Search results for: hydro mechanical behaviour
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5557

Search results for: hydro mechanical behaviour

1117 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method

Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger

Abstract:

Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.

Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model

Procedia PDF Downloads 182
1116 Analysis of Slope in an Excavated Gneiss Rock Using Geological Strength Index (GSI) in Ilorin, Kwara State, Nigeria

Authors: S. A. Agbalajobi, W. A. Bello

Abstract:

The study carried out analysis on slope stability in an excavated gneiss rock using geological strength index (GSI) in Ilorin, Kwara State, Nigeria. A kinematic analysis of planar discontinuity sets in a gneiss deposit was carried out to ascertain the degree of slope stability. Discontinuity orientations in the rock mass were mapped using compass clinometers. The average result of physical and mechanical properties such as specific gravity, unit weight, uniaxial compressive strength, point load index, and Schmidt rebound value are 2.64 g/m3, 25.95 kN/m3, 156 MPa, 6.5 MPa, and 53.12 respectively. Also, a statistical model equation relating the rock strength was developed. The analyses states that the rock face is susceptible to wedge failures having all the geometrical conditions associated with the occurrence of such failures were noticeable. It can be concluded that analyses of discontinuity orientation in relation to cut face direction in rock excavation is essential for mine planning to forestall mine accidents. Assessment of excavated slope methods was evident that one excavation method (blasting and/or use of hydraulic hammer) is applicable for the given rock strength, the ease of excavation decreases as the rock mass quality increases, thus blasting most suitable for such operation.

Keywords: slope stability, wedge failure, geological strength index (GSI), discontinuities and excavated slope

Procedia PDF Downloads 497
1115 Virtual Test Model for Qualification of Knee Prosthesis

Authors: K. Zehouani, I. Oldal

Abstract:

Purpose: In the human knee joint, degenerative joint disease may happen with time. The standard treatment of this disease is the total knee replacement through prosthesis implanting. The reason lies in the fact that this phenomenon causes different material abrasion as compare to pure sliding or rolling alone. This study focuses on developing a knee prosthesis geometry, which fulfills the mechanical and kinematical requirements. Method: The MSC ADAMS program is used to describe the rotation of the human knee joint as a function of flexion, and to investigate how the flexion and rotation movement changes between the condyles of a multi-body model of the knee prosthesis as a function of flexion angle (in the functional arc of the knee (20-120º)). Moreover, the multi-body model with identical boundary conditions is constituted, and the numerical simulations are carried out using the MSC ADAMS program system. Results: It is concluded that the use of the multi-body model reduces time and cost since it does not need to manufacture the tibia and the femur as it requires for the knee prosthesis of the test machine. Moreover, without measuring or by dispensing with a test machine for the knee prosthesis geometry, approximation of the results of our model to a human knee is carried out directly. Conclusion: The pattern obtained by the multi-body model provides an insight for future experimental tests related to the rotation and flexion of the knee joint concerning the actual average and friction load.

Keywords: biomechanics, knee joint, rotation, flexion, kinematics, MSC ADAMS

Procedia PDF Downloads 132
1114 Effects of Different Fiber Orientations on the Shear Strength Performance of Composite Adhesive Joints

Authors: Ferhat Kadioglu, Hasan Puskul

Abstract:

A composite material with carbon fiber and polymer matrix has been used as adherent for manufacturing adhesive joints. In order to evaluate different fiber orientations on joint performance, the adherents with the 0°, ±15°, ±30°, ±45° fiber orientations were used in the single lap joint configuration. The joints with an overlap length of 25 mm were prepared according to the ASTM 1002 specifications and subjected to tensile loadings. The structural adhesive used was a two-part epoxy to be cured at 70°C for an hour. First, mechanical behaviors of the adherents were measured using three point bending test. In the test, considerations were given to stress to failure and elastic modulus. The results were compared with theoretical ones using rule of mixture. Then, the joints were manufactured in a specially prepared jig, after a proper surface preparation. Experimental results showed that the fiber orientations of the adherents affected the joint performance considerably; the joints with ±45° adherents experienced the worst shear strength, half of those with 0° adherents, and in general, there was a great relationship between the fiber orientations and failure mechanisms. Delamination problems were observed for many joints, which were thought to be due to peel effects at the ends of the overlap. It was proved that the surface preparation applied to the adherent surface was adequate. For further explanation of the results, a numerical work should be carried out using a possible non-linear analysis.

Keywords: composite materials, adhesive bonding, bonding strength, lap joint, tensile strength

Procedia PDF Downloads 357
1113 Preliminary Studies in the Determination of Deteriorations in Eflatunpınar Hitit Water Monument (Konya, Turkey) by Non-Destructive Tests

Authors: İsmail İnce, Ali Bozdag, Ayla Bozdag, M. Bahadır Tosunlar, M. Ergun Hatır, Mustafa Korkanc

Abstract:

The building stones used in the construction of historical structures are exposed to atmospheric effects directly or indirectly. As a result of this process, building stones are partially or completely degraded. Historical buildings are important symbols of cultural heritage, so it is very significant to transfer to the future generations by protecting and repairing of these historical buildings. The Eflatunpınar Hitit Monument located near the Eflatunpınar cold water spring was constructed by using natural rock blocks during the Hittites Empire period. The monument has been protected without losing its function until today. The purpose of this study is to evaluate the deteriorations in the Eflatunpınar Hitit Monument and to detect the water chemistry of the Eflatunpınar spring located around the Beysehir County in the west of Konya. For this purpose, the petrographic and mechanical properties of the rocks used in this monument were determined, and the deteriorations in the monument were determined with the aid of non-destructive test methods including Schmidt hardness value, relative humidity measurement, thermal imaging. Additionally, the physical (electrical conductivity (EC), pH and temperature) and chemical characteristics (major anions and cations) of the Eflatunpınar cold water spring have been detected.

Keywords: deteriorations, Eflatunpınar Hitit monument, Eflatunpınar spring, Konya, non-destructıve tests

Procedia PDF Downloads 158
1112 Hot-Dip Galvanizing as a Barrier Protection Coating for Steel Hydraulic Structures

Authors: Farrokh Taherkhani, Thomas Pinger, Max Gündel

Abstract:

The total economic damage caused by corrosion in Germany is estimated to be more than 3% of the GDP per year. Additionally, corrosion and suitable corrosion protection systems are also significant factors in the consideration of life cycle costs for steel hydraulic structures. In addition to classic coating systems (for example, epoxy resin or polyurethane), zinc and its alloys offer effective and very durable corrosion protection for steels. As a protective layer, hot-dip galvanizing prevents the corrosive media from penetrating into the steel matrix and acts as a sacrificial anode, which corrodes in preference to the steel. However, hot-dip galvanizing as a corrosion protection system has not yet been approved by the relevant authority, the Federal Waterways Engineering and Research Institute (BAW) in Germany. In order to make hot-dip galvanizing usable as a corrosion protection system for steel hydraulic structures in the future, different factors must be considered. These factors are (i) corrosion protection type, (ii) resistance to mechanical stress (i.e., abrasion resistance), (iii) combinability with cathodic corrosion protection, (iv) environmental effects and (v) the crack formation and propagation during hot-dip galvanizing. In this work, hot-dip galvanizing as a corrosion protection system for steel hydraulic steel structures, as well as open questions, are discussed. This paper is based on initial long-term exposure tests with corrosion protection systems consisting of hot-dip galvanizing and duplex systems.

Keywords: steel hydraulic structure, hot-dip galvanizing, corrosion, corrosion resistance, zinc coating, organic coating, duplex sytems

Procedia PDF Downloads 15
1111 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 64
1110 Effect of Chromium Behavior on Mechanical and Electrical Properties Of P/M Copper-Chromium Alloy Dispersed with VGCF

Authors: Hisashi Imai, Kuan-Yu Chen, Katsuyoshi Kondoh, Hung-Yin Tsai, Junko Umeda

Abstract:

Microstructural and electrical properties of copper-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity.

Keywords: powder metallurgy Cu-Cr alloy powder, vapor-grown carbon fiber, electrical conductivity

Procedia PDF Downloads 483
1109 Accurate Position Electromagnetic Sensor Using Data Acquisition System

Authors: Z. Ezzouine, A. Nakheli

Abstract:

This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.

Keywords: electromagnetic sensor, accurately, data acquisition, position measurement

Procedia PDF Downloads 277
1108 Analysis of Thermal Damage Characteristics of High Pressure Turbine Blade According to Off-Design Operating Conditions

Authors: Seon Ho Kim, Minho Bang, Seok Min Choi, Young Moon Lee, Dong Kwan Kim, Hyung Hee Cho

Abstract:

Gas turbines are heat engines that convert chemical energy into electrical energy through mechanical energy. Since their high energy density per unit volume and low pollutant emissions, gas turbines are classified as clean energy. In order to obtain better performance, the turbine inlet temperature of the current gas turbine is operated at about 1600℃, and thermal damage is a very serious problem. Especially, these thermal damages are more prominent in off-design conditions than in design conditions. In this study, the thermal damage characteristics of high temperature components of a gas turbine made of a single crystal material are studied numerically for the off-design operating conditions. The target gas turbine is configured as a reheat cycle and is operated in peak load operation mode, not normal operation. In particular, the target gas turbine features a lot of low-load operation. In this study, a commercial code, ANSYS 18.2, was used for analyzing the thermal-flow coupling problems. As a result, the flow separation phenomenon on the pressure side due to the flow reduction was remarkable at the off-design condition, and the high heat transfer coefficient at the upper end of the suction surface due to the tip leakage flow was appeared.

Keywords: gas turbine, single crystal blade, off-design, thermal analysis

Procedia PDF Downloads 205
1107 Human Facial Emotion: A Comparative and Evolutionary Perspective Using a Canine Model

Authors: Catia Correia Caeiro, Kun Guo, Daniel Mills

Abstract:

Despite its growing interest, emotions are still an understudied cognitive process and their origins are currently the focus of much debate among the scientific community. The use of facial expressions as traditional hallmarks of discrete and holistic emotions created a circular reasoning due to a priori assumptions of meaning and its associated appearance-biases. Ekman and colleagues solved this problem and laid the foundations for the quantitative and systematic study of facial expressions in humans by developing an anatomically-based system (independent from meaning) to measure facial behaviour, the Facial Action Coding System (FACS). One way of investigating emotion cognition processes is by applying comparative psychology methodologies and looking at either closely-related species (e.g. chimpanzees) or phylogenetically distant species sharing similar present adaptation problems (analogy). In this study, the domestic dog was used as a comparative animal model to look at facial expressions in social interactions in parallel with human facial expressions. The orofacial musculature seems to be relatively well conserved across mammal species and the same holds true for the domestic dog. Furthermore, the dog is unique in having shared the same social environment as humans for more than 10,000 years, facing similar challenges and acquiring a unique set of socio-cognitive skills in the process. In this study, the spontaneous facial movements of humans and dogs were compared when interacting with hetero- and conspecifics as well as in solitary contexts. In total, 200 participants were examined with FACS and DogFACS (The Dog Facial Action Coding System): coding tools across four different emotionally-driven contexts: a) Happiness (play and reunion), b) anticipation (of positive reward), c) fear (object or situation triggered), and d) frustration (negation of a resource). A neutral control was added for both species. All four contexts are commonly encountered by humans and dogs, are comparable between species and seem to give rise to emotions from homologous brain systems. The videos used in the study were extracted from public databases (e.g. Youtube) or published scientific databases (e.g. AM-FED). The results obtained allowed us to delineate clear similarities and differences on the flexibility of the facial musculature in the two species. More importantly, they shed light on what common facial movements are a product of the emotion linked contexts (the ones appearing in both species) and which are characteristic of the species, revealing an important clue for the debate on the origin of emotions. Additionally, we were able to examine movements that might have emerged for interspecific communication. Finally, our results are discussed from an evolutionary perspective adding to the recent line of work that supports an ancient shared origin of emotions in a mammal ancestor and defining emotions as mechanisms with a clear adaptive purpose essential on numerous situations, ranging from maintenance of social bonds to fitness and survival modulators.

Keywords: comparative and evolutionary psychology, emotion, facial expressions, FACS

Procedia PDF Downloads 423
1106 Efficiency of Grover’s Search Algorithm Implemented on Open Quantum System in the Presence of Drive-Induced Dissipation

Authors: Nilanjana Chanda, Rangeet Bhattacharyya

Abstract:

Grover’s search algorithm is the fastest possible quantum mechanical algorithm to search a certain element from an unstructured set of data of N items. The algorithm can determine the desired result in only O(√N) steps. It has been demonstrated theoretically and experimentally on two-qubit systems long ago. In this work, we investigate the fidelity of Grover’s search algorithm by implementing it on an open quantum system. In particular, we study with what accuracy one can estimate that the algorithm would deliver the searched state. In reality, every system has some influence on its environment. We include the environmental effects on the system dynamics by using a recently reported fluctuation-regulated quantum master equation (FRQME). We consider that the environment experiences thermal fluctuations, which leave its signature in the second-order term of the master equation through its appearance as a regulator. The FRQME indicates that in addition to the regular relaxation due to system-environment coupling, the applied drive also causes dissipation in the system dynamics. As a result, the fidelity is found to depend on both the drive-induced dissipative terms and the relaxation terms, and we find that there exists a competition between them, leading to an optimum drive amplitude for which the fidelity becomes maximum. For efficient implementation of the search algorithm, precise knowledge of this optimum drive amplitude is essential.

Keywords: dissipation, fidelity, quantum master equation, relaxation, system-environment coupling

Procedia PDF Downloads 90
1105 Numerical Study of Leisure Home Chassis under Various Loads by Using Finite Element Analysis

Authors: Asem Alhnity, Nicholas Pickett

Abstract:

The leisure home industry is experiencing an increase in sales due to the rise in popularity of staycations. However, there is also a demand for improvements in thermal and structural behaviour from customers. Existing standards and codes of practice outline the requirements for leisure home design. However, there is a lack of expertise in applying Finite Element Analysis (FEA) to complex structures in this industry. As a result, manufacturers rely on standardized design approaches, which often lead to excessively engineered or inadequately designed products. This study aims to address this issue by investigating the impact of the habitation structure on chassis performance in leisure homes. The aim of this research is to comprehensively analyse the impact of the habitation structure on chassis performance in leisure homes. By employing FEA on the entire unit, including both the habitation structure and the chassis, this study seeks to develop a novel framework for designing and analysing leisure homes. The objectives include material reduction, enhancing structural stability, resolving existing design issues, and developing innovative modular and wooden chassis designs. The methodology used in this research is quantitative in nature. The study utilizes FEA to analyse the performance of leisure home chassis under various loads. The analysis procedures involve running the FEA simulations on the numerical model of the leisure home chassis. Different load scenarios are applied to assess the stress and deflection performance of the chassis under various conditions. FEA is a numerical method that allows for accurate analysis of complex systems. The research utilizes flexible mesh sizing to calculate small deflections around doors and windows, with large meshes used for macro deflections. This approach aims to minimize run-time while providing meaningful stresses and deflections. Moreover, it aims to investigate the limitations and drawbacks of the popular approach of applying FEA only to the chassis and replacing the habitation structure with a distributed load. The findings of this study indicate that the popular approach of applying FEA only to the chassis and replacing the habitation structure with a distributed load overlooks the strengthening generated from the habitation structure. By employing FEA on the entire unit, it is possible to optimize stress and deflection performance while achieving material reduction and enhanced structural stability. The study also introduces innovative modular and wooden chassis designs, which show promising weight reduction compared to the existing heavily fabricated lattice chassis. In conclusion, this research provides valuable insights into the impact of the habitation structure on chassis performance in leisure homes. By employing FEA on the entire unit, the study demonstrates the importance of considering the strengthening generated from the habitation structure in chassis design. The research findings contribute to advancements in material reduction, structural stability, and overall performance optimization. The novel framework developed in this study promotes sustainability, cost-efficiency, and innovation in leisure home design.

Keywords: static homes, caravans, motor homes, holiday homes, finite element analysis (FEA)

Procedia PDF Downloads 84
1104 Creep Compliance Characteristics of Cement Dust Asphalt Concrete Mixtures

Authors: Ayman Othman, Tallat Abd el Wahed

Abstract:

The current research is directed towards studying the creep compliance characteristics of asphalt concrete mixtures modified with cement dust. This study can aid in assessing the permanent deformation potential of asphalt concrete mixtures. Cement dust was added to the mixture as mineral filler and compared with regular lime stone filler. A power law model was used to characterize the creep compliance behavior of the studied mixtures. Creep testing results have revealed that the creep compliance power law parameters have a strong relationship with mixture type. Testing results of the studied mixtures, as indicated by the creep compliance parameters revealed an enhancement in the creep resistance, Marshall stability, indirect tensile strength and compressive strength for cement dust mixtures as compared to mixtures with traditional lime stone filler. It is concluded that cement dust can be successfully used to decrease the potential of asphalt concrete mixture to permanent deformation and improve its mechanical properties. This is in addition to the environmental benefits that can be gained when using cement dust in asphalt paving technology.

Keywords: cement dust, asphalt concrete mixtures, creep compliance, Marshall stability, indirect tensile strength, compressive strength

Procedia PDF Downloads 413
1103 Evaluation of the UV Stability of Unidirectional Crossply Ultrahigh-Molecular-Weight-Polyethylene Composite

Authors: Jonmichael Weaver, David Miller

Abstract:

Dyneema is an ultra-high molecular weight polyethylene (UHMWPE) fiber created by DSM. This fiber has many applications due to the high tensile strength, low weight, and inability to absorb water. DSM manufactures a non-woven unidirectional cross-ply [0,90]2 lamina, using the Dyneema fiber. Using this lamina system, various thickness panels are created for a 40% lighter weight alternative to Kevlar for the same ballistics protection. Environmental effects on the ply/laminate system alter the material properties, resulting in diminished ultimate performance. Understanding the specific environmental parameters and characterizing the resulting material property degradation is essential for determining the safety and reliability of Dyneema in service. Two laminas were contrasted for their response to accelerated aging by UV, humidity, and temperature cycling. Both lamina contain the same fiber, SK-99, but differ in matrix composition, Dyneema HB-210 employs a polyurethane (PUR) based matrix, and HB-212 contains a rubber-based matrix. Each system was inspected using a scanning electron microscope (SEM) and evaluated by dynamic mechanical analysis (DMA) to characterize the material property changes alongside the corresponding composite damage and matrix failure mode over the aging parameters. Overall, resulting in the HB-212 degrading faster compared with the HB-210.

Keywords: dyneema, accelerated aging, polymers, ballistics protection, armor, DSM, kevlar, composites

Procedia PDF Downloads 141
1102 Design and Fabrication of a Programmable Stiffness-Sensitive Gripper for Object Handling

Authors: Mehdi Modabberifar, Sanaz Jabary, Mojtaba Ghodsi

Abstract:

Stiffness sensing is an important issue in medical diagnostic, robotics surgery, safe handling, and safe grasping of objects in production lines. Detecting and obtaining the characteristics in dwelling lumps embedded in a soft tissue and safe removing and handling of detected lumps is needed in surgery. Also in industry, grasping and handling an object without damaging in a place where it is not possible to access a human operator is very important. In this paper, a method for object handling is presented. It is based on the use of an intelligent gripper to detect the object stiffness and then setting a programmable force for grasping the object to move it. The main components of this system includes sensors (sensors for measuring force and displacement), electrical (electrical and electronic circuits, tactile data processing and force control system), mechanical (gripper mechanism and driving system for the gripper) and the display unit. The system uses a rotary potentiometer for measuring gripper displacement. A microcontroller using the feedback received by the load cell, mounted on the finger of the gripper, calculates the amount of stiffness, and then commands the gripper motor to apply a certain force on the object. Results of Experiments on some samples with different stiffness show that the gripper works successfully. The gripper can be used in haptic interfaces or robotic systems used for object handling.

Keywords: gripper, haptic, stiffness, robotic

Procedia PDF Downloads 347
1101 Simulation and Thermal Evaluation of Containers Using PCM in Different Weather Conditions of Chile: Energy Savings in Lightweight Constructions

Authors: Paula Marín, Mohammad Saffari, Alvaro de Gracia, Luisa F. Cabeza, Svetlana Ushak

Abstract:

Climate control represents an important issue when referring to energy consumption of buildings and associated expenses, both in installation or operation periods. The climate control of a building relies on several factors. Among them, localization, orientation, architectural elements, sources of energy used, are considered. In order to study the thermal behaviour of a building set up, the present study proposes the use of energy simulation program Energy Plus. In recent years, energy simulation programs have become important tools for evaluation of thermal/energy performance of buildings and facilities. Besides, the need to find new forms of passive conditioning in buildings for energy saving is a critical component. The use of phase change materials (PCMs) for heat storage applications has grown in importance due to its high efficiency. Therefore, the climatic conditions of Northern Chile: high solar radiation and extreme temperature fluctuations ranging from -10°C to 30°C (Calama city), low index of cloudy days during the year are appropriate to take advantage of solar energy and use passive systems in buildings. Also, the extensive mining activities in northern Chile encourage the use of large numbers of containers to harbour workers during shifts. These containers are constructed with lightweight construction systems, requiring heating during night and cooling during day, increasing the HVAC electricity consumption. The use of PCM can improve thermal comfort and reduce the energy consumption. The objective of this study was to evaluate the thermal and energy performance of containers of 2.5×2.5×2.5 m3, located in four cities of Chile: Antofagasta, Calama, Santiago, and Concepción. Lightweight envelopes, typically used in these building prototypes, were evaluated considering a container without PCM inclusion as the reference building and another container with PCM-enhanced envelopes as a test case, both of which have a door and a window in the same wall, orientated in two directions: North and South. To see the thermal response of these containers in different seasons, the simulations were performed considering a period of one year. The results show that higher energy savings for the four cities studied are obtained when the distribution of door and window in the container is in the north direction because of higher solar radiation incidence. The comparison of HVAC consumption and energy savings in % for north direction of door and window are summarised. Simulation results show that in the city of Antofagasta 47% of heating energy could be saved and in the cities of Calama and Concepción the biggest savings in terms of cooling could be achieved since PCM reduces almost all the cooling demand. Currently, based on simulation results, four containers have been constructed and sized with the same structural characteristics carried out in simulations, that are, containers with/without PCM, with door and window in one wall. Two of these containers will be placed in Antofagasta and two containers in a copper mine near to Calama, all of them will be monitored for a period of one year. The simulation results will be validated with experimental measurements and will be reported in the future.

Keywords: energy saving, lightweight construction, PCM, simulation

Procedia PDF Downloads 268
1100 High Temperature Properties of Diffusion Brazed Joints of in 939 Ni-Base Superalloy

Authors: Hyunki Kang, Hi Won Jeong

Abstract:

The gas turbine operates for a long period of time under harsh, cyclic conditions of high temperature and pressure, where high turbine inlet temperature (TIT) can range from 1273 to 1873K. Therefore, Ni-base superalloys such as IN738, IN939, Rene 45, Rene 71, Rene 80, Mar M 247, CM 247, and CMSX-4 with excellent mechanical properties and resistance to creep, corrosion and oxidation at high temperatures are indeed used. Among the alloying additions for these alloys, aluminum (Al) and titanium (Ti) form gamma prime and enhance the high-temperature properties. However, when crack-damaged high-temperature turbine components such as blade and vane are repaired by fusion welding, they cause cracks. For example, when arc welding is applied to certain superalloys that contain Al and Ti with more than 3 wt.% and T3.5 wt%, respectively, such as IN738, IN939, Rene 80, Mar M 247, and CM 247, aging cracks occur. Therefore, repair technologies using diffusion brazing, which has less heat input into the base material, are being developed. Analysis of microstructural evolution of the brazed joints with a base metal of IN 939 Ni-base superalloy using brazing different filler metals was also carried out using X-ray diffraction, OEM, SEM-EDS, and EPMA. Stress rupture and high-temperature tensile strength properties were also measured to analyze the effects of different brazing heat cycles. The boron amount in the diffusion-affected zone (DAZ) was decreased towards the base metal and the formation of borides at grain boundaries was detected through EPMA.

Keywords: gas turbine, diffusion brazing, superalloy, gas turbine repair

Procedia PDF Downloads 35
1099 Outcome of Anastomosis of Mechanically Prepared vs Mechanically Unprepared Bowel in Laparoscopic Anterior Resection in Surgical Units of Teaching Hospital Karapitiya ,Sri Lanka

Authors: K. P. v. R. de Silva, R. W. Senevirathna, M. M. A. J. Kumara, J. P. M. Kumarasinghe, R. L. Gunawardana, S. M. Uluwitiya, G. C. P. Jayawickrama, W. K. T. I. Madushani

Abstract:

Introduction: The limited literature supporting the utilization of mechanical bowel preparation (MBP) for patients undergoing laparoscopic anterior resection (LAR) remains a notable issue. This study was conducted to examine the clinical consequences of anastomosis in colorectal surgery with MBP compared to cases where MBP was not utilized (no-MBP) in the context of LAR. Methods: This was a retrospective comparative study conducted in the professorial surgical wards of the teaching hospital karapitiya (THK). Colorectal cancer patients(n=306) participated in the study, including 151 MBP patients and 155 no-MBP patients, where the postoperative complications and mortality rates were compared. Results: The anastomotic leakage rate was 2.6%(n=4) in the no-MBP group and 6.0%(n=9) in the MBP group (p=0.143). The postoperative paralytic ileus rate was 18.5%(n=28) and 5.8%(n=9) in the MBP group and no-MBP group, respectively, displaying a statistically significant difference (p=0.001). Wound infection, pneumonia, urinary tract infection, and cardiac complication rates also were higher in the MBP group. The overall mortality rate was 1.3%(n=3) in the no-MBP group and 2.0%(n=2) in the MBP group. Conclusions: The evidence concludes that MBP increases post-operative complications. Therefore, prophylactic MBP in LAR has not been proven to benefit patients. However, further research is necessary to understand the comparative effects of MBP versus no preparation comprehensively.

Keywords: MBP, anastomosis, LAR, paralytic ileus

Procedia PDF Downloads 76
1098 Mechanical Properties of Graphene Nano-Platelets Coated Carbon-Fiber Composites

Authors: Alok Srivastava, Vidit Gupta, Aparna Singh, Chandra Sekher Yerramalli

Abstract:

Carbon-fiber epoxy composites show extremely high modulus and strength in the uniaxial direction. However, they are prone to fail under low load in transverse direction due to the weak nature of the interface between the carbon-fiber and epoxy. In the current study, we have coated graphene nano-platelets (GNPs) on the carbon-fibers in an attempt to strengthen the interface/interphase between the fiber and the matrix. Vacuum Assisted Resin Transfer Moulding (VARTM) has been used to make the laminates of eight cross-woven fabrics. Tensile, flexural and fracture toughness tests have been performed on pristine carbon-fiber composite (P-CF), GNP coated carbon-fiber composite (GNP-CF) and functionalized-GNP coated carbon-fiber composite (F-GNP-CF). The tensile strength and flexural strength values are pretty similar for P-CF and GNP-CF. The micro-structural examination of the GNP coated carbon-fibers, as well as the fracture surfaces, have been carried out using scanning electron microscopy (SEM). The micrographs reveal the deposition of GNPs onto the carbon fibers in transverse and longitudinal direction. Fracture surfaces show the debonding and pull outs of the carbon fibers in P-CF and GNP-CF samples.

Keywords: carbon fiber, graphene nanoplatelets, strength, VARTM, Vacuum Assisted Resin Transfer Moulding

Procedia PDF Downloads 135
1097 Preparation of Biomedical Hydrogels Using Phenolic Compounds and Electron Beam Irradiation

Authors: Farnaz Sadeghi, Moslem Tavakol

Abstract:

In this study, an attempt has been made to prepare a physically cross-linked gel by cooling of tannic acid (TA)-polyvinyl alcohol (PVA) solution that subsequently convert to antibacterial chemically cross-linked hydrogel by using electron beam irradiation. PVA is known for its biocompatibility and hydrophilicity, and TA is known for being a natural compound which can serve as a cross-linking agent and a therapeutic agent. Swelling behavior, gel content, pore size, and mechanical properties of hydrogels which prepared at 14, 28, and 56 (kGy) with different ratios of polymers were investigated. PVA-TA hydrogel showed sustained release of tannic acid as approximately 20% and 50% of loaded TA released from the hydrogel after 4 and 72 h release time. We found that gel content decreased and the moisture retention capability increased by an increase in TA composition. In addition, PVA-TA hydrogels showed a good antibacterial activity against S.aureus. MTT analysis indicated that close to 83% of fibroblast cells remained viable after 48 h exposure to hydrogel extract. Moreover, the cooling of 10% PVA solution containing 0.5 and 0.75% w/v tannic acid to room and refrigerator, respectively, led to formation of physical gel that did not present any flow index after inversion of hydrogel cast. According to the results, the hydrogel prepared by electron beam irradiation of blended PVA-TA solution could be further investigated as a promising candidate for wound healing.

Keywords: poly vinyl alcohol, tannic acid, electron beam irradiation, hydrogel wound dressing

Procedia PDF Downloads 144
1096 Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications

Authors: Joseph E. Estevez, Mahdi Ghazizadeh, James G. Ryan, Ajit D. Kelkar

Abstract:

Radiation shielding is an obstacle in long duration space exploration. Boron Nitride Nanotubes (BNNTs) have attracted attention as an additive to radiation shielding material due to B10’s large neutron capture cross section. The B10 has an effective neutron capture cross section suitable for low energy neutrons ranging from 10-5 to 104 eV and hydrogen is effective at slowing down high energy neutrons. Hydrogenated BNNTs are potentially an ideal nanofiller for radiation shielding composites. We use Molecular Dynamics (MD) Simulation via Material Studios Accelrys 6.0 to model the Young’s Modulus of Hydrogenated BNNTs. An extrapolation technique was employed to determine the Young’s Modulus due to the deformation of the nanostructure at its theoretical density. A linear regression was used to extrapolate the data to the theoretical density of 2.62g/cm3. Simulation data shows that the hydrogenated BNNTs will experience a 11% decrease in the Young’s Modulus for (6,6) BNNTs and 8.5% decrease for (8,8) BNNTs compared to non-hydrogenated BNNT’s. Hydrogenated BNNTs are a viable option as a nanofiller for radiation shielding nanocomposite materials for long range and long duration space exploration.

Keywords: boron nitride nanotube, radiation shielding, young modulus, atomistic modeling

Procedia PDF Downloads 282
1095 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 152
1094 A Case Study on the Numerical-Probability Approach for Deep Excavation Analysis

Authors: Komeil Valipourian

Abstract:

Urban advances and the growing need for developing infrastructures has increased the importance of deep excavations. In this study, after the introducing probability analysis as an important issue, an attempt has been made to apply it for the deep excavation project of Bangkok’s Metro as a case study. For this, the numerical probability model has been developed based on the Finite Difference Method and Monte Carlo sampling approach. The results indicate that disregarding the issue of probability in this project will result in an inappropriate design of the retaining structure. Therefore, probabilistic redesign of the support is proposed and carried out as one of the applications of probability analysis. A 50% reduction in the flexural strength of the structure increases the failure probability just by 8% in the allowable range and helps improve economic conditions, while maintaining mechanical efficiency. With regard to the lack of efficient design in most deep excavations, by considering geometrical and geotechnical variability, an attempt was made to develop an optimum practical design standard for deep excavations based on failure probability. On this basis, a practical relationship is presented for estimating the maximum allowable horizontal displacement, which can help improve design conditions without developing the probability analysis.

Keywords: numerical probability modeling, deep excavation, allowable maximum displacement, finite difference method (FDM)

Procedia PDF Downloads 114
1093 A Quantum Leap: Developing Quantum Semi-Structured Complex Numbers to Solve the “Division by Zero” Problem

Authors: Peter Jean-Paul, Shanaz Wahid

Abstract:

The problem of division by zero can be stated as: “what is the value of 0 x 1/0?” This expression has been considered undefined by mathematicians because it can have two equally valid solutions either 0 or 1. Recently semi-structured complex number set was invented to solve “division by zero”. However, whilst the number set had some merits it was considered to have a poor theoretical foundation and did not provide a quality solution to “division by zero”. Moreover, the set lacked consistency in simple algebraic calculations producing contradictory results when dividing by zero. To overcome these issues this research starts by treating the expression " 0 x 1/0" as a quantum mechanical system that produces two tangled results 0 and 1. Dirac Notation (a tool from quantum mechanics) was then used to redefine the unstructured unit p in semi-structured complex numbers so that p represents the superposition of two results (0 and 1) and collapses into a single value when used in algebraic expressions. In the process, this paper describes a new number set called Quantum Semi-structured Complex Numbers that provides a valid solution to the problem of “division by zero”. This research shows that this new set (1) forms a “Field”, (2) can produce consistent results when solving division by zero problems, (3) can be used to accurately describe systems whose mathematical descriptions involve division by zero. This research served to provide a firm foundation for Quantum Semi-structured Complex Numbers and support their practical use.

Keywords: division by zero, semi-structured complex numbers, quantum mechanics, Hilbert space, Euclidean space

Procedia PDF Downloads 145
1092 Electromagnetic Simulation Based on Drift and Diffusion Currents for Real-Time Systems

Authors: Alexander Norbach

Abstract:

The script in this paper describes the use of advanced simulation environment using electronic systems (Microcontroller, Operational Amplifiers, and FPGA). The simulation may be used for all dynamic systems with the diffusion and the ionisation behaviour also. By additionally required observer structure, the system works with parallel real-time simulation based on diffusion model and the state-space representation for other dynamics. The proposed deposited model may be used for electrodynamic effects, including ionising effects and eddy current distribution also. With the script and proposed method, it is possible to calculate the spatial distribution of the electromagnetic fields in real-time. For further purpose, the spatial temperature distribution may be used also. With upon system, the uncertainties, unknown initial states and disturbances may be determined. This provides the estimation of the more precise system states for the required system, and additionally, the estimation of the ionising disturbances that occur due to radiation effects. The results have shown that a system can be also developed and adopted specifically for space systems with the real-time calculation of the radiation effects only. Electronic systems can take damage caused by impacts with charged particle flux in space or radiation environment. In order to be able to react to these processes, it must be calculated within a shorter time that ionising radiation and dose is present. All available sensors shall be used to observe the spatial distributions. By measured value of size and known location of the sensors, the entire distribution can be calculated retroactively or more accurately. With the formation, the type of ionisation and the direct effect to the systems and thus possible prevent processes can be activated up to the shutdown. The results show possibilities to perform more qualitative and faster simulations independent of kind of systems space-systems and radiation environment also. The paper gives additionally an overview of the diffusion effects and their mechanisms. For the modelling and derivation of equations, the extended current equation is used. The size K represents the proposed charge density drifting vector. The extended diffusion equation was derived and shows the quantising character and has similar law like the Klein-Gordon equation. These kinds of PDE's (Partial Differential Equations) are analytically solvable by giving initial distribution conditions (Cauchy problem) and boundary conditions (Dirichlet boundary condition). For a simpler structure, a transfer function for B- and E- fields was analytically calculated. With known discretised responses g₁(k·Ts) and g₂(k·Ts), the electric current or voltage may be calculated using a convolution; g₁ is the direct function and g₂ is a recursive function. The analytical results are good enough for calculation of fields with diffusion effects. Within the scope of this work, a proposed model of the consideration of the electromagnetic diffusion effects of arbitrary current 'waveforms' has been developed. The advantage of the proposed calculation of diffusion is the real-time capability, which is not really possible with the FEM programs available today. It makes sense in the further course of research to use these methods and to investigate them thoroughly.

Keywords: advanced observer, electrodynamics, systems, diffusion, partial differential equations, solver

Procedia PDF Downloads 121
1091 Influence of Pulverized Granite on the Mechanical and Durability Properties of Concrete

Authors: Kwabena A. Boakye, Eugene Atiemo, Trinity A. Tagbor, Delali Adjei

Abstract:

The use of mineral admixtures such as metakaolin, GGBS, fly ash, etc., in concrete is a common practice in the world. However, the only admixture available for use in the Ghanaian construction industry is calcined clay pozzolan. This research, therefore, studies the alternate use of granite dust, a by-product from stone quarrying, as a mineral admixture in concrete. Granite dust, which is usually damped as waste or as an erosion control material, was collected and pulverized to about 75µm. Some physical, chemical, and mineralogical tests were conducted on the granite dust. 5%-25% ordinary Portland cement of Class 42.5N was replaced with granite dust which was used as the main binder in the preparation of 150mm×150mm×150mm concrete cubes according to methods prescribed by BS EN 12390-2:2000. Properties such as workability, compressive strength, flexural strength, water absorption, and durability were determined. Compressive and flexural strength results indicate that granite dust could be used to replace ordinary Portland cement up to an optimum of 15% to achieve C25. Water permeability increased as the granite dust admixture content increased from 5% - 25%. Durability studies after 90 days proved that even though strength decreased as granite dust content increased, the concrete containing granite dust had better resistance to sulphate attack comparable to the reference cement. Pulverized granite can be used to partially replace ordinary Portland cement in concrete.

Keywords: admixture, granite dust, permeability, pozzolans

Procedia PDF Downloads 147
1090 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains

Authors: Sandip Suman

Abstract:

Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.

Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains

Procedia PDF Downloads 85
1089 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 119
1088 Study of Formation and Evolution of Disturbance Waves in Annular Flow Using Brightness-Based Laser-Induced Fluorescence (BBLIF) Technique

Authors: Andrey Cherdantsev, Mikhail Cherdantsev, Sergey Isaenkov, Dmitriy Markovich

Abstract:

In annular gas-liquid flow, liquid flows as a film along pipe walls sheared by high-velocity gas stream. Film surface is covered by large-scale disturbance waves which affect pressure drop and heat transfer in the system and are necessary for entrainment of liquid droplets from film surface into the core of gas stream. Disturbance waves are a highly complex and their properties are affected by numerous parameters. One of such aspects is flow development, i.e., change of flow properties with the distance from the inlet. In the present work, this question is studied using brightness-based laser-induced fluorescence (BBLIF) technique. This method enables one to perform simultaneous measurements of local film thickness in large number of points with high sampling frequency. In the present experiments first 50 cm of upward and downward annular flow in a vertical pipe of 11.7 mm i.d. is studied with temporal resolution of 10 kHz and spatial resolution of 0.5 mm. Thus, spatiotemporal evolution of film surface can be investigated, including scenarios of formation, acceleration and coalescence of disturbance waves. The behaviour of disturbance waves' velocity depending on phases flow rates and downstream distance was investigated. Besides measuring the waves properties, the goal of the work was to investigate the interrelation between disturbance waves properties and integral characteristics of the flow such as interfacial shear stress and flow rate of dispersed phase. In particular, it was shown that the initial acceleration of disturbance waves, defined by the value of shear stress, linearly decays with downstream distance. This lack of acceleration which may even lead to deceleration is related to liquid entrainment. Flow rate of disperse phase linearly grows with downstream distance. During entrainment events, liquid is extracted directly from disturbance waves, reducing their mass, area of interaction to the gas shear and, hence, velocity. Passing frequency of disturbance waves at each downstream position was measured automatically with a new algorithm of identification of characteristic lines of individual disturbance waves. Scenarios of coalescence of individual disturbance waves were identified. Transition from initial high-frequency Kelvin-Helmholtz waves appearing at the inlet to highly nonlinear disturbance waves with lower frequency was studied near the inlet using 3D realisation of BBLIF method in the same cylindrical channel and in a rectangular duct with cross-section of 5 mm by 50 mm. It was shown that the initial waves are generally two-dimensional but are promptly broken into localised three-dimensional wavelets. Coalescence of these wavelets leads to formation of quasi two-dimensional disturbance waves. Using cross-correlation analysis, loss and restoration of two-dimensionality of film surface with downstream distance were studied quantitatively. It was shown that all the processes occur closer to the inlet at higher gas velocities.

Keywords: annular flow, disturbance waves, entrainment, flow development

Procedia PDF Downloads 241