Search results for: optimization algorithms
442 Backwash Optimization for Drinking Water Treatment Biological Filters
Authors: Sarra K. Ikhlef, Onita Basu
Abstract:
Natural organic matter (NOM) removal efficiency using drinking water treatment biological filters can be highly influenced by backwashing conditions. Backwashing has the ability to remove the accumulated biomass and particles in order to regenerate the biological filters' removal capacity and prevent excessive headloss buildup. A lab scale system consisting of 3 biological filters was used in this study to examine the implications of different backwash strategies on biological filtration performance. The backwash procedures were evaluated based on their impacts on dissolved organic carbon (DOC) removals, biological filters’ biomass, backwash water volume usage, and particle removal. Results showed that under nutrient limited conditions, the simultaneous use of air and water under collapse pulsing conditions lead to a DOC removal of 22% which was significantly higher (p>0.05) than the 12% removal observed under water only backwash conditions. Employing a bed expansion of 20% under nutrient supplemented conditions compared to a 30% reference bed expansion while using the same amount of water volume lead to similar DOC removals. On the other hand, utilizing a higher bed expansion (40%) lead to significantly lower DOC removals (23%). Also, a backwash strategy that reduced the backwash water volume usage by about 20% resulted in similar DOC removals observed with the reference backwash. The backwash procedures investigated in this study showed no consistent impact on biological filters' biomass concentrations as measured by the phospholipids and the adenosine tri-phosphate (ATP) methods. Moreover, none of these two analyses showed a direct correlation with DOC removal. On the other hand, dissolved oxygen (DO) uptake showed a direct correlation with DOC removals. The addition of the extended terminal subfluidization wash (ETSW) demonstrated no apparent impact on DOC removals. ETSW also successfully eliminated the filter ripening sequence (FRS). As a result, the additional water usage resulting from implementing ETSW was compensated by water savings after restart. Results from this study provide insight to researchers and water treatment utilities on how to better optimize the backwashing procedure for the goal of optimizing the overall biological filtration process.Keywords: biological filtration, backwashing, collapse pulsing, ETSW
Procedia PDF Downloads 271441 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 482440 Modelling of Solidification in a Latent Thermal Energy Storage with a Finned Tube Bundle Heat Exchanger Unit
Authors: Remo Waser, Simon Maranda, Anastasia Stamatiou, Ludger J. Fischer, Joerg Worlitschek
Abstract:
In latent heat storage, a phase change material (PCM) is used to store thermal energy. The heat transfer rate during solidification is limited and considered as a key challenge in the development of latent heat storages. Thus, finned heat exchangers (HEX) are often utilized to increase the heat transfer rate of the storage system. In this study, a new modeling approach to calculating the heat transfer rate in latent thermal energy storages with complex HEX geometries is presented. This model allows for an optimization of the HEX design in terms of costs and thermal performance of the system. Modeling solidification processes requires the calculation of time-dependent heat conduction with moving boundaries. Commonly used computational fluid dynamic (CFD) methods enable the analysis of the heat transfer in complex HEX geometries. If applied to the entire storage, the drawback of this approach is the high computational effort due to small time steps and fine computational grids required for accurate solutions. An alternative to describe the process of solidification is the so-called temperature-based approach. In order to minimize the computational effort, a quasi-stationary assumption can be applied. This approach provides highly accurate predictions for tube heat exchangers. However, it shows unsatisfactory results for more complex geometries such as finned tube heat exchangers. The presented simulation model uses a temporal and spatial discretization of heat exchanger tube. The spatial discretization is based on the smallest possible symmetric segment of the HEX. The heat flow in each segment is calculated using finite volume method. Since the heat transfer fluid temperature can be derived using energy conservation equations, the boundary conditions at the inner tube wall is dynamically updated for each time step and segment. The model allows a prediction of the thermal performance of latent thermal energy storage systems using complex HEX geometries with considerably low computational effort.Keywords: modelling of solidification, finned tube heat exchanger, latent thermal energy storage
Procedia PDF Downloads 265439 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0
Authors: Harris Niavis, Dimitra Politaki
Abstract:
The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.Keywords: blockchain, data quality, industry4.0, product quality
Procedia PDF Downloads 188438 Sweepline Algorithm for Voronoi Diagram of Polygonal Sites
Authors: Dmitry A. Koptelov, Leonid M. Mestetskiy
Abstract:
Voronoi Diagram (VD) of finite set of disjoint simple polygons, called sites, is a partition of plane into loci (for each site at the locus) – regions, consisting of points that are closer to a given site than to all other. Set of polygons is a universal model for many applications in engineering, geoinformatics, design, computer vision, and graphics. VD of polygons construction usually done with a reduction to task of constructing VD of segments, for which there are effective O(n log n) algorithms for n segments. Preprocessing – constructing segments from polygons’ sides, and postprocessing – polygon’s loci construction by merging the loci of the sides of each polygon are also included in reduction. This approach doesn’t take into account two specific properties of the resulting segment sites. Firstly, all this segments are connected in pairs in the vertices of the polygons. Secondly, on the one side of each segment lies the interior of the polygon. The polygon is obviously included in its locus. Using this properties in the algorithm for VD construction is a resource to reduce computations. The article proposes an algorithm for the direct construction of VD of polygonal sites. Algorithm is based on sweepline paradigm, allowing to effectively take into account these properties. The solution is performed based on reduction. Preprocessing is the constructing of set of sites from vertices and edges of polygons. Each site has an orientation such that the interior of the polygon lies to the left of it. Proposed algorithm constructs VD for set of oriented sites with sweepline paradigm. Postprocessing is a selecting of edges of this VD formed by the centers of empty circles touching different polygons. Improving the efficiency of the proposed sweepline algorithm in comparison with the general Fortune algorithm is achieved due to the following fundamental solutions: 1. Algorithm constructs only such VD edges, which are on the outside of polygons. Concept of oriented sites allowed to avoid construction of VD edges located inside the polygons. 2. The list of events in sweepline algorithm has a special property: the majority of events are connected with “medium” polygon vertices, where one incident polygon side lies behind the sweepline and the other in front of it. The proposed algorithm processes such events in constant time and not in logarithmic time, as in the general Fortune algorithm. The proposed algorithm is fully implemented and tested on a large number of examples. The high reliability and efficiency of the algorithm is also confirmed by computational experiments with complex sets of several thousand polygons. It should be noted that, despite the considerable time that has passed since the publication of Fortune's algorithm in 1986, a full-scale implementation of this algorithm for an arbitrary set of segment sites has not been made. The proposed algorithm fills this gap for an important special case - a set of sites formed by polygons.Keywords: voronoi diagram, sweepline, polygon sites, fortunes' algorithm, segment sites
Procedia PDF Downloads 174437 Effect of Proteoliposome Concentration on Salt Rejection Rate of Polysulfone Membrane Prepared by Incorporation of Escherichia coli and Halomonas elongata Aquaporins
Authors: Aysenur Ozturk, Aysen Yildiz, Hilal Yilmaz, Pinar Ergenekon, Melek Ozkan
Abstract:
Water scarcity is one of the most important environmental problems of the World today. Desalination process is regarded as a promising solution to solve drinking water problem of the countries facing with water shortages. Reverse osmosis membranes are widely used for desalination processes. Nano structured biomimetic membrane production is one of the most challenging research subject for improving water filtration efficiency of the membranes and for reducing the cost of desalination processes. There are several researches in the literature on the development of novel biomimetic nanofiltration membranes by incorporation of aquaporin Z molecules. Aquaporins are cell membrane proteins that allow the passage of water molecules and reject all other dissolved solutes. They are present in cell membranes of most of the living organisms and provide high water passage capacity. In this study, GST (Glutathione S-transferas) tagged E. coli aquaporinZ and H. elongate aquaporin proteins, which were previously cloned and characterized, were purified from E. coli BL21 cells and used for fabrication of modified Polysulphone Membrane (PS). Aquaporins were incorporated on the surface of the membrane by using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) phospolipids as carrier liposomes. Aquaporin containing proteoliposomes were immobilized on the surface of the membrane with m-phenylene-diamine (MPD) and trimesoyl chloride (TMC) rejection layer. Water flux, salt rejection and glucose rejection performances of the thin film composite membranes were tested by using Dead-End Reactor Cell. In this study, effect of proteoliposome concentration, and filtration pressure on water flux and salt rejection rate of membranes were investigated. Type of aquaporin used for membrane fabrication, flux and pressure applied for filtration were found to be important parameters affecting rejection rates. Results suggested that optimization of concentration of aquaporin carriers (proteoliposomes) on the membrane surface is necessary for fabrication of effective composite membranes used for different purposes.Keywords: aquaporins, biomimmetic membranes, desalination, water treatment
Procedia PDF Downloads 197436 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification
Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi
Abstract:
Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix
Procedia PDF Downloads 134435 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model
Authors: Tanu Khanuja, Harikrishnan N. Unni
Abstract:
Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress
Procedia PDF Downloads 159434 Multi-Criteria Evolutionary Algorithm to Develop Efficient Schedules for Complex Maintenance Problems
Authors: Sven Tackenberg, Sönke Duckwitz, Andreas Petz, Christopher M. Schlick
Abstract:
This paper introduces an extension to the well-established Resource-Constrained Project Scheduling Problem (RCPSP) to apply it to complex maintenance problems. The problem is to assign technicians to a team which has to process several tasks with multi-level skill requirements during a work shift. Here, several alternative activities for a task allow both, the temporal shift of activities or the reallocation of technicians and tools. As a result, switches from one valid work process variant to another can be considered and may be selected by the developed evolutionary algorithm based on the present skill level of technicians or the available tools. An additional complication of the observed scheduling problem is that the locations of the construction sites are only temporarily accessible during a day. Due to intensive rail traffic, the available time slots for maintenance and repair works are extremely short and are often distributed throughout the day. To identify efficient working periods, a first concept of a Bayesian network is introduced and is integrated into the extended RCPSP with pre-emptive and non-pre-emptive tasks. Thereby, the Bayesian network is used to calculate the probability of a maintenance task to be processed during a specific period of the shift. Focusing on the domain of maintenance of the railway infrastructure in metropolitan areas as the most unproductive implementation process at construction site, the paper illustrates how the extended RCPSP can be applied for maintenance planning support. A multi-criteria evolutionary algorithm with a problem representation is introduced which is capable of revising technician-task allocations, whereas the duration of the task may be stochastic. The approach uses a novel activity list representation to ensure easily describable and modifiable elements which can be converted into detailed shift schedules. Thereby, the main objective is to develop a shift plan which maximizes the utilization of each technician due to a minimization of the waiting times caused by rail traffic. The results of the already implemented core algorithm illustrate a fast convergence towards an optimal team composition for a shift, an efficient sequence of tasks and a high probability of the subsequent implementation due to the stochastic durations of the tasks. In the paper, the algorithm for the extended RCPSP is analyzed in experimental evaluation using real-world example problems with various size, resource complexity, tightness and so forth.Keywords: maintenance management, scheduling, resource constrained project scheduling problem, genetic algorithms
Procedia PDF Downloads 231433 Elaboration of Ceramic Metal Accident Tolerant Fuels by Additive Manufacturing
Authors: O. Fiquet, P. Lemarignier
Abstract:
Additive manufacturing may find numerous applications in the nuclear industry, for the same reason as for other industries, to enlarge design possibilities and performances and develop fabrication methods as a flexible route for future innovation. Additive Manufacturing applications in the design of structural metallic components for reactors are already developed at a high Technology Readiness Level (TRL). In the case of a Pressured Water Reactor using uranium oxide fuel pellets, which are ceramics, the transposition of already optimized Additive Manufacturing (AM) processes to UO₂ remains a challenge, and the progress remains slow because, to our best knowledge, only a few laboratories have the capability of developing processes applicable to UO₂. After the Fukushima accident, numerous research fields emerged with the study of ATF (Accident tolerant Fuel) fuel concepts, which aimed to improve fuel behaviour. One item concerns the increase of the pellet thermal performance by, for example, the addition of high thermal conductivity material into fissile UO₂. This additive phase may be metallic, and the end product will constitute a CERMET composite. Innovative designs of an internal metallic framework are proposed based on predictive calculations. However, because the well-known reference pellet manufacturing methods impose many limitations, manufacturing such a composite remains an arduous task. Therefore, the AM process appears as a means of broadening the design possibilities of CERMET manufacturing. If the external form remains a standard cylindrical fuel pellet, the internal metallic design remains to be optimized based on process capabilities. This project also considers the limitation to a maximum of 10% volume of metal, which is a constraint neutron physics considerations impose. The AM technique chosen for this development is robocasting because of its simplicity and low-cost equipment. It remains, however, a challenge to adapt a ceramic 3D printing process for the fabrication of UO₂ fuel. The investigation starts with surrogate material, and the optimization of slurry feedstock is based on alumina. The paper will present the first printing of Al2O3-Mo CERMET and the expected transition from ceramic-based alumina to UO₂ CERMET.Keywords: nuclear, fuel, CERMET, robocasting
Procedia PDF Downloads 64432 Hybrid Precoder Design Based on Iterative Hard Thresholding Algorithm for Millimeter Wave Multiple-Input-Multiple-Output Systems
Authors: Ameni Mejri, Moufida Hajjaj, Salem Hasnaoui, Ridha Bouallegue
Abstract:
The technology advances have most lately made the millimeter wave (mmWave) communication possible. Due to the huge amount of spectrum that is available in MmWave frequency bands, this promising candidate is considered as a key technology for the deployment of 5G cellular networks. In order to enhance system capacity and achieve spectral efficiency, very large antenna arrays are employed at mmWave systems by exploiting array gain. However, it has been shown that conventional beamforming strategies are not suitable for mmWave hardware implementation. Therefore, new features are required for mmWave cellular applications. Unlike traditional multiple-input-multiple-output (MIMO) systems for which only digital precoders are essential to accomplish precoding, MIMO technology seems to be different at mmWave because of digital precoding limitations. Moreover, precoding implements a greater number of radio frequency (RF) chains supporting more signal mixers and analog-to-digital converters. As RF chain cost and power consumption is increasing, we need to resort to another alternative. Although the hybrid precoding architecture has been regarded as the best solution based on a combination between a baseband precoder and an RF precoder, we still do not get the optimal design of hybrid precoders. According to the mapping strategies from RF chains to the different antenna elements, there are two main categories of hybrid precoding architecture. Given as a hybrid precoding sub-array architecture, the partially-connected structure reduces hardware complexity by using a less number of phase shifters, whereas it sacrifices some beamforming gain. In this paper, we treat the hybrid precoder design in mmWave MIMO systems as a problem of matrix factorization. Thus, we adopt the alternating minimization principle in order to solve the design problem. Further, we present our proposed algorithm for the partially-connected structure, which is based on the iterative hard thresholding method. Through simulation results, we show that our hybrid precoding algorithm provides significant performance gains over existing algorithms. We also show that the proposed approach reduces significantly the computational complexity. Furthermore, valuable design insights are provided when we use the proposed algorithm to make simulation comparisons between the hybrid precoding partially-connected structure and the fully-connected structure.Keywords: alternating minimization, hybrid precoding, iterative hard thresholding, low-complexity, millimeter wave communication, partially-connected structure
Procedia PDF Downloads 321431 A Good Start for Digital Transformation of the Companies: A Literature and Experience-Based Predefined Roadmap
Authors: Batuhan Kocaoglu
Abstract:
Nowadays digital transformation is a hot topic both in service and production business. For the companies who want to stay alive in the following years, they should change how they do their business. Industry leaders started to improve their ERP (Enterprise Resource Planning) like backbone technologies to digital advances such as analytics, mobility, sensor-embedded smart devices, AI (Artificial Intelligence) and more. Selecting the appropriate technology for the related business problem also is a hot topic. Besides this, to operate in the modern environment and fulfill rapidly changing customer expectations, a digital transformation of the business is required and change the way the business runs, affect how they do their business. Even the digital transformation term is trendy the literature is limited and covers just the philosophy instead of a solid implementation plan. Current studies urge firms to start their digital transformation, but few tell us how to do. The huge investments scare companies with blur definitions and concepts. The aim of this paper to solidify the steps of the digital transformation and offer a roadmap for the companies and academicians. The proposed roadmap is developed based upon insights from the literature review, semi-structured interviews, and expert views to explore and identify crucial steps. We introduced our roadmap in the form of 8 main steps: Awareness; Planning; Operations; Implementation; Go-live; Optimization; Autonomation; Business Transformation; including a total of 11 sub-steps with examples. This study also emphasizes four dimensions of the digital transformation mainly: Readiness assessment; Building organizational infrastructure; Building technical infrastructure; Maturity assessment. Finally, roadmap corresponds the steps with three main terms used in digital transformation literacy as Digitization; Digitalization; and Digital Transformation. The resulted model shows that 'business process' and 'organizational issues' should be resolved before technology decisions and 'digitization'. Companies can start their journey with the solid steps, using the proposed roadmap to increase the success of their project implementation. Our roadmap is also adaptable for relevant Industry 4.0 and enterprise application projects. This roadmap will be useful for companies to persuade their top management for investments. Our results can be used as a baseline for further researches related to readiness assessment and maturity assessment studies.Keywords: digital transformation, digital business, ERP, roadmap
Procedia PDF Downloads 168430 A Statistical-Algorithmic Approach for the Design and Evaluation of a Fresnel Solar Concentrator-Receiver System
Authors: Hassan Qandil
Abstract:
Using a statistical algorithm incorporated in MATLAB, four types of non-imaging Fresnel lenses are designed; spot-flat, linear-flat, dome-shaped and semi-cylindrical-shaped. The optimization employs a statistical ray-tracing methodology of the incident light, mainly considering effects of chromatic aberration, varying focal lengths, solar inclination and azimuth angles, lens and receiver apertures, and the optimum number of prism grooves. While adopting an equal-groove-width assumption of the Poly-methyl-methacrylate (PMMA) prisms, the main target is to maximize the ray intensity on the receiver’s aperture and therefore achieving higher values of heat flux. The algorithm outputs prism angles and 2D sketches. 3D drawings are then generated via AutoCAD and linked to COMSOL Multiphysics software to simulate the lenses under solar ray conditions, which provides optical and thermal analysis at both the lens’ and the receiver’s apertures while setting conditions as per the Dallas-TX weather data. Once the lenses’ characterization is finalized, receivers are designed based on its optimized aperture size. Several cavity shapes; including triangular, arc-shaped and trapezoidal, are tested while coupled with a variety of receiver materials, working fluids, heat transfer mechanisms, and enclosure designs. A vacuum-reflective enclosure is also simulated for an enhanced thermal absorption efficiency. Each receiver type is simulated via COMSOL while coupled with the optimized lens. A lab-scale prototype for the optimum lens-receiver configuration is then fabricated for experimental evaluation. Application-based testing is also performed for the selected configuration, including that of a photovoltaic-thermal cogeneration system and solar furnace system. Finally, some future research work is pointed out, including the coupling of the collector-receiver system with an end-user power generator, and the use of a multi-layered genetic algorithm for comparative studies.Keywords: COMSOL, concentrator, energy, fresnel, optics, renewable, solar
Procedia PDF Downloads 152429 Structure-Guided Optimization of Sulphonamide as Gamma–Secretase Inhibitors for the Treatment of Alzheimer’s Disease
Authors: Vaishali Patil, Neeraj Masand
Abstract:
In older people, Alzheimer’s disease (AD) is turning out to be a lethal disease. According to the amyloid hypothesis, aggregation of the amyloid β–protein (Aβ), particularly its 42-residue variant (Aβ42), plays direct role in the pathogenesis of AD. Aβ is generated through sequential cleavage of amyloid precursor protein (APP) by β–secretase (BACE) and γ–secretase (GS). Thus in the treatment of AD, γ-secretase modulators (GSMs) are potential disease-modifying as they selectively lower pathogenic Aβ42 levels by shifting the enzyme cleavage sites without inhibiting γ–secretase activity. This possibly avoids known adverse effects observed with complete inhibition of the enzyme complex. Virtual screening, via drug-like ADMET filter, QSAR and molecular docking analyses, has been utilized to identify novel γ–secretase modulators with sulphonamide nucleus. Based on QSAR analyses and docking score, some novel analogs have been synthesized. The results obtained by in silico studies have been validated by performing in vivo analysis. In the first step, behavioral assessment has been carried out using Scopolamine induced amnesia methodology. Later the same series has been evaluated for neuroprotective potential against the oxidative stress induced by Scopolamine. Biochemical estimation was performed to evaluate the changes in biochemical markers of Alzheimer’s disease such as lipid peroxidation (LPO), Glutathione reductase (GSH), and Catalase. The Scopolamine induced amnesia model has shown increased Acetylcholinesterase (AChE) levels and the inhibitory effect of test compounds in the brain AChE levels have been evaluated. In all the studies Donapezil (Dose: 50µg/kg) has been used as reference drug. The reduced AChE activity is shown by compounds 3f, 3c, and 3e. In the later stage, the most potent compounds have been evaluated for Aβ42 inhibitory profile. It can be hypothesized that this series of alkyl-aryl sulphonamides exhibit anti-AD activity by inhibition of Acetylcholinesterase (AChE) enzyme as well as inhibition of plaque formation on prolong dosage along with neuroprotection from oxidative stress.Keywords: gamma-secretase inhibitors, Alzzheimer's disease, sulphonamides, QSAR
Procedia PDF Downloads 252428 Development of a Coupled Thermal-Mechanical-Biological Model to Simulate Impacts of Temperature on Waste Stabilization at a Landfill in Quebec, Canada
Authors: Simran Kaur, Paul J. Van Geel
Abstract:
A coupled Thermal-Mechanical-Biological (TMB) model was developed for the analysis of impacts of temperatures on waste stabilization at a Municipal Solid Waste (MSW) landfill in Quebec, Canada using COMSOL Multiphysics, a finite element-based software. For waste placed in landfills in Northern climates during winter months, it can take months or even years before the waste approaches ideal temperatures for biodegradation to occur. Therefore, the proposed model links biodegradation induced strain in MSW to waste temperatures and corresponding heat generation rates as a result of anaerobic degradation. This provides a link between the thermal-biological and mechanical behavior of MSW. The thermal properties of MSW are further linked to density which is tracked and updated in the mechanical component of the model, providing a mechanical-thermal link. The settlement of MSW is modelled based on the concept of viscoelasticity. The specific viscoelastic model used is a single Kelvin – Voight viscoelastic body in which the finite element response is controlled by the elastic material parameters – Young’s Modulus and Poisson’s ratio. The numerical model was validated with 10 years of temperature and settlement data collected from a landfill in Ste. Sophie, Quebec. The coupled TMB modelling framework, which simulates placement of waste lifts as they are placed progressively in the landfill, allows for optimization of several thermal and mechanical parameters throughout the depth of the waste profile and helps in better understanding of temperature dependence of MSW stabilization. The model is able to illustrate how waste placed in the winter months can delay biodegradation-induced settlement and generation of landfill gas. A delay in waste stabilization will impact the utilization of the approved airspace prior to the placement of a final cover and impact post-closure maintenance. The model provides a valuable tool to assess different waste placement strategies in order to increase airspace utilization within landfills operating under different climates, in addition to understanding conditions for increased gas generation for recovery as a green and renewable energy source.Keywords: coupled model, finite element modeling, landfill, municipal solid waste, waste stabilization
Procedia PDF Downloads 130427 The Effect of Different Concentrations of Extracting Solvent on the Polyphenolic Content and Antioxidant Activity of Gynura procumbens Leaves
Authors: Kam Wen Hang, Tan Kee Teng, Huang Poh Ching, Chia Kai Xiang, H. V. Annegowda, H. S. Naveen Kumar
Abstract:
Gynura procumbens (G. procumbens) leaves, commonly known as ‘sambung nyawa’ in Malaysia is a well-known medicinal plant commonly used as folk medicines in controlling blood glucose, cholesterol level as well as treating cancer. These medicinal properties were believed to be related to the polyphenolic content present in G. procumbens extract, therefore optimization of its extraction process is vital to obtain highest possible antioxidant activities. The current study was conducted to investigate the effect of different concentrations of extracting solvent (ethanol) on the amount of polyphenolic content and antioxidant activities of G. procumbens leaf extract. The concentrations of ethanol used were 30-70%, with the temperature and time kept constant at 50°C and 30 minutes, respectively using ultrasound-assisted extraction. The polyphenolic content of these extracts were quantified by Folin-Ciocalteu colorimetric method and results were expressed as milligram gallic acid equivalent (mg GAE)/g. Phosphomolybdenum method and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assays were used to investigate the antioxidant properties of the extract and the results were expressed as milligram ascorbic acid equivalent (mg AAE)/g and effective concentration (EC50) respectively. Among the three different (30%, 50% and 70%) concentrations of ethanol studied, the 50% ethanolic extract showed total phenolic content of 31.565 ± 0.344 mg GAE/g and total antioxidant activity of 78.839 ± 0.199 mg AAE/g while 30% ethanolic extract showed 29.214 ± 0.645 mg GAE/g and 70.701 ± 1.394 mg AAE/g, respectively. With respect to DPPH radical scavenging assay, 50% ethanolic extract had exhibited slightly lower EC50 (314.3 ± 4.0 μg/ml) values compared to 30% ethanol extract (340.4 ± 5.3 μg/ml). Out of all the tested extracts, 70% ethanolic extract exhibited significantly (p< 0.05) highest total phenolic content (38.000 ± 1.009 mg GAE/g), total antioxidant capacity (95.874 ± 2.422 mg AAE/g) and demonstrated the lowest EC50 in DPPH assay (244.2 ± 5.9 μg/ml). An excellent correlations were drawn between total phenolic content, total antioxidant capacity and DPPH radical scavenging activity (R2 = 0.949 and R2 = 0.978, respectively). It was concluded from this study that, 70% ethanol should be used as the optimal polarity solvent to obtain G. procumbens leaf extract with maximum polyphenolic content with antioxidant properties.Keywords: antioxidant activity, DPPH assay, Gynura procumbens, phenolic compounds
Procedia PDF Downloads 411426 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement
Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes
Abstract:
Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology
Procedia PDF Downloads 78425 The Advancement of Smart Cushion Product and System Design Enhancing Public Health and Well-Being at Workplace
Authors: Dosun Shin, Assegid Kidane, Pavan Turaga
Abstract:
According to the National Institute of Health, living a sedentary lifestyle leads to a number of health issues, including increased risk of cardiovascular dis-ease, type 2 diabetes, obesity, and certain types of cancers. This project brings together experts in multiple disciplines to bring product design, sensor design, algorithms, and health intervention studies to develop a product and system that helps reduce the amount of time sitting at the workplace. This paper illustrates ongoing improvements to prototypes the research team developed in initial research; including working prototypes with a software application, which were developed and demonstrated for users. Additional modifications were made to improve functionality, aesthetics, and ease of use, which will be discussed in this paper. Extending on the foundations created in the initial phase, our approach sought to further improve the product by conducting additional human factor research, studying deficiencies in competitive products, testing various materials/forms, developing working prototypes, and obtaining feedback from additional potential users. The solution consisted of an aesthetically pleasing seat cover cushion that easily attaches to common office chairs found in most workplaces, ensuring a wide variety of people can use the product. The product discreetly contains sensors that track when the user sits on their chair, sending information to a phone app that triggers reminders for users to stand up and move around after sitting for a set amount of time. This paper also presents the analyzed typical office aesthetics and selected materials, colors, and forms that complimented the working environment. Comfort and ease of use remained a high priority as the design team sought to provide a product and system that integrated into the workplace. As the research team continues to test, improve, and implement this solution for the sedentary workplace, the team seeks to create a viable product that acts as an impetus for a more active workday and lifestyle, further decreasing the proliferation of chronic disease and health issues for sedentary working people. This paper illustrates in detail the processes of engineering, product design, methodology, and testing results.Keywords: anti-sedentary work behavior, new product development, sensor design, health intervention studies
Procedia PDF Downloads 157424 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 49423 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill
Authors: Jagdish Prasad Sahoo
Abstract:
The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.Keywords: active, finite elements, limit analysis, presudo-static, reinforcement
Procedia PDF Downloads 364422 Ethicality of Algorithmic Pricing and Consumers’ Resistance
Authors: Zainab Atia, Hongwei He, Panagiotis Sarantopoulos
Abstract:
Over the past few years, firms have witnessed a massive increase in sophisticated algorithmic deployment, which has become quite pervasive in today’s modern society. With the wide availability of data for retailers, the ability to track consumers using algorithmic pricing has become an integral option in online platforms. As more companies are transforming their businesses and relying more on massive technological advancement, pricing algorithmic systems have brought attention and given rise to its wide adoption, with many accompanying benefits and challenges to be found within its usage. With the overall aim of increasing profits by organizations, algorithmic pricing is becoming a sound option by enabling suppliers to cut costs, allowing better services, improving efficiency and product availability, and enhancing overall consumer experiences. The adoption of algorithms in retail has been pioneered and widely used in literature across varied fields, including marketing, computer science, engineering, economics, and public policy. However, what is more, alarming today is the comprehensive understanding and focus of this technology and its associated ethical influence on consumers’ perceptions and behaviours. Indeed, due to algorithmic ethical concerns, consumers are found to be reluctant in some instances to share their personal data with retailers, which reduces their retention and leads to negative consumer outcomes in some instances. This, in its turn, raises the question of whether firms can still manifest the acceptance of such technologies by consumers while minimizing the ethical transgressions accompanied by their deployment. As recent modest research within the area of marketing and consumer behavior, the current research advances the literature on algorithmic pricing, pricing ethics, consumers’ perceptions, and price fairness literature. With its empirical focus, this paper aims to contribute to the literature by applying the distinction of the two common types of algorithmic pricing, dynamic and personalized, while measuring their relative effect on consumers’ behavioural outcomes. From a managerial perspective, this research offers significant implications that pertain to providing a better human-machine interactive environment (whether online or offline) to improve both businesses’ overall performance and consumers’ wellbeing. Therefore, by allowing more transparent pricing systems, businesses can harness their generated ethical strategies, which fosters consumers’ loyalty and extend their post-purchase behaviour. Thus, by defining the correct balance of pricing and right measures, whether using dynamic or personalized (or both), managers can hence approach consumers more ethically while taking their expectations and responses at a critical stance.Keywords: algorithmic pricing, dynamic pricing, personalized pricing, price ethicality
Procedia PDF Downloads 90421 Adsorptive Media Selection for Bilirubin Removal: An Adsorption Equilibrium Study
Authors: Vincenzo Piemonte
Abstract:
The liver is a complex, large-scale biochemical reactor which plays a unique role in the human physiology. When liver ceases to perform its physiological activity, a functional replacement is required. Actually, liver transplantation is the only clinically effective method of treating severe liver disease. Anyway, the aforementioned therapeutic approach is hampered by the disparity between organ availability and the number of patients on the waiting list. In order to overcome this critical issue, research activities focused on liver support device systems (LSDs) designed to bridging patients to transplantation or to keep them alive until the recovery of native liver function. In recirculating albumin dialysis devices, such as MARS (Molecular Adsorbed Recirculating System), adsorption is one of the fundamental steps in albumin-dialysate regeneration. Among the albumin-bound toxins that must be removed from blood during liver-failure therapy, bilirubin and tryptophan can be considered as representative of two different toxin classes. The first one, not water soluble at physiological blood pH and strongly bounded to albumin, the second one, loosely albumin bound and partially water soluble at pH 7.4. Fixed bed units are normally used for this task, and the design of such units requires information both on toxin adsorption equilibrium and kinetics. The most common adsorptive media used in LSDs are activated carbon, non-ionic polymeric resins and anionic resins. In this paper, bilirubin adsorption isotherms on different adsorptive media, such as polymeric resin, albumin-coated resin, anionic resin, activated carbon and alginate beads with entrapped albumin are presented. By comparing all the results, it can be stated that the adsorption capacity for bilirubin of the five different media increases in the following order: Alginate beads < Polymeric resin < Albumin-coated resin < Activated carbon < Anionic resin. The main focus of this paper is to provide useful guidelines for the optimization of liver support devices which implement adsorption columns to remove albumin-bound toxins from albumin dialysate solutions.Keywords: adsorptive media, adsorption equilibrium, artificial liver devices, bilirubin, mathematical modelling
Procedia PDF Downloads 254420 Inversion of PROSPECT+SAIL Model for Estimating Vegetation Parameters from Hyperspectral Measurements with Application to Drought-Induced Impacts Detection
Authors: Bagher Bayat, Wouter Verhoef, Behnaz Arabi, Christiaan Van der Tol
Abstract:
The aim of this study was to follow the canopy reflectance patterns in response to soil water deficit and to detect trends of changes in biophysical and biochemical parameters of grass (Poa pratensis species). We used visual interpretation, imaging spectroscopy and radiative transfer model inversion to monitor the gradual manifestation of water stress effects in a laboratory setting. Plots of 21 cm x 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were subjected to water stress for 50 days. In a regular weekly schedule, canopy reflectance was measured. In addition, Leaf Area Index (LAI), Chlorophyll (a+b) content (Cab) and Leaf Water Content (Cw) were measured at regular time intervals. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted using hyperspectral measurements by means of an iterative optimization method to retrieve vegetation biophysical and biochemical parameters. The relationships between retrieved LAI, Cab, Cw, and Cs (Senescent material) with soil moisture content were established in two separated groups; stress and non-stressed. To differentiate the water stress condition from the non-stressed condition, a threshold was defined that was based on the laboratory produced Soil Water Characteristic (SWC) curve. All parameters retrieved by model inversion using canopy spectral data showed good correlation with soil water content in the water stress condition. These parameters co-varied with soil moisture content under the stress condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 and LAI: R2=0.48) at the canopy level. To validate the results, the relationship between vegetation parameters that were measured in the laboratory and soil moisture content was established. The results were totally in agreement with the modeling outputs and confirmed the results produced by radiative transfer model inversion and spectroscopy. Since water stress changes all parts of the spectrum, we concluded that analysis of the reflectance spectrum in the VIS-NIR-MIR region is a promising tool for monitoring water stress impacts on vegetation.Keywords: hyperspectral remote sensing, model inversion, vegetation responses, water stress
Procedia PDF Downloads 223419 Nanobiosensor System for Aptamer Based Pathogen Detection in Environmental Waters
Authors: Nimet Yildirim Tirgil, Ahmed Busnaina, April Z. Gu
Abstract:
Environmental waters are monitored worldwide to protect people from infectious diseases primarily caused by enteric pathogens. All long, Escherichia coli (E. coli) is a good indicator for potential enteric pathogens in waters. Thus, a rapid and simple detection method for E. coli is very important to predict the pathogen contamination. In this study, to the best of our knowledge, as the first time we developed a rapid, direct and reusable SWCNTs (single walled carbon nanotubes) based biosensor system for sensitive and selective E. coli detection in water samples. We use a novel and newly developed flexible biosensor device which was fabricated by high-rate nanoscale offset printing process using directed assembly and transfer of SWCNTs. By simple directed assembly and non-covalent functionalization, aptamer (biorecognition element that specifically distinguish the E. coli O157:H7 strain from other pathogens) based SWCNTs biosensor system was designed and was further evaluated for environmental applications with simple and cost-effective steps. The two gold electrode terminals and SWCNTs-bridge between them allow continuous resistance response monitoring for the E. coli detection. The detection procedure is based on competitive mode detection. A known concentration of aptamer and E. coli cells were mixed and after a certain time filtered. The rest of free aptamers injected to the system. With hybridization of the free aptamers and their SWCNTs surface immobilized probe DNA (complementary-DNA for E. coli aptamer), we can monitor the resistance difference which is proportional to the amount of the E. coli. Thus, we can detect the E. coli without injecting it directly onto the sensing surface, and we could protect the electrode surface from the aggregation of target bacteria or other pollutants that may come from real wastewater samples. After optimization experiments, the linear detection range was determined from 2 cfu/ml to 10⁵ cfu/ml with higher than 0.98 R² value. The system was regenerated successfully with 5 % SDS solution over 100 times without any significant deterioration of the sensor performance. The developed system had high specificity towards E. coli (less than 20 % signal with other pathogens), and it could be applied to real water samples with 86 to 101 % recovery and 3 to 18 % cv values (n=3).Keywords: aptamer, E. coli, environmental detection, nanobiosensor, SWCTs
Procedia PDF Downloads 195418 Stochastic Pi Calculus in Financial Markets: An Alternate Approach to High Frequency Trading
Authors: Jerome Joshi
Abstract:
The paper presents the modelling of financial markets using the Stochastic Pi Calculus model. The Stochastic Pi Calculus model is mainly used for biological applications; however, the feature of this model promotes its use in financial markets, more prominently in high frequency trading. The trading system can be broadly classified into exchange, market makers or intermediary traders and fundamental traders. The exchange is where the action of the trade is executed, and the two types of traders act as market participants in the exchange. High frequency trading, with its complex networks and numerous market participants (intermediary and fundamental traders) poses a difficulty while modelling. It involves the participants to seek the advantage of complex trading algorithms and high execution speeds to carry out large volumes of trades. To earn profits from each trade, the trader must be at the top of the order book quite frequently by executing or processing multiple trades simultaneously. This would require highly automated systems as well as the right sentiment to outperform other traders. However, always being at the top of the book is also not best for the trader, since it was the reason for the outbreak of the ‘Hot – Potato Effect,’ which in turn demands for a better and more efficient model. The characteristics of the model should be such that it should be flexible and have diverse applications. Therefore, a model which has its application in a similar field characterized by such difficulty should be chosen. It should also be flexible in its simulation so that it can be further extended and adapted for future research as well as be equipped with certain tools so that it can be perfectly used in the field of finance. In this case, the Stochastic Pi Calculus model seems to be an ideal fit for financial applications, owing to its expertise in the field of biology. It is an extension of the original Pi Calculus model and acts as a solution and an alternative to the previously flawed algorithm, provided the application of this model is further extended. This model would focus on solving the problem which led to the ‘Flash Crash’ which is the ‘Hot –Potato Effect.’ The model consists of small sub-systems, which can be integrated to form a large system. It is designed in way such that the behavior of ‘noise traders’ is considered as a random process or noise in the system. While modelling, to get a better understanding of the problem, a broader picture is taken into consideration with the trader, the system, and the market participants. The paper goes on to explain trading in exchanges, types of traders, high frequency trading, ‘Flash Crash,’ ‘Hot-Potato Effect,’ evaluation of orders and time delay in further detail. For the future, there is a need to focus on the calibration of the module so that they would interact perfectly with other modules. This model, with its application extended, would provide a basis for researchers for further research in the field of finance and computing.Keywords: concurrent computing, high frequency trading, financial markets, stochastic pi calculus
Procedia PDF Downloads 77417 Environmental Performance Improvement of Additive Manufacturing Processes with Part Quality Point of View
Authors: Mazyar Yosofi, Olivier Kerbrat, Pascal Mognol
Abstract:
Life cycle assessment of additive manufacturing processes has evolved significantly since these past years. A lot of existing studies mainly focused on energy consumption. Nowadays, new methodologies of life cycle inventory acquisition came through the literature and help manufacturers to take into account all the input and output flows during the manufacturing step of the life cycle of products. Indeed, the environmental analysis of the phenomena that occur during the manufacturing step of additive manufacturing processes is going to be well known. Now it becomes possible to count and measure accurately all the inventory data during the manufacturing step. Optimization of the environmental performances of processes can now be considered. Environmental performance improvement can be made by varying process parameters. However, a lot of these parameters (such as manufacturing speed, the power of the energy source, quantity of support materials) affect directly the mechanical properties, surface finish and the dimensional accuracy of a functional part. This study aims to improve the environmental performance of an additive manufacturing process without deterioration of the part quality. For that purpose, the authors have developed a generic method that has been applied on multiple parts made by additive manufacturing processes. First, a complete analysis of the process parameters is made in order to identify which parameters affect only the environmental performances of the process. Then, multiple parts are manufactured by varying the identified parameters. The aim of the second step is to find the optimum value of the parameters that decrease significantly the environmental impact of the process and keep the part quality as desired. Finally, a comparison between the part made by initials parameters and changed parameters is made. In this study, the major finding claims by authors is to reduce the environmental impact of an additive manufacturing process while respecting the three quality criterion of parts, mechanical properties, dimensional accuracy and surface roughness. Now that additive manufacturing processes can be seen as mature from a technical point of view, environmental improvement of these processes can be considered while respecting the part properties. The first part of this study presents the methodology applied to multiple academic parts. Then, the validity of the methodology is demonstrated on functional parts.Keywords: additive manufacturing, environmental impact, environmental improvement, mechanical properties
Procedia PDF Downloads 286416 Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption
Authors: Umar Hayatu Sidik
Abstract:
Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents.Keywords: adsorption, desorption, activated carbon, coconut shells, polyetheretherketone
Procedia PDF Downloads 66415 Optimization of Fermentation Conditions for Extracellular Production of the Oncolytic Enzyme, L-Asparaginase, by New Subsp. Streptomyces Rochei Subsp. Chromatogenes NEAE-K Using Response Surface Methodology under Solid State Fermentation
Authors: Noura El-Ahmady El-Naggar
Abstract:
L-asparaginase is an important enzyme as therapeutic agents used in combination therapy with other drugs in the treatment of acute lymphoblastic leukemia in children. L-asparaginase producing actinomycete strain, NEAE-K, was isolated from soil sample and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as new subsp. Streptomyces rochei subsp. chromatogenes NEAE-K and sequencing product (1532 bp) was deposited in the GenBank database under accession number KJ200343. The study was conducted to screen parameters affecting the production of L-asparaginase by Streptomyces rochei subsp. chromatogenes NEAE-K on solid state fermentation using Plackett–Burman experimental design. Sixteen different independent variables including incubation time, moisture content, inoculum size, temperature, pH, soybean meal+ wheat bran, dextrose, fructose, L-asparagine, yeast extract, KNO3, K2HPO4, MgSO4.7H2O, NaCl, FeSO4. 7H2O, CaCl2, and three dummy variables were screened in Plackett–Burman experimental design of 20 trials. The most significant independent variables affecting enzyme production (dextrose, L-asparagine and K2HPO4) were further optimized by the central composite design. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase by Streptomyces rochei subsp. chromatogenes NEAE-K from solid state fermentation: g/L (soybean meal+ wheat bran 15, dextrose 3, fructose 4, L-asparagine 8, yeast extract 2, KNO3 1, K2HPO4 2, MgSO4.7H2O 0.5, NaCl 0.1, FeSO4. 7H2O 0.02, CaCl2 0.01), incubation time 7 days, moisture content 50%, inoculum size 3 mL, temperature 30°C, pH 8.5.Keywords: streptomyces rochei subsp. chromatogenes neae-k, 16s rrna, identification, solid state fermentation, l-asparaginase production, plackett-burman design, central composite design
Procedia PDF Downloads 405414 Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems
Authors: Daniele Losanno, Giorgio Serino
Abstract:
This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.Keywords: brace stiffness, dissipative braces, non-linear analysis, plastic hinges, reinforced concrete frames
Procedia PDF Downloads 289413 Breast Cancer Sensing and Imaging Utilized Printed Ultra Wide Band Spherical Sensor Array
Authors: Elyas Palantei, Dewiani, Farid Armin, Ardiansyah
Abstract:
High precision of printed microwave sensor utilized for sensing and monitoring the potential breast cancer existed in women breast tissue was optimally computed. The single element of UWB printed sensor that successfully modeled through several numerical optimizations was multiple fabricated and incorporated with woman bra to form the spherical sensors array. One sample of UWB microwave sensor obtained through the numerical computation and optimization was chosen to be fabricated. In overall, the spherical sensors array consists of twelve stair patch structures, and each element was individually measured to characterize its electrical properties, especially the return loss parameter. The comparison of S11 profiles of all UWB sensor elements is discussed. The constructed UWB sensor is well verified using HFSS programming, CST programming, and experimental measurement. Numerically, both HFSS and CST confirmed the potential operation bandwidth of UWB sensor is more or less 4.5 GHz. However, the measured bandwidth provided is about 1.2 GHz due to the technical difficulties existed during the manufacturing step. The configuration of UWB microwave sensing and monitoring system implemented consists of 12 element UWB printed sensors, vector network analyzer (VNA) to perform as the transceiver and signal processing part, the PC Desktop/Laptop acting as the image processing and displaying unit. In practice, all the reflected power collected from whole surface of artificial breast model are grouped into several numbers of pixel color classes positioned on the corresponding row and column (pixel number). The total number of power pixels applied in 2D-imaging process was specified to 100 pixels (or the power distribution pixels dimension 10x10). This was determined by considering the total area of breast phantom of average Asian women breast size and synchronizing with the single UWB sensor physical dimension. The interesting microwave imaging results were plotted and together with some technical problems arisen on developing the breast sensing and monitoring system are examined in the paper.Keywords: UWB sensor, UWB microwave imaging, spherical array, breast cancer monitoring, 2D-medical imaging
Procedia PDF Downloads 191