anu Leena, Y. Anu Neena, M. V. Krishna Rao, V. S. S. Kumar
Abstract:
The industry is often criticized for inefficiencies in outcomes such as time and cost overruns, low productivity, poor quality and inadequate customer satisfaction. To enhance the chances for construction projects to be successful, selecting an able contractor is one of the fundamental decisions to be made by clients. The selection of the most appropriate contractor is a multi-criteria decision making (MCDM) process. In this paper, multi-attribute utility theory (MAUT) is employed utilizing the multiplicative form of utility function for ranking the prequalified contractors. Performance assessment criteria covering contracting company attributes, experience record, past performance, performance potential, financial stability and project specific criteria are considered for contractor evaluation. A case study of multistoried building for which four contractors submitted bids is considered to illustrate the applicability of multiplicative approach of MAUT to rank the prequalified contractors. The proposed MAUT decision making methodology can also be employed to other decision making situations.Keywords: multi-attribute utility theory, construction industry, prequalification, contractor
Procedia PDF Downloads 4344759 Long Term Effect of FYM and Green Manure on Infiltration Characteristics Under Vertisol
Authors: Tripti Nayak, R. K. Bajpai
Abstract:
An ongoing field experiment was conducted at Long term fertilizer experiment, Raipur, to study the Effect of fertilization (both organic and inorganic) on soil Physical properties (infiltration rate) of Vertisol of ten treatments viz. The treatment combinations for were T1(Control),T2(50%NPK), T3(100%NPK), T4(150%NPK), T5(100%NPK+Zn), T6(100%NP), T7(100%N), T8(100%NPK+FYM), T9 (50%NPK+BGA) and T10(50%NPK+GM). Farmyard manure and green manure is applied at the treatment of T8 (100%NPK+FYM) and T10 (50%NPK+GM). Result showed that the highest infiltration rate recorded T8(100%NPK+FYM) and T10 (50%NPK+GM). These considerations have led to a renewed interest in the organic manures such as FYM, compost and green manures, which are formulations helps in sustainable agriculture production either by providing plants with fixed nitrogen, available P or by other plant growth promoting substances. Organic matter (OM) is the life of the soil because it contains all the essential elements required for plant growth. It also serves as food for soil bacteria. Decomposed OM, known as humus, improves the soil tilth, quality and helps the plant to grow. In general among all the other treatments and control gave poorest infiltration rate. Incorporation of organic sources considerably improved the soil physical properties such as decrease in bulk density and increase in infiltration rate and available NPK status of the soil. Study showed that wherever, nitrogen was substituted through GM, FYM or crop residue (rice straw) in rice, Corresponding decrease in bulk density favorably enhanced the infiltration rate and it was found to be highest in the green-manured plot, FYM and lowest in control. Concluded that Continuous monitoring of physical properties should be carried out for maintaining soil health and enhancing the crop production.Keywords: long term effect, FYM, green manure, infiltration rate, soil health, crop productivity, vertisol
Procedia PDF Downloads 3634758 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs
Authors: Anika Chebrolu
Abstract:
Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.Keywords: drug design, multitargeticity, de-novo, reinforcement learning
Procedia PDF Downloads 954757 Comparative study of the technical efficiency of the cotton farms in the towns of Banikoara and Savalou
Authors: Boukari Abdou Wakilou
Abstract:
Benin is one of West Africa's major cotton-producing countries. Cotton is the country's main source of foreign currency and employment. But it is also one of the sources of soil degradation. The search for good agricultural practices is therefore, a constant preoccupation. The aim of this study is to measure the technical efficiency of cotton growers by comparing those who constantly grow cotton on the same land with those who practice crop rotation. The one-step estimation approach of the stochastic production frontier, including determinants of technical inefficiency, was applied to a stratified random sample of 261 cotton producers. Overall, the growers had a high average technical efficiency level of 90%. However, there was no significant difference in the level of technical efficiency between the two groups of growers studied. All the factors linked to compliance with the technical production itinerary had a positive influence on the growers' level of efficiency. It is, therefore, important to continue raising awareness of the importance of respecting the technical production itinerary and of integrated soil fertility management techniques.Keywords: technical efficiency, soil fertility, cotton, crop rotation, benin
Procedia PDF Downloads 644756 Collaborative Energy Optimization for Multi-Microgrid Distribution System Based on Two-Stage Game Approach
Authors: Hanmei Peng, Yiqun Wang, Mao Tan, Zhuocen Dai, Yongxin Su
Abstract:
Efficient energy management in multi-microgrid distribution systems holds significant importance for enhancing the economic benefits of regional power grids. To better balance conflicts among various stakeholders, a two-stage game-based collaborative optimization approach is proposed in this paper, effectively addressing the realistic scenario involving both competition and collaboration among stakeholders. The first stage, aimed at maximizing individual benefits, involves constructing a non-cooperative tariff game model for the distribution network and surplus microgrid. In the second stage, considering power flow and physical line capacity constraints we establish a cooperative P2P game model for the multi-microgrid distribution system, and the optimization involves employing the Lagrange method of multipliers to handle complex constraints. Simulation results demonstrate that the proposed approach can effectively improve the system economics while harmonizing individual and collective rationality.Keywords: cooperative game, collaborative optimization, multi-microgrid distribution system, non-cooperative game
Procedia PDF Downloads 684755 Improvement of Low Delta-9 Tetrahydrocannabinol (THC) Hemp Cultivars for High Fiber Content
Authors: Sarita Pinmanee, Saipan Krapbia, Rataya Yanaphan
Abstract:
Hemp (Cannabis sativa L.) is multi-purpose crop delivering fibers, shives, and seed. The fiber is used today for special paper, insulation material, and biocomposites. This research was to improve low delta-9 Tetrahydrocannabinol (THC) hemp variety for high fiber contents. Mass selection for increased fiber content in four low THC Thai cultivars (including RPF1, RPF2, RPF3, and RPF4) was carried out in highland areas in the northern Thailand. Research work was conducted for three consecutive growing seasons during 2012 to 2014 at Pangda Royal Agricultural Station, Samoeng District, Chiang Mai Province, Thailand. Results of selection indicated that after selecting for three successive generations, the average fiber content of four low THC Thai cultivars increased to 28-36 %. The resulted of selection was found that fiber content of RPF1, RPF2, RPF3 and RPF4 increased to 20.6, 19.1, 19.9 and 22.8%, respectively. In addition, THC contents of these four varieties were 0.07, 0.138, 0.08 and 0.072 % respectively. As well, mass selection method was considered as an effective and suitable method for improving this fiber content.Keywords: Hemp, mass selection, fiber content, low THC content
Procedia PDF Downloads 4094754 The Design Optimization for Sound Absorption Material of Multi-Layer Structure
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Kyu Park
Abstract:
Sound absorbing material is used as automotive interior material. Sound absorption coefficient should be predicted to design it. But it is difficult to predict sound absorbing coefficient because it is comprised of several material layers. So, its targets are achieved through many experimental tunings. It causes a lot of cost and time. In this paper, we propose the process to estimate the sound absorption coefficient with multi-layer structure. In order to estimate the coefficient, physical properties of each material are used. These properties also use predicted values by Foam-X software using the sound absorption coefficient data measured by impedance tube. Since there are many physical properties and the measurement equipment is expensive, the values predicted by software are used. Through the measurement of the sound absorption coefficient of each material, its physical properties are calculated inversely. The properties of each material are used to calculate the sound absorption coefficient of the multi-layer material. Since the absorption coefficient of multi-layer can be calculated, optimization design is possible through simulation. Then, we will compare and analyze the calculated sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If this method is used when developing automotive interior materials with multi-layer structure, the development effort can be reduced because it can be optimized by simulation. So, cost and time can be saved.Keywords: sound absorption material, sound impedance tube, sound absorption coefficient, optimization design
Procedia PDF Downloads 2874753 Improving the Feeding Value of Straws with Pleurotus Ostreatus
Authors: S. Hussain, N. Ahmad, S. Alam, M. Bezabhi, W. H. Hendriks, P. Yu, J. W. Cone
Abstract:
The high content of lignin in cell walls is the major limiting factor in the digestion and utilisation of cereal crop residues by ruminants. The aim of this study was to evaluate the effectiveness of the white rot fungus, Pleurotus ostreatus (P. ostreatus), to degrade lignin and to enhance the rumen degradability of maize stover, rice straw, wheat straw and their mixture in equal proportion on a dry-matter (DM) basis. Four samples of each substrate were incubated aerobically in triplicate with P. ostreatus for 0 (Control), 21, 28 and 35 days under solid-state conditions (temperature, 24 ͦ C; humidity, 70± 5%). The changes in chemical composition, DM and nutrient losses, and rumen fermentation characteristics using in vitro DM digestibility (DMD) and the in vitro gas production (GP) technique were measured. The results showed that incubation with P. ostreatus decreased (P < 0.001) the contents of neutral detergent fibre and lignin with a concomitant increase (P < 0.001) in the contents of ash and crude protein. The losses of nutrients differed (P < 0.001) among the straw types, with rice straw and maize stover showing the largest (P < 0.05) lignin degradation compared to wheat and mixed straws. The DMD and 72-h cumulative GP increased (P < 0.001) consistently with increasing fungal incubation period and for all substrates the highest values of DMD and GP were measured after 35 days of incubation with P. ostreatus. The lignin degradation was strongly associated with hemicellulose degradation (r = 0.71) across the various straws. Results of the present study demonstrated that incubation of low-quality crop residues with P. ostreatus under solid-state conditions upgrades their feeding value by reducing the content of lignin and increasing the content of crude protein and ruminal degradation.Keywords: crop residues, lignin degradation, maize stovers, wheat straws, white rot fungi
Procedia PDF Downloads 604752 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning
Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang
Abstract:
Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning
Procedia PDF Downloads 1174751 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence
Procedia PDF Downloads 1174750 Intensive Biological Control in Spanish Greenhouses: Problems of the Success
Authors: Carolina Sanchez, Juan R. Gallego, Manuel Gamez, Tomas Cabello
Abstract:
Currently, biological control programs in greenhouse crops involve the use, at the same time, several natural enemies during the crop cycle. Also, large number of plant species grown in greenhouses, among them, the used cultivars are also wide. However, the cultivar effects on entomophagous species efficacy (predators and parasitoids) have been scarcely studied. A new method had been developed, using the factitious prey or host Ephestia kuehniella. It allows us to evaluate, under greenhouse or controlled conditions (semi-field), the cultivar effects on the entomophagous species effectiveness. The work was carried out in greenhouse tomato crop. It has been found the biological and ecological activities of predatory species (Nesidiocoris tenuis) and egg-parasitoid (Trichogramma achaeae) can be well represented with the use of the factitious prey or host; being better in the former than the latter. The data found in the trial are shown and discussed. The developed method could be applied to evaluate new plant materials before making available to farmers as commercial varieties, at low costs and easy use.Keywords: cultivar effects, efficiency, predators, parasitoids
Procedia PDF Downloads 2714749 Impact Position Method Based on Distributed Structure Multi-Agent Coordination with JADE
Authors: YU Kaijun, Liang Dong, Zhang Yarong, Jin Zhenzhou, Yang Zhaobao
Abstract:
For the impact monitoring of distributed structures, the traditional positioning methods are based on the time difference, which includes the four-point arc positioning method and the triangulation positioning method. But in the actual operation, these two methods have errors. In this paper, the Multi-Agent Blackboard Coordination Principle is used to combine the two methods. Fusion steps: (1) The four-point arc locating agent calculates the initial point and records it to the Blackboard Module.(2) The triangulation agent gets its initial parameters by accessing the initial point.(3) The triangulation agent constantly accesses the blackboard module to update its initial parameters, and it also logs its calculated point into the blackboard.(4) When the subsequent calculation point and the initial calculation point are within the allowable error, the whole coordination fusion process is finished. This paper presents a Multi-Agent collaboration method whose agent framework is JADE. The JADE platform consists of several agent containers, with the agent running in each container. Because of the perfect management and debugging tools of the JADE, it is very convenient to deal with complex data in a large structure. Finally, based on the data in Jade, the results show that the impact location method based on Multi-Agent coordination fusion can reduce the error of the two methods.Keywords: impact monitoring, structural health monitoring(SHM), multi-agent system(MAS), black-board coordination, JADE
Procedia PDF Downloads 1764748 Cooperative Learning Mechanism in Intelligent Multi-Agent System
Authors: Ayman M. Mansour, Bilal Hawashin, Mohammed A. Mansour
Abstract:
In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.Keywords: intelligent, multi-agent system, cooperative, fuzzy, learning
Procedia PDF Downloads 6824747 An Implementation of Multi-Media Applications in Teaching Structural Design to Architectural Students
Authors: Wafa Labib
Abstract:
Teaching methods include lectures, workshops and tutorials for the presentation and discussion of ideas have become out of date; were developed outside the discipline of architecture from the college of engineering and do not satisfy the architectural students’ needs and causes them many difficulties in integrating structure into their design. In an attempt to improve structure teaching methods, this paper focused upon proposing a supportive teaching/learning tool using multi-media applications which seeks to better meet the architecture student’s needs and capabilities and improve the understanding and application of basic and intermediate structural engineering and technology principles. Before introducing the use of multi-media as a supportive teaching tool, a questionnaire was distributed to third year students of a structural design course who were selected as a sample to be surveyed forming a sample of 90 cases. The primary aim of the questionnaire was to identify the students’ learning style and to investigate whether the selected method of teaching could make the teaching and learning process more efficient. Students’ reaction on the use of this method was measured using three key elements indicating that this method is an appropriate teaching method for the nature of the students and the course as well.Keywords: teaching method, architecture, learning style, multi-media
Procedia PDF Downloads 4354746 Contribution to Energy Management in Hybrid Energy Systems Based on Agents Coordination
Authors: Djamel Saba, Fatima Zohra Laallam, Brahim Berbaoui
Abstract:
This paper presents a contribution to the design of a multi-agent for the energy management system in a hybrid energy system (SEH). The multi-agent-based energy-coordination management system (MA-ECMS) is based mainly on coordination between agents. The agents share the tasks and exchange information through communications protocols to achieve the main goal. This intelligent system can fully manage the consumption and production or simply to make proposals for action he thinks is best. The initial step is to give a presentation for the system that we want to model in order to understand all the details as much as possible. In our case, it is to implement a system for simulating a process control of energy management.Keywords: communications protocols, control process, energy management, hybrid energy system, modelization, multi-agents system, simulation
Procedia PDF Downloads 3314745 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache
Abstract:
This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting
Procedia PDF Downloads 524744 Algae Biofertilizers Promote Sustainable Food Production and Nutrient Efficiency: An Integrated Empirical-Modeling Study
Authors: Zeenat Rupawalla, Nicole Robinson, Susanne Schmidt, Sijie Li, Selina Carruthers, Elodie Buisset, John Roles, Ben Hankamer, Juliane Wolf
Abstract:
Agriculture has radically changed the global biogeochemical cycle of nitrogen (N). Fossil fuel-enabled synthetic N-fertiliser is a foundation of modern agriculture but applied to soil crops only use about half of it. To address N-pollution from cropping and the large carbon and energy footprint of N-fertiliser synthesis, new technologies delivering enhanced energy efficiency, decarbonisation, and a circular nutrient economy are needed. We characterised algae fertiliser (AF) as an alternative to synthetic N-fertiliser (SF) using empirical and modelling approaches. We cultivated microalgae in nutrient solution and modelled up-scaled production in nutrient-rich wastewater. Over four weeks, AF released 63.5% of N as ammonium and nitrate, and 25% of phosphorous (P) as phosphate to the growth substrate, while SF released 100% N and 20% P. To maximise crop N-use and minimise N-leaching, we explored AF and SF dose-response-curves with spinach in glasshouse conditions. AF-grown spinach produced 36% less biomass than SF-grown plants due to AF’s slower and linear N-release, while SF resulted in 5-times higher N-leaching loss than AF. Optimised blends of AF and SF boosted crop yield and minimised N-loss due to greater synchrony of N-release and crop uptake. Additional benefits of AF included greener leaves, lower leaf nitrate concentration, and higher microbial diversity and water holding capacity in the growth substrate. Life-cycle-analysis showed that replacing the most effective SF dosage with AF lowered the carbon footprint of fertiliser production from 2.02 g CO₂ (C-producing) to -4.62 g CO₂ (C-sequestering), with a further 12% reduction when AF is produced on wastewater. Embodied energy was lowest for AF-SF blends and could be reduced by 32% when cultivating algae on wastewater. We conclude that (i) microalgae offer a sustainable alternative to synthetic N-fertiliser in spinach production and potentially other crop systems, and (ii) microalgae biofertilisers support the circular nutrient economy and several sustainable development goals.Keywords: bioeconomy, decarbonisation, energy footprint, microalgae
Procedia PDF Downloads 1364743 Equivalent Circuit Representation of Lossless and Lossy Power Transmission Systems Including Discrete Sampler
Authors: Yuichi Kida, Takuro Kida
Abstract:
In a new smart society supported by the recent development of 5G and 6G Communication systems, the im- portance of wireless power transmission is increasing. These systems contain discrete sampling systems in the middle of the transmission path and equivalent circuit representation of lossless or lossy power transmission through these systems is an important issue in circuit theory. In this paper, for the given weight function, we show that a lossless power transmission system with the given weight is expressed by an equivalent circuit representation of the Kida’s optimal signal prediction system followed by a reactance multi-port circuit behind it. Further, it is shown that, when the system is lossy, the system has an equivalent circuit in the form of connecting a multi-port positive-real circuit behind the Kida’s optimal signal prediction system. Also, for the convenience of the reader, in this paper, the equivalent circuit expression of the reactance multi-port circuit and the positive- real multi-port circuit by Cauer and Ohno, whose information is currently being lost even in the world of the Internet.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, power transmission
Procedia PDF Downloads 1224742 Analytical Hierarchical Process for Multi-Criteria Decision-Making
Authors: Luis Javier Serrano Tamayo
Abstract:
This research on technology makes a first approach to the selection of an amphibious landing ship with strategic capabilities, through the implementation of a multi-criteria model using Analytical Hierarchical Process (AHP), in which a significant group of alternatives of latest technology has been considered. The variables were grouped at different levels to match design and performance characteristics, which affect the lifecycle as well as the acquisition, maintenance and operational costs. The model yielded an overall measure of effectiveness and an overall measure of cost of each kind of ship that was compared each other inside the model and showed in a Pareto chart. The modeling was developed using the Expert Choice software, based on AHP method.Keywords: analytic hierarchy process, multi-criteria decision-making, Pareto analysis, Colombian Marine Corps, projection operations, expert choice, amphibious landing ship
Procedia PDF Downloads 546