Search results for: detail mechatronics design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13149

Search results for: detail mechatronics design

8799 The Effects of T-Walls on Urban Landscape and Quality of Life and Anti-Terror Design Concept in Kabul, Afghanistan

Authors: Fakhrullah Sarwari, Hiroko Ono

Abstract:

Kabul city has suffered a lot in 40 years of conflict of civil war and “The war on terror”. After the invasion of Afghanistan by the United States of America and its allies in 2001, the Taliban was removed from operational power, but The Taliban and other terrorist groups remained in remote areas of the country, they started suicide attacks and bombings. Hence to protect from these attacks officials surrounded their office buildings and houses with concrete blast walls. It gives a bad landscape to the city and creates traffic congestions. Our research contains; questionnaire, reviewing Kabul Municipality documents and literature review. Questionnaires were distributed to Kabul citizens to find out how people feel by seeing the T-Walls on Kabul streets? And what problems they face with T-Walls. “The T-Walls pull down commission” of Kabul Municipality documents were reviewed to find out what caused the failure of this commission. A literature review has been done to compare Kabul with Washington D.C on how they designed the city against terrorism threat without turning the cities into lock down. Bogota city of Columbia urban happiness movement is reviewed and compared with Kabul. The finding of research revealed that citizens of Kabul want security but not at the expense of public realm and creating the architecture of fear. It also indicates that increasing the T-walls do not give secure feeling but instead; it increases terror, hatred and affect people’s optimism. At the end, a series of recommendation is suggested on the issue.

Keywords: anti-terror design, Kabul, T-Walls, urban happiness

Procedia PDF Downloads 167
8798 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances

Authors: P. Mounnarath, U. Schmitz, Ch. Zhang

Abstract:

Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.

Keywords: expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis

Procedia PDF Downloads 433
8797 A Study of Indoor Comfort in Affordable Contemporary Courtyard Housing with Outdoor Welfare in Afghan Sustainable Neighborhoods

Authors: Mohammad Saraj Sharifzai, Keisuke Kitagawa, Ahmad Javid Habib Mohammad Kamil Halimee, Daishi Sakaguchi

Abstract:

The main purpose of this research is to recognize indoor comfort in contemporary Afghan courtyard house with outdoor welfare in housing layout and neighborhood design where sustainability is a local consideration. This research focuses on three new neighborhoods (Gawoond) in three different provinces of Afghanistan. Since 2001, the capital Kabul and major cities including Kandahar, which will be compared with Peshawar city in Pakistan, have faced a fast, rough-and-tumble process of urban innovation. The effects of this innovation necessitate reconsideration of the formation of sustainable urban environments and in-house thermal comfort. The lack of sustainable urban life in many newly developed Afghan neighborhoods can pose a major challenge to the process of sustainable urban development. Several factors can affect the success or failure of new neighborhoods in the context of urban life. For thermal analysis, we divide our research into three different climatic zones. This study is an evaluation of the environmental impacts of the interior comfort of contemporary courtyard housing with the exterior welfare of neighborhood sustainable design strategy in dry and cold, semi-hot and arid, and semi-humid and hot climates in Afghan cities and Peshawar.

Keywords: Afghan contemporary courtyard house, neighbourhood, street pattern and housing layout, sustainability, welfare, comfort, climate zone, Afghanistan

Procedia PDF Downloads 426
8796 A Computationally Intelligent Framework to Support Youth Mental Health in Australia

Authors: Nathaniel Carpenter

Abstract:

Web-enabled systems for supporting youth mental health management in Australia are pioneering in their field; however, with their success, these systems are experiencing exponential growth in demand which is straining an already stretched service. Supporting youth mental is critical as the lack of support is associated with significant and lasting negative consequences. To meet this growing demand, and provide critical support, investigations are needed on evaluating and improving existing online support services. Improvements should focus on developing frameworks capable of augmenting and scaling service provisions. There are few investigations informing best-practice frameworks when implementing e-mental health support systems for youth mental health; there are fewer which implement machine learning or artificially intelligent systems to facilitate the delivering of services. This investigation will use a case study methodology to highlight the design features which are important for systems to enable young people to self-manage their mental health. The investigation will also highlight the current information system challenges, to include challenges associated with service quality, provisioning, and scaling. This work will propose methods of meeting these challenges through improved design, service augmentation and automation, service quality, and through artificially intelligent inspired solutions. The results of this study will inform a framework for supporting youth mental health with intelligent and scalable web-enabled technologies to support an ever-growing user base.

Keywords: artificial intelligence, information systems, machine learning, youth mental health

Procedia PDF Downloads 109
8795 Development of a Wall Climbing Robotic Ground Penetrating Radar System for Inspection of Vertical Concrete Structures

Authors: Md Omar Faruq Howlader, Tariq Pervez Sattar, Sandra Dudley

Abstract:

This paper describes the design process of a 200 MHz Ground Penetrating Radar (GPR) and a battery powered concrete vertical concrete surface climbing mobile robot. The key design feature is a miniaturized 200 MHz dipole antenna using additional radiating arms and procedure records a reduction of 40% in length compared to a conventional antenna. The antenna set is mounted in front of the robot using a servo mechanism for folding and unfolding purposes. The robot’s adhesion mechanism to climb the reinforced concrete wall is based on neodymium permanent magnets arranged in a unique combination to concentrate and maximize the magnetic flux to provide sufficient adhesion force for GPR installation. The experiments demonstrated the robot’s capability of climbing reinforced concrete wall carrying the attached prototype GPR system and perform floor-to-wall transition and vice versa. The developed GPR’s performance is validated by its capability of detecting and localizing an aluminium sheet and a reinforcement bar (rebar) of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The present robotic GPR system proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspectors.

Keywords: climbing robot, dipole antenna, ground penetrating radar (GPR), mobile robots, robotic GPR

Procedia PDF Downloads 270
8794 Theoretical Framework and Empirical Simulation of Policy Design on Trans-Dimensional Resource Recycling

Authors: Yufeng Wu, Yifan Gu, Bin Li, Wei Wang

Abstract:

Resource recycling process contains a subsystem with interactions of three dimensions including coupling allocation of primary and secondary resources, responsibility coordination of stakeholders in forward and reverse supply chains, and trans-boundary transfer of hidden resource and environmental responsibilities between regions. Overlap or lack of responsibilities is easy to appear at the intersection of the three management dimensions. It is urgent to make an overall design of the policy system for recycling resources. From theoretical perspective, this paper analyzes the unique external differences of resource and environment in various dimensions and explores the reason why the effects of trans-dimensional policies are strongly correlated. Taking the example of the copper resources contained in the waste electrical and electronic equipment, this paper constructs reduction effect accounting model of resources recycling and set four trans-dimensional policy scenarios including resources tax and environmental tax reform of the raw and secondary resources, application of extended producer responsibility system, promotion of clean development mechanism, and strict entry barriers of imported wastes. In these ways, the paper simulates the impact effect of resources recycling process on resource deduction and emission reduction of waste water and gas, and constructs trans-dimensional policy mix scenario through integrating dominant strategy. The results show that combined application of various dimensional policies can achieve incentive compatibility and the trans-dimensional policy mix scenario can reach a better effect. Compared with baseline scenario, this scenario will increase 91.06% copper resources reduction effect and improve emission reduction of waste water and gas by eight times from 2010 to 2030. This paper further analyzes the development orientation of policies in various dimension. In resource dimension, the combined application of compulsory, market and authentication methods should be promoted to improve the use ratio of secondary resources. In supply chain dimension, resource value, residual functional value and potential information value contained in waste products should be fully excavated to construct a circular business system. In regional dimension, it should give full play to the comparative advantages of manufacturing power to improve China’s voice in resource recycling in the world.

Keywords: resource recycling, trans-dimension, policy design, incentive compatibility, life cycle

Procedia PDF Downloads 123
8793 Research for Hollow Reinforced Concrete Bridge Piers in Korea

Authors: Ho Young Kim, Jae Hoon Lee, Do Kyu Hwang, Im Jong Kwahk, Tae Hoon Kim, Seung Hoon Lee

Abstract:

Hollow section for bridge columns has some advantages. However, current seismic design codes do not provide design regulations for hollow bridge piers. There have been many experimental studied for hollow reinforced concrete piers in the world. But, Study for hollow section for bridge piers in Korea has been begun with approximately 2000s. There has been conducted experimental study for hollow piers of flexural controlled sections by Yeungnam University, Sung kyunkwan University, Korea Expressway Corporation in 2009. This study concluded that flexural controlled sections for hollow piers showed the similar behavior to solid sections. And there have been conducted experimental study for hollow piers of compression controlled sections by Yeungnam University, Korea Institute of Construction Technology in 2012. This study concluded that compression controlled sections for hollow piers showed compression fracture of concrete in inside wall face. Samsung C&T Engineering & Construction Group has been conducted study with Yeungnam University for reduce the quantity of reinforcement details about hollow piers. Reduce the quantity of reinforcement details are triangular cross tie. This study concluded that triangular reinforcement details showed the similar behavior as compared with existing reinforcement details.

Keywords: hollow pier, flexural controlled section, compression controlled section, reduce the quantity of reinforcement, details

Procedia PDF Downloads 415
8792 Designing the Procedures of Building and Environment Management for Basic Education Schools by Using Quality Management

Authors: Suppara Charoenpoom

Abstract:

This study focuses on 1) a good-quality management procedures of buildings and environment in schools 2) designing the management procedures and 3) creating an operation manual for the procedures. This study is the combination of qualitative and quantitative research method. Populations in the research were 83 deans and directors of primary and secondary schools from the 10th educational district in Samut Songkram. Sample group was selected from the voluntary deans and directors. There were 14 participants in sample group. Research tools in this study were divided into 2 categories. The first one was data-collecting tools, which were in-depth interview and questionnaires. The second one was the designing tools to help creating management procedures: quality business, quality work procedure and key quality indicator of each activity in schools. All data were analyzed by mean and standard deviation. The result from this study has found out 1 effective process of building and environment management for basic education schools which is called Quality Business Process (QBP) and 7 Quality Work Procedures (QWP). In terms of academic feasibility checkup by experts, the research had shown that new design of building and environment management was approved unanimously. It means that new process of building and environment management in schools works very well and can be adapted. After examining the possibility of management process being used in schools by calculating the mean value among sample group (14 school deans and directors), the mean value was between 0.64-1.00. It means that the new design of building and environment management can be operated effectively in schools. For the satisfaction part, deans and school directors gave the satisfaction score in the highest level (Mean = 4.7372, S.D. = 0.4385).

Keywords: buildings, environment, procedures, quality management

Procedia PDF Downloads 229
8791 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices

Authors: S. Srinivasan, E. Cretu

Abstract:

The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.

Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape

Procedia PDF Downloads 132
8790 Concepts of Modern Design: A Study of Art and Architecture Synergies in Early 20ᵗʰ Century Europe

Authors: Stanley Russell

Abstract:

Until the end of the 19th century, European painting dealt almost exclusively with the realistic representation of objects and landscapes, as can be seen in the work of realist artists like Gustav Courbet. Architects of the day typically made reference to and recreated historical precedents in their designs. The curriculum of the first architecture school in Europe, The Ecole des Beaux Artes, based on the study of classical buildings, had a profound effect on the profession. Painting exhibited an increasing level of abstraction from the late 19th century, with impressionism, and the trend continued into the early 20th century when Cubism had an explosive effect sending shock waves through the art world that also extended into the realm of architectural design. Architect /painter Le Corbusier with “Purism” was one of the first to integrate abstract painting and building design theory in works that were equally shocking to the architecture world. The interrelationship of the arts, including architecture, was institutionalized in the Bauhaus curriculum that sought to find commonality between diverse art disciplines. Renowned painter and Bauhaus instructor Vassily Kandinsky was one of the first artists to make a semi-scientific analysis of the elements in “non-objective” painting while also drawing parallels between painting and architecture in his book Point and Line to plane. Russian constructivists made abstract compositions with simple geometric forms, and like the De Stijl group of the Netherlands, they also experimented with full-scale constructions and spatial explorations. Based on the study of historical accounts and original artworks, of Impressionism, Cubism, the Bauhaus, De Stijl, and Russian Constructivism, this paper begins with a thorough explanation of the art theory and several key works from these important art movements of the late 19th and early 20th century. Similarly, based on written histories and first-hand experience of built and drawn works, the author continues with an analysis of the theories and architectural works generated by the same groups, all of which actively pursued continuity between their art and architectural concepts. With images of specific works, the author shows how the trend toward abstraction and geometric purity in painting coincided with a similar trend in architecture that favored simple unornamented geometries. Using examples like the Villa Savoye, The Schroeder House, the Dessau Bauhaus, and unbuilt designs by Russian architect Chernikov, the author gives detailed examples of how the intersection of trends in Art and Architecture led to a unique and fruitful period of creative synergy when the same concepts that were used by artists to generate paintings were also used by architects in the making of objects, space, and buildings. In Conclusion, this article examines the extremely pivotal period in art and architecture history from the late 19th to early 20th century when the confluence of art and architectural theory led to many painted, drawn, and built works that continue to inspire architects and artists to this day.

Keywords: modern art, architecture, design methodologies, modern architecture

Procedia PDF Downloads 122
8789 Inertial Spreading of Drop on Porous Surfaces

Authors: Shilpa Sahoo, Michel Louge, Anthony Reeves, Olivier Desjardins, Susan Daniel, Sadik Omowunmi

Abstract:

The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field.

Keywords: droplet imbibition, hydrophilic surface, inertial phase, porous medium

Procedia PDF Downloads 130
8788 A Programming Assessment Software Artefact Enhanced with the Help of Learners

Authors: Romeo A. Botes, Imelda Smit

Abstract:

The demands of an ever changing and complex higher education environment, along with the profile of modern learners challenge current approaches to assessment and feedback. More learners enter the education system every year. The younger generation expects immediate feedback. At the same time, feedback should be meaningful. The assessment of practical activities in programming poses a particular problem, since both lecturers and learners in the information and computer science discipline acknowledge that paper-based assessment for programming subjects lacks meaningful real-life testing. At the same time, feedback lacks promptness, consistency, comprehensiveness and individualisation. Most of these aspects may be addressed by modern, technology-assisted assessment. The focus of this paper is the continuous development of an artefact that is used to assist the lecturer in the assessment and feedback of practical programming activities in a senior database programming class. The artefact was developed using three Design Science Research cycles. The first implementation allowed one programming activity submission per assessment intervention. This pilot provided valuable insight into the obstacles regarding the implementation of this type of assessment tool. A second implementation improved the initial version to allow multiple programming activity submissions per assessment. The focus of this version is on providing scaffold feedback to the learner – allowing improvement with each subsequent submission. It also has a built-in capability to provide the lecturer with information regarding the key problem areas of each assessment intervention.

Keywords: programming, computer-aided assessment, technology-assisted assessment, programming assessment software, design science research, mixed-method

Procedia PDF Downloads 295
8787 Parameter Identification Analysis in the Design of Rock Fill Dams

Authors: G. Shahzadi, A. Soulaimani

Abstract:

This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.

Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS

Procedia PDF Downloads 142
8786 The Roman Fora in North Africa Towards a Supportive Protocol to the Decision for the Morphological Restitution

Authors: Dhouha Laribi Galalou, Najla Allani Bouhoula, Atef Hammouda

Abstract:

This research delves into the fundamental question of the morphological restitution of built archaeology in order to place it in its paradigmatic context and to seek answers to it. Indeed, the understanding of the object of the study, its analysis, and the methodology of solving the morphological problem posed, are manageable aspects only by means of a thoughtful strategy that draws on well-defined epistemological scaffolding. In this stream, the crisis of natural reasoning in archaeology has generated multiple changes in this field, ranging from the use of new tools to the integration of an archaeological information system where urbanization involves the interplay of several disciplines. The built archaeological topic is also an architectural and morphological object. It is also a set of articulated elementary data, the understanding of which is about to be approached from a logicist point of view. Morphological restitution is no exception to the rule, and the inter-exchange between the different disciplines uses the capacity of each to frame the reflection on the incomplete elements of a given architecture or on its different phases and multiple states of existence. The logicist sequence is furnished by the set of scattered or destroyed elements found, but also by what can be called a rule base which contains the set of rules for the architectural construction of the object. The knowledge base built from the archaeological literature also provides a reference that enters into the game of searching for forms and articulations. The choice of the Roman Forum in North Africa is justified by the great urban and architectural characteristics of this entity. The research on the forum involves both a fairly large knowledge base but also provides the researcher with material to study - from a morphological and architectural point of view - starting from the scale of the city down to the architectural detail. The experimentation of the knowledge deduced on the paradigmatic level, as well as the deduction of an analysis model, is then carried out on the basis of a well-defined context which contextualises the experimentation from the elaboration of the morphological information container attached to the rule base and the knowledge base. The use of logicist analysis and artificial intelligence has allowed us to first question the aspects already known in order to measure the credibility of our system, which remains above all a decision support tool for the morphological restitution of Roman Fora in North Africa. This paper presents a first experimentation of the model elaborated during this research, a model framed by a paradigmatic discussion and thus trying to position the research in relation to the existing paradigmatic and experimental knowledge on the issue.

Keywords: classical reasoning, logicist reasoning, archaeology, architecture, roman forum, morphology, calculation

Procedia PDF Downloads 142
8785 TimeTune: Personalized Study Plans Generation with Google Calendar Integration

Authors: Chevon Fernando, Banuka Athuraliya

Abstract:

The purpose of this research is to provide a solution to the students’ time management, which usually becomes an issue because students must study and manage their personal commitments. "TimeTune," an AI-based study planner that provides an opportunity to maneuver study timeframes by incorporating modern machine learning algorithms with calendar applications, is unveiled as the ideal solution. The research is focused on the development of LSTM models that connect to the Google Calendar API in the process of developing learning paths that would be fit for a unique student's daily life experience and study history. A key finding of this research is the success in building the LSTM model to predict optimal study times, which, integrating with the real-time data of Google Calendar, will generate the timetables automatically in a personalized and customized manner. The methodology encompasses Agile development practices and Object-Oriented Analysis and Design (OOAD) principles, focusing on user-centric design and iterative development. By adopting this method, students can significantly reduce the tension associated with poor study habits and time management. In conclusion, "TimeTune" displays an advanced step in personalized education technology. The fact that its application of ML algorithms and calendar integration is quite innovative is slowly and steadily revolutionizing the lives of students. The excellence of maintaining a balanced academic and personal life is stress reduction, which the applications promise to provide for students when it comes to managing their studies.

Keywords: personalized learning, study planner, time management, calendar integration

Procedia PDF Downloads 43
8784 Percentage Change in the Selected Skinfold Measurements of Male Students of University of Delhi Due to Progressive and Constant Load of Physical Training

Authors: Seema Kaushik

Abstract:

Skinfold measurements provide considerably meaningful and consistent information about subcutaneous fat and its distribution. Physical activities in the form of conditioning and/or training leads to various structural, functional and mechanical changes and numerous training programmes exist for the improvement of physical fitness, however, most of the studies are conducted on foreign soil with foreign population as sample, which may/may not be applicable to the Indian conditions. Moreover, there is not even a single training/ conditioning programme that caters to the need of male students of University of Delhi with regard to various skinfold thickness measurements. Hence, the present study aimed at studying the effect of progressive and constant load training on selected skinfold measurements of male students of University of Delhi in form of percentage change. The sample size for the study was 90 having three groups of male; 30 samples in each group (mean age = 20.04±0.49 years). The variables included triceps, sub-scapular, supra-iliac and calf skinfolds. The experimental design adopted for the study was multi-group repeated measure design. Three different groups were measured four times repeatedly at an interval of 6 weeks, on completion of each of the three meso-cycles. Standard landmarks and protocols were followed to measure the selected variables. Mean, standard deviation and percentage were computed to analyze the data statistically. The study concluded that both the progressive and constant load of physical training bring changes in the skinfold thickness measurements of male students of University of Delhi.

Keywords: constant load, progressive load, physical training, skinfold measurements

Procedia PDF Downloads 320
8783 The Reason Why Al-Kashi’s Understanding of Islamic Arches Was Wrong

Authors: Amin Moradi, Maryam Moeini

Abstract:

It is a widely held view that Ghiyath al-Din Jamshid-e-Kashani, also known as al-Kashi (1380-1429 CE), was the first who played a significant role in the interaction between mathematicians and architects by introducing theoretical knowledge in Islamic architecture. In academic discourses, geometric rules extracted from his splendid volume titled as Key of Arithmetic has uncritically believed by historians of architecture to contemplate the whole process of arch design all throughout the Islamic buildings. His theories tried to solve the fundamental problem of structural design and to understand what makes an Islamic structure safe or unsafe. As a result, al-Kashi arrived at the conclusion that a safe state of equilibrium is achieved through a specific geometry as a rule. This paper reassesses the stability of al-Kashi's systematized principal forms to evaluate the logic of his hypothesis with a special focus on large spans. Besides the empirical experiences of the author in masonry constructions, the finite element approach was proposed considering the current standards in order to get a better understanding of the validity of geometric rules proposed by al-Kashi for the equilibrium conditions of Islamic masonry arches and vaults. The state of damage of his reference arches under loading condition confirms beyond any doubt that his conclusion of the geometrical configuration measured through his treaties present some serious operational limits and do not go further than some individualized mathematical hypothesis. Therefore, the nature of his mathematical studies regarding Islamic arches is in complete contradiction with the practical knowledge of construction methodology.

Keywords: Jamshid al-Kashani, Islamic architecture, Islamic geometry, construction equilibrium, collapse mechanism

Procedia PDF Downloads 124
8782 A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method

Authors: Hanwei Gao, Louis Jezequel, Eric Cabrol, Bernard Vitry

Abstract:

The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system.

Keywords: chassis durability, Chebyshev polynomials, multi-objective optimization, polynomial chaos expansion, ride comfort, robust design

Procedia PDF Downloads 149
8781 Evaluation of Fracture Resistance and Moisture Damage of Hot Mix Asphalt Using Plastic Coated Aggregates

Authors: Malleshappa Japagal, Srinivas Chitragar

Abstract:

The use of waste plastic in pavement is becoming important alternative worldwide for disposal of plastic as well as to improve the stability of pavement and to meet out environmental issues. However, there are still concerns on fatigue and fracture resistance of Hot Mix Asphalt with the addition of plastic waste, (HMA-Plastic mixes) and moisture damage potential. The present study was undertaken to evaluate fracture resistance of HMA-Plastic mixes using semi-circular bending (SCB) test and moisture damage potential by Indirect Tensile strength (ITS) test using retained tensile strength (TSR). In this study, a dense graded asphalt mix with 19 mm nominal maximum aggregate size was designed in the laboratory using Marshall Mix design method. Aggregates were coated with different percentages of waste plastic (0%, 2%, 3% and 4%) by weight of aggregate and performance evaluation of fracture resistance and Moisture damage was carried out. The following parameters were estimated for the mixes: J-Integral or Jc, strain energy at failure, peak load at failure, and deformation at failure. It was found that the strain energy and peak load of all the mixes decrease with an increase in notch depth, indicating that increased percentage of plastic waste gave better fracture resistance. The moisture damage potential was evaluated by Tensile strength ratio (TSR). The experimental results shown increased TRS value up to 3% addition of waste plastic in HMA mix which gives better performance hence the use of waste plastic in road construction is favorable.

Keywords: hot mix asphalt, semi circular bending, marshall mix design, tensile strength ratio

Procedia PDF Downloads 300
8780 Multi-Plane Wrist Movement: Pathomechanics and Design of a 3D-Printed Splint

Authors: Sigal Portnoy, Yael Kaufman-Cohen, Yafa Levanon

Abstract:

Introduction: Rehabilitation following wrist fractures often includes exercising flexion-extension movements with a dynamic splint. However, during daily activities, we combine most of our wrist movements with radial and ulnar deviations. Also, the multi-plane wrist motion, named the ‘dart throw motion’ (DTM), was found to be a more stable motion in healthy individuals, in term of the motion of the proximal carpal bones, compared with sagittal wrist motion. The aim of this study was therefore to explore the pathomechanics of the wrist in a common multi-plane movement pattern (DTM) and design a novel splint for rehabilitation following distal radius fractures. Methods: First, a multi-axis electro-goniometer was used to quantify the plane angle of motion of the dominant and non-dominant wrists during various activities, e.g. drinking from a glass of water and answering a phone in 43 healthy individuals. The following protocols were then implemented with a population following distal radius fracture. Two dynamic scans were performed, one of the sagittal wrist motion and DTM, in a 3T magnetic resonance imaging (MRI) device, bilaterally. The scaphoid and lunate carpal bones, as well as the surface of the distal radius, were manually-segmented in SolidWorks and the angles of motion of the scaphoid and lunate bones were calculated. Subsequently, a patient-specific splint was designed using 3D scans of the hand. The brace design comprises of a proximal attachment to the arm and a distal envelope of the palm. An axle with two wheels is attached to the proximal part. Two wires attach the proximal part with the medial-palmar and lateral-ventral aspects of the distal part: when the wrist extends, the first wire is released and the second wire is strained towards the radius. The opposite occurs when the wrist flexes. The splint was attached to the wrist using Velcro and constrained the wrist movement to the desired calculated multi-plane of motion. Results: No significant differences were found between the multi-plane angles of the dominant and non-dominant wrists. The most common daily activities occurred at a plane angle of approximately 20° to 45° from the sagittal plane and the MRI studies show individual angles of the plane of motion. The printed splint fitted the wrist of the subjects and constricted movement to the desired multi-plane of motion. Hooks were inserted on each part to allow the addition of springs or rubber bands for resistance training towards muscle strengthening in the rehabilitation setting. Conclusions: It has been hypothesized that activation of the wrist in a multi-plane movement pattern following distal radius fractures will accelerate the recovery of the patient. Our results show that this motion can be determined from either the dominant or non-dominant wrists. The design of the patient-specific dynamic splint is the first step towards assessing whether splinting to induce combined movement is beneficial to the rehabilitation process, compared to conventional treatment. The evaluation of the clinical benefits of this method, compared to conventional rehabilitation methods following wrist fracture, are a part of a PhD work, currently conducted by an occupational therapist.

Keywords: distal radius fracture, rehabilitation, dynamic magnetic resonance imaging, dart throw motion

Procedia PDF Downloads 292
8779 Aerobic Capacity Outcomes after an Aerobic Exercise Program with an Upper Body Ergometer in Diabetic Amputees

Authors: Cecilia Estela Jiménez Pérez Campos

Abstract:

Introduction: Amputation comes from a series of complications in diabetic persons; at that point, of the illness evolution they have a deplored aerobic capacity. Adding to that, cardiac rehabs programs are almost base in several activities in a standing position. The cardiac rehabilitation programs have to improve for them, based on scientific advice. Objective: Evaluation of aerobic capacity of diabetic amputee after an aerobic exercise program, with upper limb ergometer. Methodology: The design is longitudinal, prospective, comparative and no randomized. We include all diabetic pelvic limb amputees, who assist to the cardiac rehabilitation. We made 2 groups: an experimental and a control group. The patients did the exercise testing, with the author’s design protocol. The experimental group completed 24 exercise sessions (3 sessions/week), with an intensity determined with the training heart rate. At the end of 8 weeks period, the subjects did a second exercise test. Results: Both groups were a homogeneous sample in age (experimental n=15) 57.6+12.5 years old and (control n=8) 52.5+8.0 years old, sex, occupation, education and economic features. (square chi) (p=0.28). The initial aerobic capacity was similar in both groups. And the aerobic capacity accomplishes after the program was statistically greater in the experimental group than in the control one. The final media VO2peak (mlO2/kg/min) was experimental (17.1+3.8), control (10.5+3.8), p=0.001. (t student). Conclusions: The aerobic capacity improved after an arm ergometer exercise program and the quality of life improve too, in diabetic amputees. So this program is fundamental in diabetic amputee’s rehabilitation management.

Keywords: aerobic fitness, metabolic equivalent (MET), oxygen output, upper limb ergometer

Procedia PDF Downloads 233
8778 Customer Involvement in the Development of New Sustainable Products: A Review of the Literature

Authors: Natalia Moreira, Trevor Wood-Harper

Abstract:

The acceptance of sustainable products by the final consumer is still one of the challenges of the industry, which constantly seeks alternative approaches to successfully be accepted in the global market. A large set of methods and approaches have been discussed and analysed throughout the literature. Considering the current need for sustainable development and the current pace of consumption, the need for a combined solution towards the development of new products became clear, forcing researchers in product development to propose alternatives to the previous standard product development models. This paper presents, through a systemic analysis of the literature on product development, eco-design and consumer involvement, a set of alternatives regarding consumer involvement towards the development of sustainable products and how these approaches could help improve the sustainable industry’s establishment in the general market. The initial findings of the research show that the understanding of the benefits of sustainable behaviour lead to a more conscious acquisition and eventually to the implementation of sustainable change in the consumer. Thus this paper is the initial approach towards the development of new sustainable products using the fashion industry as an example of practical implementation and acceptance by the consumers. By comparing the existing literature and critically analysing it this paper concluded that the consumer involvement is strategic to improve the general understanding of sustainability and its features. The use of consumers and communities has been studied since the early 90s in order to exemplify uses and to guarantee a fast comprehension. The analysis done also includes the importance of this approach for the increase of innovation and ground breaking developments, thus requiring further research and practical implementation in order to better understand the implications and limitations of this methodology.

Keywords: consumer involvement, products development, sustainability, eco-design

Procedia PDF Downloads 590
8777 The Effects of Lighting Environments on the Perception and Psychology of Consumers of Different Genders in a 3C Retail Store

Authors: Yu-Fong Lin

Abstract:

The main purpose of this study is to explore the impact of different lighting arrangements that create different visual environments in a 3C retail store on the perception, psychology, and shopping tendencies of consumers of different genders. In recent years, the ‘emotional shopping’ model has been widely accepted in the consumer market; in addition to the emotional meaning and value of a product, the in-store ‘shopping atmosphere’ has also been increasingly regarded as significant. The lighting serves as an important environmental stimulus that influences the atmosphere of a store. Altering the lighting can change the color, the shape, and the atmosphere of a space. A successful retail lighting design can not only attract consumers’ attention and generate their interest in various goods, but it can also affect consumers’ shopping approach, behavior, and desires. 3C electronic products have become mainstream in the current consumer market. Consumers of different genders may demonstrate different behaviors and preferences within a 3C store environment. This study tests the impact of a combination of lighting contrasts and color temperatures in a 3C retail store on the visual perception and psychological reactions of consumers of different genders. The research design employs an experimental method to collect data from subjects and then uses statistical analysis adhering to a 2 x 2 x 2 factorial design to identify the influences of different lighting environments. This study utilizes virtual reality technology as the primary method by which to create four virtual store lighting environments. The four lighting conditions are as follows: high contrast/cool tone, high contrast/warm tone, low contrast/cool tone, and low contrast/warm tone. Differences in the virtual lighting and the environment are used to test subjects’ visual perceptions, emotional reactions, store satisfaction, approach-avoidance intentions, and spatial atmosphere preferences. The findings of our preliminary test indicate that female subjects have a higher pleasure response than male subjects in a 3C retail store. Based on the findings of our preliminary test, the researchers modified the contents of the questionnaires and the virtual 3C retail environment with different lighting conditions in order to conduct the final experiment. The results will provide information about the effects of retail lighting on the environmental psychology and the psychological reactions of consumers of different genders in a 3C retail store lighting environment. These results will enable useful practical guidelines about creating 3C retail store lighting and atmosphere for retailers and interior designers to be established.

Keywords: 3C retail store, environmental stimuli, lighting, virtual reality

Procedia PDF Downloads 388
8776 Effectiveness of Micro-Credit Scheme of Community Women and Development (COWAD) in Enhancing Living Standards of Women in Oyo State, Nigeria

Authors: Olufunmilayo Folaranmi

Abstract:

The study aimed at assessing the effectiveness of micro-credit scheme of (COWAD) in enhancing the living standard of women in selected local government areas of Oyo State. A survey research design was adopted for the study. A sample of 250 respondents was purposively selected for the study while a structured questionnaire tagged Effectiveness of Micro-Credit Scheme of Community Women and Development and Living Standards of Women Questionnaire (EMCSCWDQ) was designed to collect data for the study. Data collected was analyzed using frequency distribution, tables, percentages and chi-square statistics. Three hypotheses were tested for the study at 0.05 level of significance. Findings from the study indicated that loan provided by COWAD for women in selected local government areas towards improving their economic conditions has improved the living conditions of the women, promoted their general welfare, and reduced their poverty level. Findings also showed that some beneficiaries were not able to pay back, therefore reducing the effectiveness for future beneficiaries. Based on the findings, it was recommended that the providers of various micro-credit schemes of the state should design a convenient pattern of payment which will provide enough time for the beneficiaries of the loan to sell their goods or work for proper and timely payment. Also, the problem of collateral should be reviewed as the majority of women involved are poor. Other recommendations include replication of COWAD facilities in other NGOs as well as sustainability of the facility.

Keywords: micro-credit scheme, welfare, women, development, poverty

Procedia PDF Downloads 160
8775 Inducing Flow Experience in Mobile Learning: An Experiment Using a Spanish Learning Mobile Application

Authors: S. Jonsson, D. Millard, C. Bokhove

Abstract:

Smartphones are ubiquitous and frequently used as learning tools, which makes the design of educational apps an important area of research. A key issue is designing apps to encourage engagement while maintaining a focus on the educational aspects of the app. Flow experience is a promising method for addressing this issue, which refers to a mental state of cognitive absorption and positive emotion. Flow experience has been shown to be associated with positive emotion and increased learning performance. Studies have shown that immediate feedback is an antecedent to Flow. This experiment investigates the effect of immediate feedback on Flow experience. An app teaching Spanish phrases was developed, and 30 participants completed both a 10min session with immediate feedback and a 10min session with delayed feedback. The app contained a task where the user assembles Spanish phrases by pressing bricks with Spanish words. Immediate feedback was implemented by incorrect bricks recoiling, while correct brick moved to form part of the finished phrase. In the delayed feedback condition, the user did not know if the bricks they pressed were correct until the phrase was complete. The level of Flow experienced by the participants was measured after each session using the Flow Short Scale. The results showed that higher levels of Flow were experienced in the immediate feedback session. It was also found that 14 of the participants indicated that the demands of the task were ‘just right’ in the immediate feedback session, while only one did in the delayed feedback session. These results have implications for how to design educational technology and opens up questions for how Flow experience can be used to increase performance and engagement.

Keywords: feedback timing, flow experience, L2 language learning, mobile learning

Procedia PDF Downloads 125
8774 The Development of Assessment Criteria Framework for Sustainable Healthcare Buildings in China

Authors: Chenyao Shen, Jie Shen

Abstract:

The rating system provides an effective framework for assessing building environmental performance and integrating sustainable development into building and construction processes; as it can be used as a design tool by developing appropriate sustainable design strategies and determining performance measures to guide the sustainable design and decision-making processes. Healthcare buildings are resource (water, energy, etc.) intensive. To maintain high-cost operations and complex medical facilities, they require a great deal of hazardous and non-hazardous materials, stringent control of environmental parameters, and are responsible for producing polluting emission. Compared with other types of buildings, the impact of healthcare buildings on the full cycle of the environment is particularly large. With broad recognition among designers and operators that energy use can be reduced substantially, many countries have set up their own green rating systems for healthcare buildings. There are four main green healthcare building evaluation systems widely acknowledged in the world - Green Guide for Health Care (GGHC), which was jointly organized by the United States HCWH and CMPBS in 2003; BREEAM Healthcare, issued by the British Academy of Building Research (BRE) in 2008; the Green Star-Healthcare v1 tool, released by the Green Building Council of Australia (GBCA) in 2009; and LEED Healthcare 2009, released by the United States Green Building Council (USGBC) in 2011. In addition, the German Association of Sustainable Building (DGNB) has also been developing the German Sustainable Building Evaluation Criteria (DGNB HC). In China, more and more scholars and policy makers have recognized the importance of assessment of sustainable development, and have adapted some tools and frameworks. China’s first comprehensive assessment standard for green building (the GBTs) was issued in 2006 (lately updated in 2014), promoting sustainability in the built-environment and raise awareness of environmental issues among architects, engineers, contractors as well as the public. However, healthcare building was not involved in the evaluation system of GBTs because of its complex medical procedures, strict requirements of indoor/outdoor environment and energy consumption of various functional rooms. Learn from advanced experience of GGHC, BREEAM, and LEED HC above, China’s first assessment criteria for green hospital/healthcare buildings was finally released in December 2015. Combined with both quantitative and qualitative assessment criteria, the standard highlight the differences between healthcare and other public buildings in meeting the functional needs for medical facilities and special groups. This paper has focused on the assessment criteria framework for sustainable healthcare buildings, for which the comparison of different rating systems is rather essential. Descriptive analysis is conducted together with the cross-matrix analysis to reveal rich information on green assessment criteria in a coherent manner. The research intends to know whether the green elements for healthcare buildings in China are different from those conducted in other countries, and how to improve its assessment criteria framework.

Keywords: assessment criteria framework, green building design, healthcare building, building performance rating tool

Procedia PDF Downloads 144
8773 Uniqueness and Repeatability Analysis for Slim Tube Determined Minimum Miscibility Pressure

Authors: Waqar Ahmad Butt, Gholamreza Vakili Nezhaad, Ali Soud Al Bemani, Yahya Al Wahaibi

Abstract:

Miscible gas injection processes as secondary recovery methods can be applied to a huge number of mature reservoirs to improve the trapped oil displacement. Successful miscible gas injection processes require an accurate estimation of the minimum miscibility pressure (MMP) to make injection process feasible, economical, and effective. There are several methods of MMP determination like slim tube approach, vanishing interfacial tension and rising bubble apparatus but slim tube is the deployed experimental technique in this study. Slim tube method is assumed to be non-standardized for MMP determination with respect to both operating procedure and design. Therefore, 25 slim tube runs were being conducted with three different coil lengths (12, 18 and 24 m) of constant diameter using three different injection rates (0.08, 0.1 and 0.15 cc/min) to evaluate uniqueness and repeatability of determined MMP. A trend of decrease in MMP with increase in coil length was found. No unique trend was found between MMP and injection rate. Lowest MMP and highest recovery were observed with highest coil length and lowest injection rate. It shows that slim tube measured MMP does not depend solely on interacting fluids characteristics but also affected by used coil selection and injection rate choice. Therefore, both slim tube design and procedure need to be standardized. It is recommended to use lowest possible injection rate and estimated coil length depending upon the distance between injections and producing wells for accurate and reliable MMP determination.

Keywords: coil length, injection rate, minimum miscibility pressure, multiple contacts miscibility

Procedia PDF Downloads 248
8772 Treatment of Healthcare Wastewater Using The Peroxi-Photoelectrocoagulation Process: Predictive Models for Chemical Oxygen Demand, Color Removal, and Electrical Energy Consumption

Authors: Samuel Fekadu A., Esayas Alemayehu B., Bultum Oljira D., Seid Tiku D., Dessalegn Dadi D., Bart Van Der Bruggen A.

Abstract:

The peroxi-photoelectrocoagulation process was evaluated for the removal of chemical oxygen demand (COD) and color from healthcare wastewater. A 2-level full factorial design with center points was created to investigate the effect of the process parameters, i.e., initial COD, H₂O₂, pH, reaction time and current density. Furthermore, the total energy consumption and average current efficiency in the system were evaluated. Predictive models for % COD, % color removal and energy consumption were obtained. The initial COD and pH were found to be the most significant variables in the reduction of COD and color in peroxi-photoelectrocoagulation process. Hydrogen peroxide only has a significant effect on the treated wastewater when combined with other input variables in the process like pH, reaction time and current density. In the peroxi-photoelectrocoagulation process, current density appears not as a single effect but rather as an interaction effect with H₂O₂ in reducing COD and color. Lower energy expenditure was observed at higher initial COD, shorter reaction time and lower current density. The average current efficiency was found as low as 13 % and as high as 777 %. Overall, the study showed that hybrid electrochemical oxidation can be applied effectively and efficiently for the removal of pollutants from healthcare wastewater.

Keywords: electrochemical oxidation, UV, healthcare pollutants removals, factorial design

Procedia PDF Downloads 75
8771 Formulation and Invivo Evaluation of Salmeterol Xinafoate Loaded MDI for Asthma Using Response Surface Methodology

Authors: Paresh Patel, Priya Patel, Vaidehi Sorathiya, Navin Sheth

Abstract:

The aim of present work was to fabricate Salmeterol Xinafoate (SX) metered dose inhaler (MDI) for asthma and to evaluate the SX loaded solid lipid nanoparticles (SLNs) for pulmonary delivery. Solid lipid nanoparticles can be used to deliver particles to the lungs via MDI. A modified solvent emulsification diffusion technique was used to prepare Salmeterol Xinafoate loaded solid lipid nanoparticles by using compritol 888 ATO as lipid, tween 80 as surfactant, D-mannitol as cryoprotecting agent and L-leucine was used to improve aerosolization behaviour. Box-Behnken design was applied with 17 runs. 3-D surface response plots and contour plots were drawn and optimized formulation was selected based on minimum particle size and maximum % EE. % yield, in vitro diffusion study, scanning electron microscopy, X-ray diffraction, DSC, FTIR also characterized. Particle size, zeta potential analyzed by Zetatrac particle size analyzer and aerodynamic properties was carried out by cascade impactor. Pre convulsion time was examined for control group, treatment group and compare with marketed group. MDI was evaluated for leakage test, flammability test, spray test and content per puff. By experimental design, particle size and % EE found to be in range between 119-337 nm and 62.04-76.77% by solvent emulsification diffusion technique. Morphologically, particles have spherical shape and uniform distribution. DSC & FTIR study showed that no interaction between drug and excipients. Zeta potential shows good stability of SLNs. % respirable fraction found to be 52.78% indicating reach to the deep part of lung such as alveoli. Animal study showed that fabricated MDI protect the lungs against histamine induced bronchospasm in guinea pigs. MDI showed sphericity of particle in spray pattern, 96.34% content per puff and non-flammable. SLNs prepared by Solvent emulsification diffusion technique provide desirable size for deposition into the alveoli. This delivery platform opens up a wide range of treatment application of pulmonary disease like asthma via solid lipid nanoparticles.

Keywords: salmeterol xinafoate, solid lipid nanoparticles, box-behnken design, solvent emulsification diffusion technique, pulmonary delivery

Procedia PDF Downloads 450
8770 Design and Development of Ssvep-Based Brain-Computer Interface for Limb Disabled Patients

Authors: Zerihun Ketema Tadesse, Dabbu Suman Reddy

Abstract:

Brain-Computer Interfaces (BCIs) give the possibility for disabled people to communicate and control devices. This work aims at developing steady-state visual evoked potential (SSVEP)-based BCI for patients with limb disabilities. In hospitals, devices like nurse emergency call devices, lights, and TV sets are what patients use most frequently, but these devices are operated manually or using the remote control. Thus, disabled patients are not able to operate these devices by themselves. Hence, SSVEP-based BCI system that can allow disabled patients to control nurse calling device and other devices is proposed in this work. Portable LED visual stimulator that flickers at specific frequencies of 7Hz, 8Hz, 9Hz and 10Hz were developed as part of this project. Disabled patients can stare at specific flickering LED of visual stimulator and Emotiv EPOC used to acquire EEG signal in a non-invasive way. The acquired EEG signal can be processed to generate various control signals depending upon the amplitude and duration of signal components. MATLAB software is used for signal processing and analysis and also for command generation. Arduino is used as a hardware interface device to receive and transmit command signals to the experimental setup. Therefore, this study is focused on the design and development of Steady-state visually evoked potential (SSVEP)-based BCI for limb disabled patients, which helps them to operate and control devices in the hospital room/wards.

Keywords: SSVEP-BCI, Limb Disabled Patients, LED Visual Stimulator, EEG signal, control devices, hospital room/wards

Procedia PDF Downloads 219