Search results for: hyperspectral image classification using tree search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9604

Search results for: hyperspectral image classification using tree search algorithm

5284 A Methodology for Developing New Technology Ideas to Avoid Patent Infringement: F-Term Based Patent Analysis

Authors: Kisik Song, Sungjoo Lee

Abstract:

With the growing importance of intangible assets recently, the impact of patent infringement on the business of a company has become more evident. Accordingly, it is essential for firms to estimate the risk of patent infringement risk before developing a technology and create new technology ideas to avoid the risk. Recognizing the needs, several attempts have been made to help develop new technology opportunities and most of them have focused on identifying emerging vacant technologies from patent analysis. In these studies, the IPC (International Patent Classification) system or keywords from text-mining application to patent documents was generally used to define vacant technologies. Unlike those studies, this study adopted F-term, which classifies patent documents according to the technical features of the inventions described in them. Since the technical features are analyzed by various perspectives by F-term, F-term provides more detailed information about technologies compared to IPC while more systematic information compared to keywords. Therefore, if well utilized, it can be a useful guideline to create a new technology idea. Recognizing the potential of F-term, this paper aims to suggest a novel approach to developing new technology ideas to avoid patent infringement based on F-term. For this purpose, we firstly collected data about F-term and then applied text-mining to the descriptions about classification criteria and attributes. From the text-mining results, we could identify other technologies with similar technical features of the existing one, the patented technology. Finally, we compare the technologies and extract the technical features that are commonly used in other technologies but have not been used in the existing one. These features are presented in terms of “purpose”, “function”, “structure”, “material”, “method”, “processing and operation procedure” and “control means” and so are useful for creating new technology ideas that help avoid infringing patent rights of other companies. Theoretically, this is one of the earliest attempts to adopt F-term to patent analysis; the proposed methodology can show how to best take advantage of F-term with the wealth of technical information. In practice, the proposed methodology can be valuable in the ideation process for successful product and service innovation without infringing the patents of other companies.

Keywords: patent infringement, new technology ideas, patent analysis, F-term

Procedia PDF Downloads 271
5283 Simulation of Wet Scrubbers for Flue Gas Desulfurization

Authors: Anders Schou Simonsen, Kim Sorensen, Thomas Condra

Abstract:

Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs.

Keywords: desulfurization, discrete phase, scrubber, wall film

Procedia PDF Downloads 274
5282 Study on the Thermal Mixing of Steam and Coolant in the Hybrid Safety Injection Tank

Authors: Sung Uk Ryu, Byoung Gook Jeon, Sung-Jae Yi, Dong-Jin Euh

Abstract:

In such passive safety injection systems in the nuclear power plant as Core Makeup Tank (CMT) and Hybrid Safety Injection Tank, various thermal-hydraulic phenomena including the direct contact condensation of steam and the thermal stratification of coolant occur. These phenomena are also closely related to the performance of the system. Depending on the condensation rate of the steam injected to the tank, the injection of the coolant and pressure equalizing timings of the tank are decided. The steam injected to the tank from the upper nozzle penetrates the coolant and induces a direct contact condensation. In the present study, the direct contact condensation of steam and the thermal mixing between the steam and coolant were examined by using the Particle Image Velocimetry (PIV) technique. Especially, by altering the size of the nozzle from which the steam is injected, the influence of steam injection velocity on the thermal mixing with coolant and condensation shall be comprehended, while also investigating the influence of condensation on the pressure variation inside the tank. Even though the amounts of steam inserted were the same in three different nozzle size conditions, it was found that the velocity of pressure rise becomes lower as the steam injection area decreases. Also, as the steam injection area increases, the thickness of the zone within which the coolant’s temperature decreases. Thereby, the amount of steam condensed by the direct contact condensation also decreases. The results derived from the present study can be utilized for the detailed design of a passive safety injection system, as well as for modeling the direct contact condensation triggered by the steam jet’s penetration into the coolant.

Keywords: passive safety injection systems, steam penetration, direct contact condensation, particle image velocimetry

Procedia PDF Downloads 397
5281 How to Perform Proper Indexing?

Authors: Watheq Mansour, Waleed Bin Owais, Mohammad Basheer Kotit, Khaled Khan

Abstract:

Efficient query processing is one of the utmost requisites in any business environment to satisfy consumer needs. This paper investigates the various types of indexing models, viz. primary, secondary, and multi-level. The investigation is done under the ambit of various types of queries to which each indexing model performs with efficacy. This study also discusses the inherent advantages and disadvantages of each indexing model and how indexing models can be chosen based on a particular environment. This paper also draws parallels between various indexing models and provides recommendations that would help a Database administrator to zero-in on a particular indexing model attributed to the needs and requirements of the production environment. In addition, to satisfy industry and consumer needs attributed to the colossal data generation nowadays, this study has proposed two novel indexing techniques that can be used to index highly unstructured and structured Big Data with efficacy. The study also briefly discusses some best practices that the industry should follow in order to choose an indexing model that is apposite to their prerequisites and requirements.

Keywords: indexing, hashing, latent semantic indexing, B-tree

Procedia PDF Downloads 162
5280 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique

Authors: Karchung, S. Ruangsinchaiwanich

Abstract:

This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.

Keywords: electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique

Procedia PDF Downloads 149
5279 Study on Acoustic Source Detection Performance Improvement of Microphone Array Installed on Drones Using Blind Source Separation

Authors: Youngsun Moon, Yeong-Ju Go, Jong-Soo Choi

Abstract:

Most drones that currently have surveillance/reconnaissance missions are basically equipped with optical equipment, but we also need to use a microphone array to estimate the location of the acoustic source. This can provide additional information in the absence of optical equipment. The purpose of this study is to estimate Direction of Arrival (DOA) based on Time Difference of Arrival (TDOA) estimation of the acoustic source in the drone. The problem is that it is impossible to measure the clear target acoustic source because of the drone noise. To overcome this problem is to separate the drone noise and the target acoustic source using Blind Source Separation(BSS) based on Independent Component Analysis(ICA). ICA can be performed assuming that the drone noise and target acoustic source are independent and each signal has non-gaussianity. For maximized non-gaussianity each signal, we use Negentropy and Kurtosis based on probability theory. As a result, we can improve TDOA estimation and DOA estimation of the target source in the noisy environment. We simulated the performance of the DOA algorithm applying BSS algorithm, and demonstrated the simulation through experiment at the anechoic wind tunnel.

Keywords: aeroacoustics, acoustic source detection, time difference of arrival, direction of arrival, blind source separation, independent component analysis, drone

Procedia PDF Downloads 166
5278 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach

Authors: Alvaro Figueira, Bruno Cabral

Abstract:

Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.

Keywords: data mining, e-learning, grade prediction, machine learning, student learning path

Procedia PDF Downloads 125
5277 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 187
5276 Emergency Multidisciplinary Continuing Care Case Management

Authors: Mekroud Amel

Abstract:

Emergency departments are known for the workload, the variety of pathologies and the difficulties in their management with the continuous influx of patients The role of our service in the management of patients with two or three mild to moderate organ failures, involving several disciplines at the same time, as well as the effect of this management on the skills and efficiency of our team has been demonstrated Borderline cases between two or three or even more disciplines, with instability of a vital function, which have been successfully managed in the emergency room, the therapeutic procedures adopted, the consequences on the quality and level of care delivered by our team, as well as that the logistical consequences, and the pedagogical consequences are demonstrated. The consequences found are Positive on the emergency teams, in rare situations are negative Regarding clinical situations, it is the entanglement of hemodynamic distress with right, left or global participation, tamponade, low flow with acute pulmonary edema, and/or state of shock With respiratory distress with more or less profound hypoxemia, with haematosis disorder related to a bacterial or viral lung infection, pleurisy, pneumothorax, bronchoconstrictive crisis. With neurological disorders such as recent stroke, comatose state, or others With metabolic disorders such as hyperkalaemia renal insufficiency severe ionic disorders with accidents with anti vitamin K With or without septate effusion of one or more serous membranes with or without tamponade It’s a Retrospective, monocentric, descriptive study Period 05.01.2022 to 10.31.2022 the purpose of our work: Search for a statistically significant link between the type of moderate to severe pathology managed in the emergency room whose problems are multivisceral on the efficiency of the healthcare team and its level of care and optional care offered for patients Statistical Test used: Chi2 test to prove the significant link between the resolution of serious multidisciplinary cases in the emergency room and the effectiveness of the team in the management of complicated cases Search for a statistically significant link : The management of the most difficult clinical cases for organ specialties has given general practitioner emergency teams a great perspective and has been able to improve their efficiency in the face of emergencies received

Keywords: emergency care teams, management of patients with dysfunction of more than one organ, learning curve, quality of care

Procedia PDF Downloads 81
5275 Obtaining High-Dimensional Configuration Space for Robotic Systems Operating in a Common Environment

Authors: U. Yerlikaya, R. T. Balkan

Abstract:

In this research, a method is developed to obtain high-dimensional configuration space for path planning problems. In typical cases, the path planning problems are solved directly in the 3-dimensional (D) workspace. However, this method is inefficient in handling the robots with various geometrical and mechanical restrictions. To overcome these difficulties, path planning may be formalized and solved in a new space which is called configuration space. The number of dimensions of the configuration space comes from the degree of freedoms of the system of interest. The method can be applied in two ways. In the first way, the point clouds of all the bodies of the system and interaction of them are used. The second way is performed via using the clearance function of simulation software where the minimum distances between surfaces of bodies are simultaneously measured. A double-turret system is held in the scope of this study. The 4-D configuration space of a double-turret system is obtained in these two ways. As a result, the difference between these two methods is around 1%, depending on the density of the point cloud. The disparity between the two forms steadily decreases as the point cloud density increases. At the end of the study, in order to verify 4-D configuration space obtained, 4-D path planning problem was realized as 2-D + 2-D and a sample path planning is carried out with using A* algorithm. Then, the accuracy of the configuration space is proved using the obtained paths on the simulation model of the double-turret system.

Keywords: A* algorithm, autonomous turrets, high-dimensional C-space, manifold C-space, point clouds

Procedia PDF Downloads 142
5274 Quality of Service of Transportation Networks: A Hybrid Measurement of Travel Time and Reliability

Authors: Chin-Chia Jane

Abstract:

In a transportation network, travel time refers to the transmission time from source node to destination node, whereas reliability refers to the probability of a successful connection from source node to destination node. With an increasing emphasis on quality of service (QoS), both performance indexes are significant in the design and analysis of transportation systems. In this work, we extend the well-known flow network model for transportation networks so that travel time and reliability are integrated into the QoS measurement simultaneously. In the extended model, in addition to the general arc capacities, each intermediate node has a time weight which is the travel time for per unit of commodity going through the node. Meanwhile, arcs and nodes are treated as binary random variables that switch between operation and failure with associated probabilities. For pre-specified travel time limitation and demand requirement, the QoS of a transportation network is the probability that source can successfully transport the demand requirement to destination while the total transmission time is under the travel time limitation. This work is pioneering, since existing literatures that evaluate travel time reliability via a single optimization path, the proposed QoS focuses the performance of the whole network system. To compute the QoS of transportation networks, we first transfer the extended network model into an equivalent min-cost max-flow network model. In the transferred network, each arc has a new travel time weight which takes value 0. Each intermediate node is replaced by two nodes u and v, and an arc directed from u to v. The newly generated nodes u and v are perfect nodes. The new direct arc has three weights: travel time, capacity, and operation probability. Then the universal set of state vectors is recursively decomposed into disjoint subsets of reliable, unreliable, and stochastic vectors until no stochastic vector is left. The decomposition is made possible by applying existing efficient min-cost max-flow algorithm. Because the reliable subsets are disjoint, QoS can be obtained directly by summing the probabilities of these reliable subsets. Computational experiments are conducted on a benchmark network which has 11 nodes and 21 arcs. Five travel time limitations and five demand requirements are set to compute the QoS value. To make a comparison, we test the exhaustive complete enumeration method. Computational results reveal the proposed algorithm is much more efficient than the complete enumeration method. In this work, a transportation network is analyzed by an extended flow network model where each arc has a fixed capacity, each intermediate node has a time weight, and both arcs and nodes are independent binary random variables. The quality of service of the transportation network is an integration of customer demands, travel time, and the probability of connection. We present a decomposition algorithm to compute the QoS efficiently. Computational experiments conducted on a prototype network show that the proposed algorithm is superior to existing complete enumeration methods.

Keywords: quality of service, reliability, transportation network, travel time

Procedia PDF Downloads 223
5273 Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System

Authors: Hsiao-Chuan Huang, King-Lung Kuo, Mei-Hsin Lo, Hsiao-Yun Chou, Yusen Lin

Abstract:

The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources.

Keywords: TB smears, automated microscope, artificial intelligence, medical imaging

Procedia PDF Downloads 235
5272 Data-Driven Crop Advisory – A Use Case on Grapes

Authors: Shailaja Grover, Purvi Tiwari, Vigneshwaran S. R., U. Dinesh Kumar

Abstract:

In India, grapes are one of the most important horticulture crops. Grapes are most vulnerable to downy mildew, which is one of the most devasting diseases. In the absence of a precise weather-based advisory system, farmers spray pesticides on their crops extensively. There are two main challenges associated with using these pesticides. Firstly, most of these sprays were panic sprays, which could have been avoided. Second, farmers use more expensive "Preventive and Eradicate" chemicals than "Systemic, Curative and Anti-sporulate" chemicals. When these chemicals are used indiscriminately, they can enter the fruit and cause health problems such as cancer. This paper utilizes decision trees and predictive modeling techniques to provide grape farmers with customized advice on grape disease management. This model is expected to reduce the overall use of chemicals by approximately 50% and the cost by around 70%. Most of the grapes produced will have relatively low residue levels of pesticides, i.e., below the permissible level.

Keywords: analytics in agriculture, downy mildew, weather based advisory, decision tree, predictive modelling

Procedia PDF Downloads 78
5271 The Relationship between Body Positioning and Badminton Smash Quality

Authors: Gongbing Shan, Shiming Li, Zhao Zhang, Bingjun Wan

Abstract:

Badminton originated in ancient civilizations in Europe and Asia more than 2000 years ago. Presently, it is played almost everywhere with estimated 220 million people playing badminton regularly, ranging from professionals to recreational players; and it is the second most played sport in the world after soccer. In Asia, the popularity of badminton and involvement of people surpass soccer. Unfortunately, scientific researches on badminton skills are hardly proportional to badminton’s popularity. A search of literature has shown that the literature body of biomechanical investigations is relatively small. One of the dominant skills in badminton is the forehand overhead smash, which consists of 1/5 attacks during games. Empirical evidences show that one has to adjust the body position in relation to the coming shuttlecock to produce a powerful and accurate smash. Therefore, positioning is a fundamental aspect influencing smash quality. A search of literature has shown that there is a dearth/lack of study on this fundamental aspect. The goals of this study were to determine the influence of positioning and training experience on smash quality in order to discover information that could help learn/acquire the skill. Using a 10-camera, 3D motion capture system (VICON MX, 200 frames/s) and 15-segment, full-body biomechanical model, 14 skilled and 15 novice players were measured and analyzed. Results have revealed that the body positioning has direct influence on the quality of a smash, especially on shuttlecock release angle and clearance height (passing over the net) of offensive players. The results also suggest that, for training a proper positioning, one could conduct a self-selected comfort position towards a statically hanged shuttlecock and then step one foot back – a practical reference marker for learning. This perceptional marker could be applied in guiding the learning and training of beginners. As one gains experience through repetitive training, improved limbs’ coordination would increase smash quality further. The researchers hope that the findings will benefit practitioners for developing effective training programs for beginners.

Keywords: 3D motion analysis, biomechanical modeling, shuttlecock release speed, shuttlecock release angle, clearance height

Procedia PDF Downloads 503
5270 Enhanced Acquisition Time of a Quantum Holography Scheme within a Nonlinear Interferometer

Authors: Sergio Tovar-Pérez, Sebastian Töpfer, Markus Gräfe

Abstract:

The work proposes a technique that decreases the detection acquisition time of quantum holography schemes down to one-third; this allows the possibility to image moving objects. Since its invention, quantum holography with undetected photon schemes has gained interest in the scientific community. This is mainly due to its ability to tailor the detected wavelengths according to the needs of the scheme implementation. Yet this wavelength flexibility grants the scheme a wide range of possible applications; an important matter was yet to be addressed. Since the scheme uses digital phase-shifting techniques to retrieve the information of the object out of the interference pattern, it is necessary to acquire a set of at least four images of the interference pattern along with well-defined phase steps to recover the full object information. Hence, the imaging method requires larger acquisition times to produce well-resolved images. As a consequence, the measurement of moving objects remains out of the reach of the imaging scheme. This work presents the use and implementation of a spatial light modulator along with a digital holographic technique called quasi-parallel phase-shifting. This technique uses the spatial light modulator to build a structured phase image consisting of a chessboard pattern containing the different phase steps for digitally calculating the object information. Depending on the reduction in the number of needed frames, the acquisition time reduces by a significant factor. This technique opens the door to the implementation of the scheme for moving objects. In particular, the application of this scheme in imaging alive specimens comes one step closer.

Keywords: quasi-parallel phase shifting, quantum imaging, quantum holography, quantum metrology

Procedia PDF Downloads 115
5269 Supercomputer Simulation of Magnetic Multilayers Films

Authors: Vitalii Yu. Kapitan, Aleksandr V. Perzhu, Konstantin V. Nefedev

Abstract:

The necessity of studying magnetic multilayer structures is explained by the prospects of their practical application as a technological base for creating new storages medium. Magnetic multilayer films have many unique features that contribute to increasing the density of information recording and the speed of storage devices. Multilayer structures are structures of alternating magnetic and nonmagnetic layers. In frame of the classical Heisenberg model, lattice spin systems with direct short- and long-range exchange interactions were investigated by Monte Carlo methods. The thermodynamic characteristics of multilayer structures, such as the temperature behavior of magnetization, energy, and heat capacity, were investigated. The processes of magnetization reversal of multilayer structures in external magnetic fields were investigated. The developed software is based on the new, promising programming language Rust. Rust is a new experimental programming language developed by Mozilla. The language is positioned as an alternative to C and C++. For the Monte Carlo simulation, the Metropolis algorithm and its parallel implementation using MPI and the Wang-Landau algorithm were used. We are planning to study of magnetic multilayer films with asymmetric Dzyaloshinskii–Moriya (DM) interaction, interfacing effects and skyrmions textures. This work was supported by the state task of the Ministry of Education and Science of the Russia # 3.7383.2017/8.9

Keywords: The Monte Carlo methods, Heisenberg model, multilayer structures, magnetic skyrmion

Procedia PDF Downloads 168
5268 Microfabrication and Non-Invasive Imaging of Porous Osteogenic Structures Using Laser-Assisted Technologies

Authors: Irina Alexandra Paun, Mona Mihailescu, Marian Zamfirescu, Catalin Romeo Luculescu, Adriana Maria Acasandrei, Cosmin Catalin Mustaciosu, Roxana Cristina Popescu, Maria Dinescu

Abstract:

A major concern in bone tissue engineering is to develop complex 3D architectures that mimic the natural cells environment, facilitate the cells growth in a defined manner and allow the flow transport of nutrients and metabolic waste. In particular, porous structures of controlled pore size and positioning are indispensable for growing human-like bone structures. Another concern is to monitor both the structures and the seeded cells with high spatial resolution and without interfering with the cells natural environment. The present approach relies on laser-based technologies employed for fabricating porous biomimetic structures that support the growth of osteoblast-like cells and for their non-invasive 3D imaging. Specifically, the porous structures were built by two photon polymerization –direct writing (2PP_DW) of the commercially available photoresists IL-L780, using the Photonic Professional 3D lithography system. The structures consist of vertical tubes with micrometer-sized heights and diameters, in a honeycomb-like spatial arrangement. These were fabricated by irradiating the IP-L780 photoresist with focused laser pulses with wavelength centered at 780 nm, 120 fs pulse duration and 80 MHz repetition rate. The samples were precisely scanned in 3D by piezo stages. The coarse positioning was done by XY motorized stages. The scanning path was programmed through a writing language (GWL) script developed by Nanoscribe. Following laser irradiation, the unexposed regions of the photoresist were washed out by immersing the samples in the Propylene Glycol Monomethyl Ether Acetate (PGMEA). The porous structures were seeded with osteoblast like MG-63 cells and their osteogenic potential was tested in vitro. The cell-seeded structures were analyzed in 3D using the digital holographic microscopy technique (DHM). DHM is a marker free and high spatial resolution imaging tool, where the hologram acquisition is performed non-invasively i.e. without interfering with the cells natural environment. Following hologram recording, a digital algorithm provided a 3D image of the sample, as well as information about its refractive index, which is correlated with the intracellular content. The axial resolution of the images went down to the nanoscale, while the temporal scales ranged from milliseconds up to hours. The hologram did not involve sample scanning and the whole image was available in one frame recorded going over 200μm field of view. The digital holograms processing provided 3D quantitative information on the porous structures and allowed a quantitative analysis of the cellular response in respect to the porous architectures. The cellular shape and dimensions were found to be influenced by the underlying micro relief. Furthermore, the intracellular content gave evidence on the beneficial role of the porous structures in promoting osteoblast differentiation. In all, the proposed laser-based protocol emerges as a promising tool for the fabrication and non-invasive imaging of porous constructs for bone tissue engineering. Acknowledgments: This work was supported by a grant of the Romanian Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project PN-II-RU-TE-2014-4-2534 (contract 97 from 01/10/2015) and by UEFISCDI PN-II-PT-PCCA no. 6/2012. A part of this work was performed in the CETAL laser facility, supported by the National Program PN 16 47 - LAPLAS IV.

Keywords: biomimetic, holography, laser, osteoblast, two photon polymerization

Procedia PDF Downloads 275
5267 Thermal Conductivity and Diffusivity of Alternative Refrigerants as Retrofit for Freon 12

Authors: Mutalubi Aremu Akintunde, John Isa

Abstract:

The negative impact on the atmosphere, of chlorofluorocarbon refrigerants (CFC) radical changes and measures were put in place to replace them. This has led to search for alternative refrigerants over the past decades. This paper presents thermal conductivity, diffusivity and performance of two alternative refrigerants as replacement to R12, which has been a versatile refrigerant which had turned the refrigeration industries around for decades, but one of the offensive refrigerants. The new refrigerants were coded RA1 (50%R600a/50%R134a;) and RA2 (70%R600a/30%R134a). The diffusivities for RA1 and RA2 were estimated to be, 2.76384 X 10-8 m2/s and 2.74386 X 10-8 m2/s respectively, while that of R12 under the same experimental condition is 2.43772 X 10-8 m2/s. The performances of the two refrigerants in a refrigerator initially designed for R12, were very close to that of R12. Other thermodynamic parameters showed that R12 can be replaced with both RA1 and RA2.

Keywords: alternative refrigerants, conductivity, diffusivity, performance, refrigerants

Procedia PDF Downloads 165
5266 Cloudburst-Triggered Natural Hazards in Uttarakhand Himalaya: Mechanism, Prevention, and Mitigation

Authors: Vishwambhar Prasad Sati

Abstract:

This article examines cloudburst-triggered natural hazards mainly flashfloods and landslides in the Uttarakhand Himalaya. It further describes mechanism and implications of natural hazards and illustrates the preventive and mitigation measures. We conducted this study through collection of archival data, case study of cloudburst hit areas, and rapid field visit of the affected regions. In the second week of August 2017, about 50 people died and huge losses to property were noticed due to cloudburst-triggered flashfloods. Our study shows that although cloudburst triggered hazards in the Uttarakhand Himalaya are natural phenomena and unavoidable yet, disasters can be minimized if preventive measures are taken up appropriately. We suggested that construction of human settlements, institutions and infrastructural facilities along the seasonal streams and the perennial rivers should be avoided to prevent disasters. Further, large-scale tree plantation on the degraded land will reduce the magnitude of hazards.

Keywords: cloudburst, flash floods, landslides, fragile landscape

Procedia PDF Downloads 196
5265 Hard Disk Failure Predictions in Supercomputing System Based on CNN-LSTM and Oversampling Technique

Authors: Yingkun Huang, Li Guo, Zekang Lan, Kai Tian

Abstract:

Hard disk drives (HDD) failure of the exascale supercomputing system may lead to service interruption and invalidate previous calculations, and it will cause permanent data loss. Therefore, initiating corrective actions before hard drive failures materialize is critical to the continued operation of jobs. In this paper, a highly accurate analysis model based on CNN-LSTM and oversampling technique was proposed, which can correctly predict the necessity of a disk replacement even ten days in advance. Generally, the learning-based method performs poorly on a training dataset with long-tail distribution, especially fault prediction is a very classic situation as the scarcity of failure data. To overcome the puzzle, a new oversampling was employed to augment the data, and then, an improved CNN-LSTM with the shortcut was built to learn more effective features. The shortcut transmits the results of the previous layer of CNN and is used as the input of the LSTM model after weighted fusion with the output of the next layer. Finally, a detailed, empirical comparison of 6 prediction methods is presented and discussed on a public dataset for evaluation. The experiments indicate that the proposed method predicts disk failure with 0.91 Precision, 0.91 Recall, 0.91 F-measure, and 0.90 MCC for 10 days prediction horizon. Thus, the proposed algorithm is an efficient algorithm for predicting HDD failure in supercomputing.

Keywords: HDD replacement, failure, CNN-LSTM, oversampling, prediction

Procedia PDF Downloads 83
5264 Regularizing Software for Aerosol Particles

Authors: Christine Böckmann, Julia Rosemann

Abstract:

We present an inversion algorithm that is used in the European Aerosol Lidar Network for the inversion of data collected with multi-wavelength Raman lidar. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. The algorithm is based on manually controlled inversion of optical data which allows for detailed sensitivity studies and thus provides us with comparably high quality of the derived data products. The algorithm allows us to derive particle effective radius, volume, surface-area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light-absorption needs to be known with high accuracy. Single-scattering albedo (SSA) can be computed from the retrieve microphysical parameters and allows us to categorize aerosols into high and low absorbing aerosols. From mathematical point of view the algorithm is based on the concept of using truncated singular value decomposition as regularization method. This method was adapted to work for the retrieval of the particle size distribution function (PSD) and is called hybrid regularization technique since it is using a triple of regularization parameters. The inversion of an ill-posed problem, such as the retrieval of the PSD, is always a challenging task because very small measurement errors will be amplified most often hugely during the solution process unless an appropriate regularization method is used. Even using a regularization method is difficult since appropriate regularization parameters have to be determined. Therefore, in a next stage of our work we decided to use two regularization techniques in parallel for comparison purpose. The second method is an iterative regularization method based on Pade iteration. Here, the number of iteration steps serves as the regularization parameter. We successfully developed a semi-automated software for spherical particles which is able to run even on a parallel processor machine. From a mathematical point of view, it is also very important (as selection criteria for an appropriate regularization method) to investigate the degree of ill-posedness of the problem which we found is a moderate ill-posedness. We computed the optical data from mono-modal logarithmic PSD and investigated particles of spherical shape in our simulations. We considered particle radii as large as 6 nm which does not only cover the size range of particles in the fine-mode fraction of naturally occurring PSD but also covers a part of the coarse-mode fraction of PSD. We considered errors of 15% in the simulation studies. For the SSA, 100% of all cases achieve relative errors below 12%. In more detail, 87% of all cases for 355 nm and 88% of all cases for 532 nm are well below 6%. With respect to the absolute error for non- and weak-absorbing particles with real parts 1.5 and 1.6 in all modes the accuracy limit +/- 0.03 is achieved. In sum, 70% of all cases stay below +/-0.03 which is sufficient for climate change studies.

Keywords: aerosol particles, inverse problem, microphysical particle properties, regularization

Procedia PDF Downloads 344
5263 The Role of Geodiversity in Earthquake Risk Management Strategies in Haiti

Authors: Djimy Dolcin

Abstract:

Haiti is a victim of the seismic threat, due to its geographical location and geodynamic context. Moreover, the vulnerability of the population is aggravated by the occupation of areas highly exposed to this threat. This work, therefore, presents an analysis of seismic risk management in Haiti in the context of geodiversity and its potential for understanding risk. To carry out this work, a bibliographical search was carried out on the subject. Faced with this state of affairs, we realized that the implementation of information and education strategies aimed at the population, which until now has been unaware of the danger it faces, is a fundamental obligation.

Keywords: geodiversity, earthquake risk management, Haiti, earthquake risk

Procedia PDF Downloads 18
5262 Increasing the Resilience of Cyber Physical Systems in Smart Grid Environments using Dynamic Cells

Authors: Andrea Tundis, Carlos García Cordero, Rolf Egert, Alfredo Garro, Max Mühlhäuser

Abstract:

Resilience is an important system property that relies on the ability of a system to automatically recover from a degraded state so as to continue providing its services. Resilient systems have the means of detecting faults and failures with the added capability of automatically restoring their normal operations. Mastering resilience in the domain of Cyber-Physical Systems is challenging due to the interdependence of hybrid hardware and software components, along with physical limitations, laws, regulations and standards, among others. In order to overcome these challenges, this paper presents a modeling approach, based on the concept of Dynamic Cells, tailored to the management of Smart Grids. Additionally, a heuristic algorithm that works on top of the proposed modeling approach, to find resilient configurations, has been defined and implemented. More specifically, the model supports a flexible representation of Smart Grids and the algorithm is able to manage, at different abstraction levels, the resource consumption of individual grid elements on the presence of failures and faults. Finally, the proposal is evaluated in a test scenario where the effectiveness of such approach, when dealing with complex scenarios where adequate solutions are difficult to find, is shown.

Keywords: cyber-physical systems, energy management, optimization, smart grids, self-healing, resilience, security

Procedia PDF Downloads 330
5261 Fill Rate Window as a Criterion for Spares Allocation

Authors: Michael Dreyfuss, Yahel Giat

Abstract:

Limited battery range and long recharging times are the greatest obstacles to the successful adoption of electric cars. One of the suggestions to overcome these problems is that carmakers retain ownership of batteries and provide battery swapping service so that customers exchange their depleted batteries for recharged batteries. Motivated by this example, we consider the problem of optimal spares allocation in an exchangeable-item, multi-location repair system. We generalize the standard service measures of fill rate and average waiting time to reflect the fact that customers penalize the service provider only if they have to wait more than a ‘tolerable’ time window. These measures are denoted as the window fill rate and the truncated waiting time, respectively. We find that the truncated waiting time is convex and therefore a greedy algorithm solves the spares allocation problem efficiently. We show that the window fill rate is generally S-shaped and describe an efficient algorithm to find a near-optimal solution and detail a priori and a posteriori upper bounds to the distance from optimum. The theory is complemented with a large scale numerical example demonstrating the spare battery allocation in battery swapping stations.

Keywords: convex-concave optimization, exchangeable item, M/G/infinity, multiple location, repair system, spares allocation, window fill rate

Procedia PDF Downloads 494
5260 The Effects of Lithofacies on Oil Enrichment in Lucaogou Formation Fine-Grained Sedimentary Rocks in Santanghu Basin, China

Authors: Guoheng Liu, Zhilong Huang

Abstract:

For more than the past ten years, oil and gas production from marine shale such as the Barnett shale. In addition, in recent years, major breakthroughs have also been made in lacustrine shale gas exploration, such as the Yanchang Formation of the Ordos Basin in China. Lucaogou Formation shale, which is also lacustrine shale, has also yielded a high production in recent years, for wells such as M1, M6, and ML2, yielding a daily oil production of 5.6 tons, 37.4 tons and 13.56 tons, respectively. Lithologic identification and classification of reservoirs are the base and keys to oil and gas exploration. Lithology and lithofacies obviously control the distribution of oil and gas in lithological reservoirs, so it is of great significance to describe characteristics of lithology and lithofacies of reservoirs finely. Lithofacies is an intrinsic property of rock formed under certain conditions of sedimentation. Fine-grained sedimentary rocks such as shale formed under different sedimentary conditions display great particularity and distinctiveness. Hence, to our best knowledge, no constant and unified criteria and methods exist for fine-grained sedimentary rocks regarding lithofacies definition and classification. Consequently, multi-parameters and multi-disciplines are necessary. A series of qualitative descriptions and quantitative analysis were used to figure out the lithofacies characteristics and its effect on oil accumulation of Lucaogou formation fine-grained sedimentary rocks in Santanghu basin. The qualitative description includes core description, petrographic thin section observation, fluorescent thin-section observation, cathode luminescence observation and scanning electron microscope observation. The quantitative analyses include X-ray diffraction, total organic content analysis, ROCK-EVAL.II Methodology, soxhlet extraction, porosity and permeability analysis and oil saturation analysis. Three types of lithofacies were mainly well-developed in this study area, which is organic-rich massive shale lithofacies, organic-rich laminated and cloddy hybrid sedimentary lithofacies and organic-lean massive carbonate lithofacies. Organic-rich massive shale lithofacies mainly include massive shale and tuffaceous shale, of which quartz and clay minerals are the major components. Organic-rich laminated and cloddy hybrid sedimentary lithofacies contain lamina and cloddy structure. Rocks from this lithofacies chiefly consist of dolomite and quartz. Organic-lean massive carbonate lithofacies mainly contains massive bedding fine-grained carbonate rocks, of which fine-grained dolomite accounts for the main part. Organic-rich massive shale lithofacies contain the highest content of free hydrocarbon and solid organic matter. Moreover, more pores were developed in organic-rich massive shale lithofacies. Organic-lean massive carbonate lithofacies contain the lowest content solid organic matter and develop the least amount of pores. Organic-rich laminated and cloddy hybrid sedimentary lithofacies develop the largest number of cracks and fractures. To sum up, organic-rich massive shale lithofacies is the most favorable type of lithofacies. Organic-lean massive carbonate lithofacies is impossible for large scale oil accumulation.

Keywords: lithofacies classification, tuffaceous shale, oil enrichment, Lucaogou formation

Procedia PDF Downloads 224
5259 Carbon Stock of the Moist Afromontane Forest in Gesha and Sayilem Districts in Kaffa Zone: An Implication for Climate Change Mitigation

Authors: Admassu Addi, Sebesebe Demissew, Teshome Soromessa, Zemede Asfaw

Abstract:

This study measures the carbon stock of the Moist Afromontane Gesha-Sayilem forest found in Gesha and Sayilem District in southwest Ethiopia. A stratified sampling method was used to identify the number of sampling point through the Global Positioning System. A total of 90 plots having nested plots to collect tree species and soil data were demarcated. The results revealed that the total carbon stock of the forest was 362.4 t/ha whereas the above ground carbon stock was 174.95t/ha, below ground litter, herbs, soil, and dead woods were 34.3,1.27, 0.68, 128 and 23.2 t/ha (up to 30 cm depth) respectively. The Gesha- Sayilem Forest is a reservoir of high carbon and thus acts as a great sink of the atmospheric carbon. Thus conservation of the forest through introduction REDD+ activities is considered an appropriate action for mitigating climate change.

Keywords: carbon sequestration, carbon stock, climate change, allometric, Ethiopia

Procedia PDF Downloads 162
5258 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 251
5257 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features

Authors: Rabab M. Ramadan, Elaraby A. Elgallad

Abstract:

With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.

Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)

Procedia PDF Downloads 237
5256 Effect of Al on Glancing Angle Deposition Synthesized In₂O₃ Nanocolumn for Photodetector Application

Authors: Chitralekha Ngangbam, Aniruddha Mondal, Naorem Khelchand Singh

Abstract:

Aluminium (Al) doped In2O3 (Indium Oxide) nanocolumn array was synthesized by glancing angle deposition (GLAD) technique on Si (n-type) substrate for photodetector application. The sample was characterized by scanning electron microscopy (SEM). The average diameter of the nanocolumn was calculated from the top view of the SEM image and found to be ∼80 nm. The length of the nanocolumn (~500 nm) was calculated from cross sectional SEM image and it shows that the nanocolumns are perpendicular to the substrate. The EDX analysis confirmed the presence of Al (Aluminium), In (Indium), O (Oxygen) elements in the samples. The XRD patterns of the Al-doped In2O3 nanocolumn show the presence of different phases of the Al doped In2O3 nanocolumn i.e. (222) and (622). Three different peaks were observed from the PL analysis of Al doped In2O3 nanocolumn at 365 nm, 415 nm and 435 nm respectively. The peak at PL emission at 365 nm can be attributed to the near band gap transition of In2O3 whereas the peaks at 415 nm and 435 nm can be attributed to the trap state emissions due to oxygen vacancies and oxygen–indium vacancy centre in Al doped In2O3 nanocolumn. The current-voltage (I–V) characteristics of the Al doped In2O3 nanocolumn based detector was measured through the Au Schottky contact. The devices were then examined under the halogen light (20 W) illumination for photocurrent measurement. The Al-doped In2O3 nanocolumn based optical detector showed high conductivity and low turn on voltage at 0.69 V under white light illumination. A maximum photoresponsivity of 82 A/W at 380 nm was observed for the device. The device shows a high internal gain of ~267 at UV region (380 nm) and ∼127 at visible region (760 nm). Also the rise time and fall time for the device at 650 nm is 0.15 and 0.16 sec respectively which makes it suitable for fast response detector.

Keywords: glancing angle deposition, nanocolumn, semiconductor, photodetector, indium oxide

Procedia PDF Downloads 181
5255 Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing

Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed

Abstract:

It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.

Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC

Procedia PDF Downloads 193