Search results for: Kernel density estimate
5019 Disrupting Traditional Industries: A Scenario-Based Experiment on How Blockchain-Enabled Trust and Transparency Transform Nonprofit Organizations
Authors: Michael Mertel, Lars Friedrich, Kai-Ingo Voigt
Abstract:
Based on principle-agent theory, an information asymmetry exists in the traditional donation process. Consumers cannot comprehend whether nonprofit organizations (NPOs) use raised funds according to the designated cause after the transaction took place (hidden action). Therefore, charity organizations have tried to appear transparent and gain trust by using the same marketing instruments for decades (e.g., releasing project success reports). However, none of these measures can guarantee consumers that charities will use their donations for the purpose. With awareness of misuse of donations rising due to the Ukraine conflict (e.g., funding crime), consumers are increasingly concerned about the destination of their charitable purposes. Therefore, innovative charities like the Human Rights Foundation have started to offer donations via blockchain. Blockchain technology has the potential to establish profound trust and transparency in the donation process: Consumers can publicly track the progress of their donation at any time after deciding to donate. This ensures that the charity is not using donations against its original intent. Hence, the aim is to investigate the effect of blockchain-enabled transactions on the willingness to donate. Sample and Design: To investigate consumers' behavior, we use a scenario-based experiment. After removing participants (e.g., due to failed attention checks), 3192 potential donors participated (47.9% female, 62.4% bachelor or above). Procedure: We randomly assigned the participants to one of two scenarios. In all conditions, the participants read a scenario about a fictive charity organization called "Helper NPO." Afterward, the participants answered questions regarding their perception of the charity. Manipulation: The first scenario (n = 1405) represents a typical donation process, where consumers donate money without any option to track and trace. The second scenario (n = 1787) represents a donation process via blockchain, where consumers can track and trace their donations respectively. Using t-statistics, the findings demonstrate a positive effect of donating via blockchain on participants’ willingness to donate (mean difference = 0.667, p < .001, Cohen’s d effect size = 0.482). A mediation analysis shows significant effects for the mediation of transparency (Estimate = 0.199, p < .001), trust (Estimate = 0.144, p < .001), and transparency and trust (Estimate = 0.158, p < .001). The total effect of blockchain usage on participants’ willingness to donate (Estimate = 0.690, p < .001) consists of the direct effect (Estimate = 0.189, p < .001) and the indirect effects of transparency and trust (Estimate = 0.501, p < .001). Furthermore, consumers' affinity for technology moderates the direct effect of blockchain usage on participants' willingness to donate (Estimate = 0.150, p < .001). Donating via blockchain is a promising way for charities to engage consumers for several reasons: (1) Charities can emphasize trust and transparency in their advertising campaigns. (2) Established charities can target new customer segments by specifically engaging technology-affine consumers in the future. (3) Charities can raise international funds without previous barriers (e.g., setting up bank accounts). Nevertheless, increased transparency can also backfire (e.g., disclosure of costs). Such cases require further research.Keywords: blockchain, social sector, transparency, trust
Procedia PDF Downloads 995018 Internal Methane Dry Reforming Kinetic Models in Solid Oxide Fuel Cells
Authors: Saeed Moarrefi, Shou-Han Zhou, Liyuan Fan
Abstract:
Coupling with solid oxide fuel cells, methane dry reforming is a promising pathway for energy production while mitigating carbon emissions. However, the influence of carbon dioxide and electrochemical reactions on the internal dry reforming reaction within the fuel cells remains debatable, requiring accurate kinetic models to describe the internal reforming behaviors. We employed the Power-Law and Langmuir Hinshelwood–Hougen Watson models in an electrolyte-supported solid oxide fuel cell with a NiO-GDC-YSZ anode. The current density used in this study ranges from 0 to 1000 A/m2 at 973 K to 1173 K to estimate various kinetic parameters. The influence of the electrochemical reactions on the adsorption terms, the equilibrium of the reactions, the activation energy, the pre-exponential factor of the rate constant, and the adsorption equilibrium constant were studied. This study provides essential parameters for future simulations and highlights the need for a more detailed examination of reforming kinetic models.Keywords: dry reforming kinetics, Langmuir Hinshelwood–Hougen Watson, power-law, SOFC
Procedia PDF Downloads 225017 Fuglede-Putnam Theorem for ∗-Class A Operators
Authors: Mohammed Husein Mohammad Rashid
Abstract:
For a bounded linear operator T acting on a complex infinite dimensional Hilbert space ℋ, we say that T is ∗-class A operator (abbreviation T∈A*) if |T²|≥ |T*|². In this article, we prove the following assertions:(i) we establish some conditions which imply the normality of ∗-class A; (ii) we consider ∗-class A operator T ∈ ℬ(ℋ) with reducing kernel such that TX = XS for some X ∈ ℬ(K, ℋ) and prove the Fuglede-Putnam type theorem when adjoint of S ∈ ℬ(K) is dominant operators; (iii) furthermore, we extend the asymmetric Putnam-Fuglede theorem the class of ∗-class A operators.Keywords: fuglede-putnam theorem, normal operators, ∗-class a operators, dominant operators
Procedia PDF Downloads 885016 Feasibility of a Biopolymer as Lightweight Aggregate in Perlite Concrete
Authors: Ali A. Sayadi, Thomas R. Neitzert, G. Charles Clifton
Abstract:
Lightweight concrete is being used in the construction industry as a building material in its own right. Ultra-lightweight concrete can be applied as a filler and support material for the manufacturing of composite building materials. This paper is about the development of a stable and reproducible ultra-lightweight concrete with the inclusion of poly-lactic acid (PLA) beads and assessing the feasibility of PLA as a lightweight aggregate that will deliver advantages such as a more eco-friendly concrete and a non-petroleum polymer aggregate. In total, sixty-three samples were prepared and the effectiveness of mineral admixture, curing conditions, water-cement ratio, PLA ratio, EPS ratio and perlite ratio on compressive strength of perlite concrete are studied. The results show that PLA particles are sensitive to alkali environment of cement paste and considerably shrank and lost their strength. A higher compressive strength and a lower density was observed when expanded polystyrene (EPS) particles replaced PLA beads. In addition, a set of equations is proposed to estimate the water-cement ratio, cement content and compressive strength of perlite concrete.Keywords: perlite concrete, poly-lactic acid (pla), expanded polystyrene (eps), concrete
Procedia PDF Downloads 3155015 Crystal Structure, Vibration Study, and Calculated Frequencies by Density Functional Theory Method of Copper Phosphate Dihydrate
Authors: Soufiane Zerraf, Malika Tridane, Said Belaaouad
Abstract:
CuHPO₃.2H₂O was synthesized by the direct method. CuHPO₃.2H₂O crystallizes in the orthorhombic system, space group P2₁2₁2₁, a = 6.7036 (2) Å, b = 7.3671 (4) Å, c = 8.9749 (4) Å, Z = 4, V = 443.24 (4) ų. The crystal structure was refined to R₁= 0.0154, R₂= 0.0380 for 19018 reflections satisfying criterion I ≥ 2σ (I). The structural resolution shows the existence of chains of ions HPO₃- linked together by hydrogen bonds. The crystalline structure is formed by chains consisting of Cu[O₃(H₂O)₃] deformed octahedral, which are connected to the vertices. The chains extend parallel to b and are mutually linked by PO₃ groups. The structure is closely related to that of CuSeO₃.2H₂O and CuTeO₃.2H₂O. The experimental studies of the infrared and Raman spectra were used to confirm the presence of the phosphate ion and were compared in the (0-4000) cm-1 region with the theoretical results calculated by the density functional theory (DFT) method to provide reliable assignments of all observed bands in the experimental spectra.Keywords: crystal structure, X-ray diffraction, vibration study, thermal behavior, density functional theory
Procedia PDF Downloads 1175014 Effect of Bulk Density and Fiber Blend Content of Nonwoven Textiles on Flammability Properties
Authors: Klara Masnicova, Jiri Chaloupek
Abstract:
Flammability plays an important role in applications such as thermal and acoustic insulation and other technical nonwoven textiles. The study was conducted in an attempt to investigate the flammability behavior of nonwoven textiles in relation to their structural and material characteristics, with emphasis given to the blending ratios of flammable and non-flammable fibers or fibers with reduced flammability. Nonwoven structures made of blends of viscose/oxidized polyacrylonitrile (VS/oxidized PAN fibers and polyethylene terephthalate/oxidized polyacrylonitrile (PET/oxidized PAN) fibers in several bulk densities are evaluated. The VS/oxidized PAN blend is model material. The flammability was studied using a cone calorimeter. Reaction to fire was observed using the small flame test method. Interestingly, the results show some of the blending ratios do not react to the heat in linear response to bulk density. This outcome can have a huge impact on future product development in fire safety and for the general understanding of flammability behavior of nonwovens made of staple fibers.Keywords: bulk density, cone calorimetry, flammability, nonwoven textiles
Procedia PDF Downloads 3085013 Investigation and Monitoring Method of Vector Density in Kaohsiung City
Authors: Chiu-Wen Chang, I-Yun Chang, Wei-Ting Chen, Hui-Ping Ho, Chao-Ying Pan, Joh-Jong Huang
Abstract:
Dengue is a ‘community disease’ or ‘environmental disease’, as long as the environment exist suitable container (including natural and artificial) for mosquito breeding, once the virus invade will lead to the dengue epidemic. Surveillance of vector density is critical to effective infectious disease control and play an important role in monitoring the dynamics of mosquitoes in community, such as mosquito species, density, distribution area. The objective of this study was to examine the relationship in vector density survey (Breteau index, Adult index, House index, Container index, and Larvae index) form 2014 to 2016 in Kaohsiung City and evaluate the effects of introducing the Breeding Elimination and Appraisal Team (hereinafter referred to as BEAT) as an intervention measure on eliminating dengue vector breeding site started from May 2016. BEAT were performed on people who were suspected of contracting dengue fever, a surrounding area measuring 50 meters by 50 meters was demarcated as the emergency prevention and treatment zone. BEAT would perform weekly vector mosquito inspections and vector mosquito inspections in regions with a high Gravitrap index and assign a risk assessment index to each region. These indices as well as the prevention and treatment results were immediately reported to epidemic prevention-related units every week. The results indicated that, vector indices from 2014 to 2016 showed no statistically significant differences in the Breteau index, adult index, and house index (p > 0.05) but statistically significant differences in the container index and larvae index (p <0.05). After executing the integrated elimination work, container index and larvae index are statistically significant different from 2014 to 2016 in the (p < 0.05). A post hoc test indicated that the container index of 2014 (M = 12.793) was significantly higher than that of 2016 (M = 7.631), and that the larvae index of 2015 (M = 34.065) was significantly lower than that of 2014 (M = 66.867). The results revealed that effective vector density surveillance could highlight the focus breeding site and then implement the immediate control action (BEAT), which successfully decreased the vector density and the risk of dengue epidemic.Keywords: Breteau index, dengue control, monitoring method, vector density
Procedia PDF Downloads 1985012 Estimation of Leachate Generation from Municipal Solid Waste Landfills in Selangor
Authors: Tengku Nilam Baizura, Noor Zalina Mahmood
Abstract:
In Malaysia, landfilling is the most preferred method and most of it does not have the proper leachate treatment system which can cause environmental problems. Leachate is the major factor to river water pollution since most landfills are located near the river which is the main water resource for the country. The study aimed to estimate leachate production from landfills in Selangor. A simple mathematical modelling was used for the calculation of annual leachate volume. The estimate of identified landfill area (A) using Google Earth was multiplied by the annual rainfall (R). The product is expressed as volume (V). The data indicate that the leachate production is high even it is fully closed. It is important to design the efficient landfill and proper leachate treatment processes especially for the old/closed landfill. Extensive monitoring will be required to predict future impact.Keywords: landfill, leachate, municipal solid waste management, waste disposal
Procedia PDF Downloads 3705011 Experimental and Numerical Study of Thermal Effects in Variable Density Turbulent Jets
Authors: DRIS Mohammed El-Amine, BOUNIF Abdelhamid
Abstract:
This paper considers an experimental and numerical investigation of variable density in axisymmetric turbulent free jets. Special attention is paid to the study of the scalar dissipation rate. In this case, dynamic field equations are coupled to scalar field equations by the density which can vary by the thermal effect (jet heating). The numerical investigation is based on the first and second order turbulence models. For the discretization of the equations system characterizing the flow, the finite volume method described by Patankar (1980) was used. The experimental study was conducted in order to evaluate dynamical characteristics of a heated axisymmetric air flow using the Laser Doppler Anemometer (LDA) which is a very accurate optical measurement method. Experimental and numerical results are compared and discussed. This comparison do not show large difference and the results obtained are in general satisfactory.Keywords: Scalar dissipation rate, thermal effects, turbulent axisymmetric jets, second order modelling, Velocimetry Laser Doppler.
Procedia PDF Downloads 4505010 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization
Authors: Ramakrishna Rao Mamidi
Abstract:
It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.Keywords: direct search, flux plot, fourier analysis, permanent magnets
Procedia PDF Downloads 2165009 Biotic Potential of Different Densities of Aphid Parasitoids, Diaeretiella rapae (Hymenoptera: Braconidae: Aphidiinae) Feeding on Brevicoryne brassicae
Authors: Muhammad Anjum Aqueel, Muhammad Jaffar Hussain, Abu Bakar Muhammad Raza
Abstract:
Diaeretiella rapae (M’Intosh) attack most of the aphid species. However, it is specialized in feeding on crucifer aphid, Brevicoryne brassicae. Biological potential of parasitoid is its density-dependency due to sharing of limited resources in few cases. The present study was carried out to check the biotic potential of D. rapae at its different densities (1, 2, 4, 8 and 10 pairs) on fixed number of B. brassicae (100 in number) as a host. The present study was performed under laboratory conditions (25 ± 2 ºC temperature and 65-70 % R.H.). Different biological parameters for parasitoid (e.g. percent parasitism, adult emergence, adult longevity and per pair parasitism) were evaluated to check its biotic potential. The present findings showed that maximum parasitism (43.09 % ± 0.63) was observed in highest density (10 pairs) and minimum parasitism (16.59 % ± 1.28) in lowest density (1 pair) of the parasitoid. Maximum adult emergence (80.31 % ± 1.33) was observed in highest density (10 pairs) and minimum parasitism (45.99 % ± 1.27) in lowest density (1 pair) of the parasitoid. In the case of adult longevity, highest (8.2 days ± 0.38) and lowest (6 days ± 0.32) longevity were observed in lowest (1 pair) and highest (10 pairs) densities of parasitoids respectively. However, per pair parasitism rate decreased with the increase in parasitoid densities due to intra-specific competition, developed between the parasitoids for parasitism. The positive but close relationship was observed between percent parasitism and adult emergence. The increase in parasitoid densities increased the percent parasitism and adult emergence of the parasitoid. So, we conclude that an inter-specific competition negatively affected the efficacy of parasitoids and may reduce the fitness of the emerging parasitoid.Keywords: Diaeretiella rapae, Parasitoid densities, Percent parasitism, adult emergence
Procedia PDF Downloads 2355008 Characterization of Pure Nickel Coatings Fabricated under Pulse Current Conditions
Authors: M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari
Abstract:
Pure nickel coatings have been successfully electrodeposited on copper substrates by the pulse plating technique. The influence of current density, duty cycle and pulse frequency on the surface morphology, crystal orientation, and microhardness was determined. It was found that the crystallite size of the deposit increases with increasing current density and duty cycle. The crystal orientation progressively changed from a random texture at 1 A/dm2 to (200) texture at 10 A/dm2. Increasing pulse frequency resulted in increased texture coefficient and peak intensity of (111) reflection. An increase in duty cycle resulted in considerable increase in texture coefficient and peak intensity of (311) reflection. Coatings obtained at high current densities and duty cycles present a mixed morphology of small and large grains. Maximum microhardness of 193 Hv was achieved at 4 A/dm2, 10 Hz and duty cycle of 50%. Nickel coatings with (200) texture are ductile while (111) texture improves the microhardness of the coatings.Keywords: current density, duty cycle, microstructure, nickel, pulse frequency
Procedia PDF Downloads 3695007 Lowering Error Floors by Concatenation of Low-Density Parity-Check and Array Code
Authors: Cinna Soltanpur, Mohammad Ghamari, Behzad Momahed Heravi, Fatemeh Zare
Abstract:
Low-density parity-check (LDPC) codes have been shown to deliver capacity approaching performance; however, problematic graphical structures (e.g. trapping sets) in the Tanner graph of some LDPC codes can cause high error floors in bit-error-ratio (BER) performance under conventional sum-product algorithm (SPA). This paper presents a serial concatenation scheme to avoid the trapping sets and to lower the error floors of LDPC code. The outer code in the proposed concatenation is the LDPC, and the inner code is a high rate array code. This approach applies an interactive hybrid process between the BCJR decoding for the array code and the SPA for the LDPC code together with bit-pinning and bit-flipping techniques. Margulis code of size (2640, 1320) has been used for the simulation and it has been shown that the proposed concatenation and decoding scheme can considerably improve the error floor performance with minimal rate loss.Keywords: concatenated coding, low–density parity–check codes, array code, error floors
Procedia PDF Downloads 3565006 The Effect of Linear Low-Density Polyethylene Cross-Contamination by Other Plastic Types on Bitumen Modification
Authors: Nioushasadat Haji Seyed Javadi, Ailar Hajimohammadi, Nasser Khalili
Abstract:
Currently, the recycling of plastic wastes has been the subject of much research attention, especially in pavement constructions, where virgin polymers can be replaced by recycled plastics for asphalt binder modification. Among the plastic types, recycled linear low-density polyethylene (RLLDPE) has been one of the common and largely available plastics for bitumen modification. However, it is important to note that during the recycling process, LLDPE can easily be contaminated with other plastic types, especially with low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP). The cross-contamination of LLDPE with other plastics lowers its quality and, consequently, can affect the asphalt modification process. This study aims to assess the effect of LLDPE cross-contamination on bitumen modification. To do so, samples of bitumen modified with LLDPE and blends of LLDPE with LDPE, HDPE, and PP were prepared and compared through physical and rheological evaluations. The experimental tests, including softening point, penetration, viscosity at 135 °C, and dynamic shear rheometer, were conducted. The results indicated that the effect of cross-contamination on softening point and rutting resistance was negligible. On the other side, penetration and viscosity were highly impacted. The results also showed that among contamination of LLDPE with the other plastic types, PP had the highest influence in comparison with HDPE and LDPE on changing the properties of the LLDPE- modified bitumen.Keywords: recycled polyethylene, polymer cross-contamination, waste plastic, bitumen, rutting resistance
Procedia PDF Downloads 1275005 Heavy Metals Estimation in Coastal Areas Using Remote Sensing, Field Sampling and Classical and Robust Statistic
Authors: Elena Castillo-López, Raúl Pereda, Julio Manuel de Luis, Rubén Pérez, Felipe Piña
Abstract:
Sediments are an important source of accumulation of toxic contaminants within the aquatic environment. Bioassays are a powerful tool for the study of sediments in relation to their toxicity, but they can be expensive. This article presents a methodology to estimate the main physical property of intertidal sediments in coastal zones: heavy metals concentration. This study, which was developed in the Bay of Santander (Spain), applies classical and robust statistic to CASI-2 hyperspectral images to estimate heavy metals presence and ecotoxicity (TOC). Simultaneous fieldwork (radiometric and chemical sampling) allowed an appropriate atmospheric correction to CASI-2 images.Keywords: remote sensing, intertidal sediment, airborne sensors, heavy metals, eTOCoxicity, robust statistic, estimation
Procedia PDF Downloads 4225004 Institutional Capacity and Corruption: Evidence from Brazil
Authors: Dalson Figueiredo, Enivaldo Rocha, Ranulfo Paranhos, José Alexandre
Abstract:
This paper analyzes the effects of institutional capacity on corruption. Methodologically, the research design combines both descriptive and multivariate statistics to examine two original datasets based on secondary data. In particular, we employ a principal component model to estimate an indicator of institutional capacity for both state audit institutions and subnational judiciary courts. Then, we estimate the effect of institutional capacity on two dependent variables: (1) incidence of administrative irregularities and (2) time elapsed to judge corruption cases. The preliminary results using ordinary least squares, negative binomial and Tobit models suggest the same conclusions: higher the institutional audit capacity, higher is the probability of detecting a corruption case. On the other hand, higher the institutional capacity of state judiciary, the lower is the time to judge corruption cases.Keywords: institutional capacity, corruption, state level institutions, evidence from Brazil
Procedia PDF Downloads 3725003 Structural and Electronic Properties of the Rock-salt BaxSr1−xS Alloys
Authors: B. Bahloul, K. Babesse, A. Dkhira, Y. Bahloul, L. Amirouche
Abstract:
Structural and electronic properties of the rock-salt BaxSr1−xS are calculated using the first-principles calculations based on the density functional theory (DFT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA). The calculated lattice parameters at equilibrium volume for x=0 and x=1 are in good agreement with the literature data. The BaxSr1−xS alloys are found to be an indirect band gap semiconductor. Moreoever, for the composition (x) ranging between [0-1], we think that our results are well discussed and well predicted.Keywords: semiconductor, Ab initio calculations, rocksalt, band structure, BaxSr1−xS
Procedia PDF Downloads 3955002 Theoretical and Experimental Investigation of Binder-free Trimetallic Phosphate Nanosheets
Authors: Iftikhar Hussain, Muhammad Ahmad, Xi Chen, Li Yuxiang
Abstract:
Transition metal phosphides and phosphates are newly emerged electrode material candidates in energy storage devices. For the first time, we report uniformly distributed, interconnected, and well-aligned two-dimensional nanosheets made from trimetallic Zn-Co-Ga phosphate (ZCGP) electrode materials with preserved crystal phase. It is found that the ZCGP electrode material exhibits about 2.85 and 1.66 times higher specific capacity than mono- and bimetallic phosphate electrode materials at the same current density. The trimetallic ZCGP electrode exhibits superior conductivity, lower internal resistance (IR) drop, and high Coulombic efficiency compared to mono- and bimetallic phosphate. The charge storage mechanism is studied for mono- bi- and trimetallic electrode materials, which illustrate the diffusion-dominated battery-type behavior. By means of density functional theory (DFT) calculations, ZCGP shows superior metallic conductivity due to the modified exchange splitting originating from 3d-orbitals of Co atoms in the presence of Zn and Ga. Moreover, a hybrid supercapacitor (ZCGP//rGO) device is engineered, which delivered a high energy density (ED) of 40 W h kg⁻¹ and a high-power density (PD) of 7,745 W kg⁻¹, lighting 5 different colors of light emitting diodes (LEDs). These outstanding results confirm the promising battery-type electrode materials for energy storage applications.Keywords: trimetallic phosphate, nanosheets, DFT calculations, hybrid supercapacitor, binder-free, synergistic effect
Procedia PDF Downloads 2105001 Assessing Overall Thermal Conductance Value of Low-Rise Residential Home Exterior Above-Grade Walls Using Infrared Thermography Methods
Authors: Matthew D. Baffa
Abstract:
Infrared thermography is a non-destructive test method used to estimate surface temperatures based on the amount of electromagnetic energy radiated by building envelope components. These surface temperatures are indicators of various qualitative building envelope deficiencies such as locations and extent of heat loss, thermal bridging, damaged or missing thermal insulation, air leakage, and moisture presence in roof, floor, and wall assemblies. Although infrared thermography is commonly used for qualitative deficiency detection in buildings, this study assesses its use as a quantitative method to estimate the overall thermal conductance value (U-value) of the exterior above-grade walls of a study home. The overall U-value of exterior above-grade walls in a home provides useful insight into the energy consumption and thermal comfort of a home. Three methodologies from the literature were employed to estimate the overall U-value by equating conductive heat loss through the exterior above-grade walls to the sum of convective and radiant heat losses of the walls. Outdoor infrared thermography field measurements of the exterior above-grade wall surface and reflective temperatures and emissivity values for various components of the exterior above-grade wall assemblies were carried out during winter months at the study home using a basic thermal imager device. The overall U-values estimated from each methodology from the literature using the recorded field measurements were compared to the nominal exterior above-grade wall overall U-value calculated from materials and dimensions detailed in architectural drawings of the study home. The nominal overall U-value was validated through calendarization and weather normalization of utility bills for the study home as well as various estimated heat loss quantities from a HOT2000 computer model of the study home and other methods. Under ideal environmental conditions, the estimated overall U-values deviated from the nominal overall U-value between ±2% to ±33%. This study suggests infrared thermography can estimate the overall U-value of exterior above-grade walls in low-rise residential homes with a fair amount of accuracy.Keywords: emissivity, heat loss, infrared thermography, thermal conductance
Procedia PDF Downloads 3135000 Modelling the Tensile Behavior of Plasma Sprayed Freestanding Yttria Stabilized Zirconia Coatings
Authors: Supriya Patibanda, Xiaopeng Gong, Krishna N. Jonnalagadda, Ralph Abrahams
Abstract:
Yttria stabilized zirconia (YSZ) is used as a top coat in thermal barrier coatings in high-temperature turbine/jet engine applications. The mechanical behaviour of YSZ depends on the microstructural features like crack density and porosity, which are a result of coating method. However, experimentally ascertaining their individual effect is difficult due to the inherent challenges involved like material synthesis and handling. The current work deals with the development of a phenomenological model to replicate the tensile behavior of air plasma sprayed YSZ obtained from experiments. Initially, uniaxial tensile experiments were performed on freestanding YSZ coatings of ~300 µm thick for different crack densities and porosities. The coatings exhibited a nonlinear behavior and also a huge variation in strength values. With the obtained experimental tensile curve as a base and crack density and porosity as prime variables, a phenomenological model was developed using ABAQUS interface with new user material defined employing VUMAT sub routine. The relation between the tensile stress and the crack density was empirically established. Further, a parametric study was carried out to investigate the effect of the individual features on the non-linearity in these coatings. This work enables to generate new coating designs by varying the key parameters and predicting the mechanical properties with the help of a simulation, thereby minimizing experiments.Keywords: crack density, finite element method, plasma sprayed coatings, VUMAT
Procedia PDF Downloads 1484999 Study of Ion Density Distribution and Sheath Thickness in Warm Electronegative Plasma
Authors: Rajat Dhawan, Hitendra K. Malik
Abstract:
Electronegative plasmas comprising electrons, positive ions, and negative ions are advantageous for their expanding applications in industries. In plasma cleaning, plasma etching, and plasma deposition process, electronegative plasmas are preferred because of relatively less potential developed on the surface of the material under investigation. Also, the presence of negative ions avoid the irregularity in etching shapes and also enhance the material working during the fabrication process. The interaction of metallic conducting surface with plasma becomes mandatory to understand these applications. A metallic conducting probe immersed in a plasma results in the formation of a thin layer of charged species around the probe called as a sheath. The density of the ions embedded on the surface of the material and the sheath thickness are the important parameters for the surface-plasma interaction. Sheath thickness will give rise to the information of affected plasma region due to conducting surface/probe. The knowledge of the density of ions in the sheath region is advantageous in plasma nitriding, and their temperature is equally important as it strongly influences the thickness of the modified layer during surface plasma interaction. In the present work, we considered a negatively biased metallic probe immersed in a warm electronegative plasma. For this system, we adopted the continuity equation and momentum transfer equation for both the positive and negative ions, whereas electrons are described by Boltzmann distribution. Finally, we use the Poisson’s equation. Here, we assumed the spherical geometry for small probe radius. Poisson’s equation reveals the behaviour of potential surrounding a conducting metallic probe along with the use of the continuity and momentum transfer equations, with the help of proper boundary conditions. In turn, it gives rise to the information about the density profile of charged species and most importantly the thickness of the sheath. By keeping in mind, the well-known Bohm-Sheath criterion, all calculations are done. We found that positive ion density decreases with an increase in positive ion temperature, whereas it increases with the higher temperature of the negative ions. Positive ion density decreases as we move away from the center of the probe and is found to show a discontinuity at a particular distance from the center of the probe. The distance where discontinuity occurs is designated as sheath edge, i.e., the point where sheath ends. These results are beneficial for industrial applications, as the density of ions embedded on material surface is strongly affected by the temperature of plasma species. It has a drastic influence on the surface properties, i.e., the hardness, corrosion resistance, etc. of the materials.Keywords: electronegative plasmas, plasma surface interaction positive ion density, sheath thickness
Procedia PDF Downloads 1334998 The Effects of Stand Density, Standards and Species Composition on Biomass Production in Traditional Coppices
Authors: Marek Mejstřík, Radim Matula, Martin Šrámek
Abstract:
Traditional coppices and coppice-with-standards were widely used throughout Europe and Asia for centuries but were largely abandoned in the second half of the 19th century, especially in central and northwestern Europe. In the last decades, there has been a renewed interest in traditional coppicing for nature conservation and most often, for rapid woody biomass production. However, there is little information on biomass productivity of traditional coppices and what affects it. Here, we focused on the effects of stand density, standards and tree species composition on sprout biomass production in newly restored coppices in the Czech Republic. We measured sprouts and calculated sprout biomass 7 years after the harvest from 2013 resprouting stumps in two 4 ha experimental plots. Each plot was divided into 64 subplots with different densities of standards and sprouting stumps. Total sprout biomass declined with increasing density of standards, but the effect of standards differed significantly among studied species. Whereas increasing density of standards decreased sprout biomass in Quercus petraea and Carpinus betulus, it did not affect sprout biomass productivity in Acer campestre and Tilia cordata. Sprout biomass on stand-level increased linearly with an increasing number of sprouting stumps and we observed no leveling of this relationship even in the highest densities of stumps. We also found a significant shift in tree species composition with the steeply declining relative abundance of Quercus in favor of other studied tree species.Keywords: traditional coppice, coppice with standards, sprout biomass, forest management
Procedia PDF Downloads 1604997 Disposable Coffee Cups Recycling
Authors: Sasan Mohammadi
Abstract:
Due to our passion for coffee, we use 16 billion throwaway coffee cups yearly. Coffee lovers throughout the globe have discovered the hard way that their paper cups are not recyclable, despite what coffee businesses have repeatedly assured them [1] A disposable, single-use coffee cup comprises a paper and polyethylene layer. Polyethylene is a typical material used to fill a coffee cup's inside to keep its structure and provide water and heat resistance. In addition, the polyethylene layer prevents recycling since it is difficult to separate the plastic liner from the paper layer [2]. In addition, owing to the plastic membrane lining many of these cups, they cannot be recycled and may take up to 30 years to biodegrade [3]. Most of researcher try to separate plastic part ,but it is not economical and easy.For this purposes,it is not yet happen. In our research we don't separate plastic, just we make a homogeneous pulp with cold water.then fix it in mold and dry it,after completely drying cycle we heated the product in 100 degree of centigrade this cause a sintering effect by plastic particle between paper fibers.This method increase 30 percent the strength of product.This product has a good sound proof and thermal isolation. This means we can use it as insulator.with low density we can control the the density by percentage of air solved in pulp.Keywords: recycling, disposable coffee cup, insolator, low density
Procedia PDF Downloads 774996 A Comparison between Russian and Western Approach for Deep Foundation Design
Authors: Saeed Delara, Kendra MacKay
Abstract:
Varying methodologies are considered for pile design for both Russian and Western approaches. Although both approaches rely on toe and side frictional resistances, different calculation methods are proposed to estimate pile capacity. The Western approach relies on compactness (internal friction angle) of soil for cohesionless soils and undrained shear strength for cohesive soils. The Russian approach relies on grain size for cohesionless soils and liquidity index for cohesive soils. Though most recommended methods in the Western approaches are relatively simple methods to predict pile settlement, the Russian approach provides a detailed method to estimate single pile and pile group settlement. Details to calculate pile axial capacity and settlement using the Russian and Western approaches are discussed and compared against field test results.Keywords: pile capacity, pile settlement, Russian approach, western approach
Procedia PDF Downloads 1664995 Statistical Correlation between Logging-While-Drilling Measurements and Wireline Caliper Logs
Authors: Rima T. Alfaraj, Murtadha J. Al Tammar, Khaqan Khan, Khalid M. Alruwaili
Abstract:
OBJECTIVE/SCOPE (25-75): Caliper logging data provides critical information about wellbore shape and deformations, such as stress-induced borehole breakouts or washouts. Multiarm mechanical caliper logs are often run using wireline, which can be time-consuming, costly, and/or challenging to run in certain formations. To minimize rig time and improve operational safety, it is valuable to develop analytical solutions that can estimate caliper logs using available Logging-While-Drilling (LWD) data without the need to run wireline caliper logs. As a first step, the objective of this paper is to perform statistical analysis using an extensive datasetto identify important physical parameters that should be considered in developing such analytical solutions. METHODS, PROCEDURES, PROCESS (75-100): Caliper logs and LWD data of eleven wells, with a total of more than 80,000 data points, were obtained and imported into a data analytics software for analysis. Several parameters were selected to test the relationship of the parameters with the measured maximum and minimum caliper logs. These parameters includegamma ray, porosity, shear, and compressional sonic velocities, bulk densities, and azimuthal density. The data of the eleven wells were first visualized and cleaned.Using the analytics software, several analyses were then preformed, including the computation of Pearson’s correlation coefficients to show the statistical relationship between the selected parameters and the caliper logs. RESULTS, OBSERVATIONS, CONCLUSIONS (100-200): The results of this statistical analysis showed that some parameters show good correlation to the caliper log data. For instance, the bulk density and azimuthal directional densities showedPearson’s correlation coefficients in the range of 0.39 and 0.57, which wererelatively high when comparedto the correlation coefficients of caliper data with other parameters. Other parameters such as porosity exhibited extremely low correlation coefficients to the caliper data. Various crossplots and visualizations of the data were also demonstrated to gain further insights from the field data. NOVEL/ADDITIVE INFORMATION (25-75): This study offers a unique and novel look into the relative importance and correlation between different LWD measurements and wireline caliper logs via an extensive dataset. The results pave the way for a more informed development of new analytical solutions for estimating the size and shape of the wellbore in real-time while drilling using LWD data.Keywords: LWD measurements, caliper log, correlations, analysis
Procedia PDF Downloads 1214994 Productivity of Grain Sorghum-Cowpea Intercropping System: Climate-Smart Approach
Authors: Mogale T. E., Ayisi K. K., Munjonji L., Kifle Y. G.
Abstract:
Grain sorghum and cowpea are important staple crops in many areas of South Africa, particularly the Limpopo Province. The two crops are produced under a wide range of unsustainable conventional methods, which reduces productivity in the long run. Climate-smart traditional methods such as intercropping can be adopted to ensure sustainable production of these important two crops in the province. A no-tillage field experiment was laid out in a randomised complete block design (RCBD) with four replications over two seasons in two distinct agro-ecological zones, Syferkuil and Ofcolacoin, the province to assess the productivity of sorghum-cowpea intercropped under two cowpea densities.LCi Ultra compact photosynthesis machine was used to collect photosynthetic rate data biweekly between 11h00 and 13h00 until physiological maturity. Biomass and grain yield of the component crops in binary and sole cultures were determined at harvest maturity from middle rows of 2.7 m2 area. The biomass was oven dried in the laboratory at 65oC till constant weight. To obtain grain yield, harvested sorghum heads and cowpea pods were threshed, cleaned, and weighed. Harvest index (HI) and land equivalent ratio (LER) of the two crops were calculated to assess intercrop productivity relative to sole cultures. Data was analysed using the statistical analysis software system (SAS) 9.4 version, followed by mean separation using the least significant difference method. The photosyntheticrate of sorghum-cowpea intercrop was influenced by cowpea density and sorghum cultivar. Photosynthetic rate under low density was higher compared to high density, but this was dependent on the growing conditions. Dry biomass accumulation, grain yield, and harvest index differed among the sorghum cultivars and cowpea in both binary and sole cultures at the two test locations during the 2018/19 and 2020/21 growing seasons. Cowpea grain and dry biomass yields werein excess of 60% under high density compared to low density in both binary and sole cultures. The results revealed that grain yield accumulation of sorghum cultivars was influenced by the density of the companion cowpea crop as well as the production season. For instant, at Syferkuil, Enforcer and Ns5511 accumulated high yield under low density, whereas, at Ofcolaco, the higher yield was recorded under high density. Generally, under low cowpea density, cultivar Enforcer produced relatively higher grain yield whereas, under higher density, Titan yield was superior. The partial and total LER varied with growing season and the treatments studied. The total LERs exceeded 1.0 at the two locations across seasons, ranging from 1.3 to 1.8. From the results, it can be concluded that resources were used more efficiently in sorghum-cowpea intercrop at both Syferkuil and Ofcolaco. Furthermore, intercropping system improved photosynthetic rate, grain yield, and dry matter accumulation of sorghum and cowpea depending on growing conditions and density of cowpea. Hence, the sorghum-cowpea intercropping system can be adopted as a climate-smart practice for sustainable production in the Limpopo province.Keywords: cowpea, climate-smart, grain sorghum, intercropping
Procedia PDF Downloads 2224993 Prediction of Positive Cloud-to-Ground Lightning Striking Zones for Charged Thundercloud Based on Line Charge Model
Authors: Surajit Das Barman, Rakibuzzaman Shah, Apurv Kumar
Abstract:
Bushfire is known as one of the ascendant factors to create pyrocumulus thundercloud that causes the ignition of new fires by pyrocumulonimbus (pyroCb) lightning strikes and creates major losses of lives and property worldwide. A conceptual model-based risk planning would be beneficial to predict the lightning striking zones on the surface of the earth underneath the pyroCb thundercloud. PyroCb thundercloud can generate both positive cloud-to-ground (+CG) and negative cloud-to-ground (-CG) lightning in which +CG tends to ignite more bushfires and cause massive damage to nature and infrastructure. In this paper, a simple line charge structured thundercloud model is constructed in 2-D coordinates using the method of image charge to predict the probable +CG lightning striking zones on the earth’s surface for two conceptual thundercloud charge configurations: titled dipole and conventional tripole structure with excessive lower positive charge regions that lead to producing +CG lightning. The electric potential and surface charge density along the earth’s surface for both structures via continuously adjusting the position and the charge density of their charge regions is investigated. Simulation results for tilted dipole structure confirm the down-shear extension of the upper positive charge region in the direction of the cloud’s forward flank by 4 to 8 km, resulting in negative surface density, and would expect +CG lightning to strike within 7.8 km to 20 km around the earth periphery in the direction of the cloud’s forward flank. On the other hand, the conceptual tripole charge structure with enhanced lower positive charge region develops negative surface charge density on the earth’s surface in the range |x| < 6.5 km beneath the thundercloud and highly favors producing +CG lightning strikes.Keywords: pyrocumulonimbus, cloud-to-ground lightning, charge structure, surface charge density, forward flank
Procedia PDF Downloads 1134992 Electron Beam Processing of Ethylene-Propylene-Terpolymer-Based Rubber Mixtures
Authors: M. D. Stelescu, E. Manaila, G. Craciun, D. Ighigeanu
Abstract:
The goal of the paper is to present the results regarding the influence of the irradiation dose and amount of multifunctional monomer trimethylol-propane trimethacrylate (TMPT) on ethylene-propylene-diene terpolymer rubber (EPDM) mixtures irradiated in electron beam. Blends, molded on an electrically heated laboratory roller mill and compressed in an electrically heated hydraulic press, were irradiated using the ALID 7 of 5.5 MeV linear accelerator in the dose range of 22.6 kGy to 56.5 kGy in atmospheric conditions and at room temperature of 25 °C. The share of cross-linking and degradation reactions was evaluated by means of sol-gel analysis, cross-linking density measurements, FTIR studies and Charlesby-Pinner parameter (p0/q0) calculations. The blends containing different concentrations of TMPT (3 phr and 9 phr) and irradiated with doses in the mentioned range have present the increasing of gel content and cross-linking density. Modified and new bands in FTIR spectra have appeared, because of both cross-linking and chain scission reactions.Keywords: electron beam irradiation, EPDM rubber, crosslinking density, gel fraction
Procedia PDF Downloads 1554991 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils
Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa
Abstract:
Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress
Procedia PDF Downloads 3624990 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method
Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad
Abstract:
The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.Keywords: finite element method, flux density, transformer, voltage gradient
Procedia PDF Downloads 292