Search results for: computational fluid dynamics.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5721

Search results for: computational fluid dynamics.

1491 Traumatic Osteoarthritis Induces Mechanical Hyperalgesia through IL-1β/TNF-α-Mediated Upregulation of the Sema4D Gene Expression

Authors: Hsiao-Chien Tsai, Yu-Pin Chen, Ruei-Ming Chen

Abstract:

Introduction: Osteoarthritis (OA) is characterized by joint destruction and causes chronic disability. One of the prominent symptoms is pain. Alleviating the pain is necessary and urgent for the therapy of OA patients. However, currently, understanding the mechanisms that drive OA-induced pain remains challenging, which hampers the optimistic management of pain in OA patients. Semaphorin 4D (Sema4D) participates in axon guidance pathway and bone remodeling, thus, may play a role in the regulation of pain in OA. In this study, we have established a rat model of OA to find out the mechanisms of OA-induced pain and to deliberate the roles of Sema4D. Methods: Behavioral changes and the pro-inflammatory cytokines (IL-1β, TNF-α, and IL-17) associated with pain were measured during the development of OA. Sema4D expression in cartilage and synovial membrane at 1, 4, and 12 weeks after inducing OA was analyzed. To assess if Sema4D is related to the neurogenesis in OA as an axon repellant, we analyzed the expression of PGP9.5 as well. Results: Synovitis and cartilage degradation were evident histologically during the development of OA. Mechanical hyperalgesia was most severe at week 1, then persisted thereafter. It was associated with stress coping strategies. Similar to the pain behavioral results, levels of IL-1β and TNF-α in synovial lavage fluid were significantly elevated in the OA group at weeks 1 and 4, respectively. Sema4D expression in cartilage and the synovial membrane was also enhanced in the OA group and was correlated with pain and pro-inflammatory cytokines. The marker of neurogenesis, PGP9.5, was also enhanced during the development of OA. Discussion: OA induced mechanical hyperalgesia, which might be through upregulating IL-1β/TNF-α-mediated Sema4D expressions. If anti-Sema4D treatment could reduce OA-induced mechanical hyperalgesia and prevent the subsequent progression of OA needs to be further investigated. Significance: OA can induce mechanical hyperalgesia through upregulation of IL-1β/TNF-α-mediated Sema4D and PGP9.5 expressions. And the upregulation of Sema4D may indicate the severity or active status of OA and OA-induced pain.

Keywords: traumatic osteoarthritis, mechanical hyperalgesia, Sema4D, inflammatory cytokines

Procedia PDF Downloads 78
1490 A Rare Form of Rapidly Progressive Parkinsonism Associated with Dementia

Authors: Murat Emre, Zeynep Tufekcioglu

Abstract:

Objective: We describe a patient with late onset phenylketonuria which presented with rapidly progressive dementia and parkinsonism that were reversible after management. Background: Phenylketonuria is an autosomal recessive disorder due to mutations in the phenylalanine hydroxlase gene. It normally presents in childhood, in rare cases, however, it may have its onset in adulthood and may mimic other neurological disorders. Case description: A previously normal functioning, 59 year old man was admitted for blurred vision, cognitive impairment and gait difficulty which emerged over the past eight months. In neurological examination he had brisk reflexes, slow gait and left-dominant parkinsonism. Mini-mental state examination score was 25/30, neuropsychological testing revealed a dysexecutive syndrome with constructional apraxia and simultanagnosia. In cranial MRI there were bilateral diffuse hyper-intense lesions in parietal and occipital white matter with no significant atrophy. Electroencephalography showed diffuse slowing with predominance of teta waves. In cerebrospinal fluid examination protein level was slightly elevated (61mg/dL), oligoclonal bands were negative. Electromyography was normal. Routine laboratory examinations for rapidly progressive dementia and parkinsonism were also normal. Serum amino acid levels were determined to explore metabolic leukodystrophies and phenylalanine level was found to be highly elevated (1075 µmol/L) with normal tyrosine (61,20 µmol/L). His cognitive impairment and parkinsonian symptoms improved following three months of phenylalanine restricted diet. Conclusions: Late onset phenylketonuria is a rare, potentially reversible cause of rapidly progressive parkinsonism with dementia. It should be considered in the differential diagnosis of patients with suspicious features.

Keywords: dementia, neurology, Phenylketonuria, rapidly progressive parkinsonism

Procedia PDF Downloads 269
1489 Effect of Volute Tongue Shape and Position on Performance of Turbo Machinery Compressor

Authors: Anuj Srivastava, Kuldeep Kumar

Abstract:

This paper proposes a numerical study of volute tongue design, which affects the centrifugal compressor operating range and pressure recovery. Increased efficiency has been the traditional importance of compressor design. However, the increased operating range has become important in an age of ever-increasing productivity and energy costs in the turbomachinery industry. Efficiency and overall operating range are the two most important parameters studied to evaluate the aerodynamic performance of centrifugal compressor. Volute is one of the components that have significant effect on these two parameters. Choice of volute tongue geometry has major role in compressor performance, also affects performance map. The author evaluates the trade-off on using pull-back tongue geometry on centrifugal compressor performance. In present paper, three different tongue positions and shapes are discussed. These designs are compared in terms of pressure recovery coefficient, pressure loss coefficient, and stable operating range. The detailed flow structures for various volute geometries and pull back angle near tongue are studied extensively to explore the fluid behavior. The viscous Navier-Stokes equations are used to simulate the flow inside the volute. The numerical calculations are compared with thermodynamic 1-D calculations. Author concludes that the increment in compression ratio accompanies with more uniform pressure distribution in the modified tongue shape and location, a uniform static pressure around the circumferential which build a more uniform flow in the impeller and diffuser. Also, the blockage at the tongue of the volute was causing circumferentially nonuniformed pressure along the volute. This nonuniformity may lead impeller and diffuser to operate unstably. However, it is not the volute that directly controls the stall.

Keywords: centrifugal compressor volute, tongue geometry, pull-back, compressor performance, flow instability

Procedia PDF Downloads 163
1488 The Mathematics of Fractal Art: Using a Derived Cubic Method and the Julia Programming Language to Make Fractal Zoom Videos

Authors: Darsh N. Patel, Eric Olson

Abstract:

Fractals can be found everywhere, whether it be the shape of a leaf or a system of blood vessels. Fractals are used to help study and understand different physical and mathematical processes; however, their artistic nature is also beautiful to simply explore. This project explores fractals generated by a cubically convergent extension to Newton's method. With this iteration as a starting point, a complex plane spanning from -2 to 2 is created with a color wheel mapped onto it. Next, the polynomial whose roots the fractal will generate from is established. From the Fundamental Theorem of Algebra, it is known that any polynomial has as many roots (counted by multiplicity) as its degree. When generating the fractals, each root will receive its own color. The complex plane can then be colored to indicate the basins of attraction that converge to each root. From a computational point of view, this project’s code identifies which points converge to which roots and then obtains fractal images. A zoom path into the fractal was implemented to easily visualize the self-similar structure. This path was obtained by selecting keyframes at different magnifications through which a path is then interpolated. Using parallel processing, many images were generated and condensed into a video. This project illustrates how practical techniques used for scientific visualization can also have an artistic side.

Keywords: fractals, cubic method, Julia programming language, basin of attraction

Procedia PDF Downloads 253
1487 Aerodynamic Modeling Using Flight Data at High Angle of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.

Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling

Procedia PDF Downloads 445
1486 Using T-Splines to Model Point Clouds from Terrestrial Laser Scanner

Authors: G. Kermarrec, J. Hartmann

Abstract:

Spline surfaces are a major representation of freeform surfaces in the computer-aided graphic industry and were recently introduced in the field of geodesy for processing point clouds from terrestrial laser scanner (TLS). The surface fitting consists of approximating a trustworthy mathematical surface to a large numbered 3D point cloud. The standard B-spline surfaces lack of local refinement due to the tensor-product construction. The consequences are oscillating geometry, particularly in the transition from low-to-high curvature parts for scattered point clouds with missing data. More economic alternatives in terms of parameters on how to handle point clouds with a huge amount of observations are the recently introduced T-splines. As long as the partition of unity is guaranteed, their computational complexity is low, and they are flexible. T-splines are implemented in a commercial package called Rhino, a 3D modeler which is widely used in computer aided design to create and animate NURBS objects. We have applied T-splines surface fitting to terrestrial laser scanner point clouds from a bridge under load and a sheet pile wall with noisy observations. We will highlight their potential for modelling details with high trustworthiness, paving the way for further applications in terms of deformation analysis.

Keywords: deformation analysis, surface modelling, terrestrial laser scanner, T-splines

Procedia PDF Downloads 140
1485 Hybrid Genetic Approach for Solving Economic Dispatch Problems with Valve-Point Effect

Authors: Mohamed I. Mahrous, Mohamed G. Ashmawy

Abstract:

Hybrid genetic algorithm (HGA) is proposed in this paper to determine the economic scheduling of electric power generation over a fixed time period under various system and operational constraints. The proposed technique can outperform conventional genetic algorithms (CGAs) in the sense that HGA make it possible to improve both the quality of the solution and reduce the computing expenses. In contrast, any carefully designed GA is only able to balance the exploration and the exploitation of the search effort, which means that an increase in the accuracy of a solution can only occure at the sacrifice of convergent speed, and vice visa. It is unlikely that both of them can be improved simultaneously. The proposed hybrid scheme is developed in such a way that a simple GA is acting as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method (pattern search technique) is next employed to do the fine tuning. The aim of the strategy is to achieve the cost reduction within a reasonable computing time. The effectiveness of the proposed hybrid technique is verified on two real public electricity supply systems with 13 and 40 generator units respectively. The simulation results obtained with the HGA for the two real systems are very encouraging with regard to the computational expenses and the cost reduction of power generation.

Keywords: genetic algorithms, economic dispatch, pattern search

Procedia PDF Downloads 444
1484 Hydrological Response of the Glacierised Catchment: Himalayan Perspective

Authors: Sonu Khanal, Mandira Shrestha

Abstract:

Snow and Glaciers are the largest dependable reserved sources of water for the river system originating from the Himalayas so an accurate estimate of the volume of water contained in the snowpack and the rate of release of water from snow and glaciers are, therefore, needed for efficient management of the water resources. This research assess the fusion of energy exchanges between the snowpack, air above and soil below according to mass and energy balance which makes it apposite than the models using simple temperature index for the snow and glacier melt computation. UEBGrid a Distributed energy based model is used to calculate the melt which is then routed by Geo-SFM. The model robustness is maintained by incorporating the albedo generated from the Landsat-7 ETM images on a seasonal basis for the year 2002-2003 and substrate map derived from TM. The Substrate file includes predominantly the 4 major thematic layers viz Snow, clean ice, Glaciers and Barren land. This approach makes use of CPC RFE-2 and MERRA gridded data sets as the source of precipitation and climatic variables. The subsequent model run for the year between 2002-2008 shows a total annual melt of 17.15 meter is generate from the Marshyangdi Basin of which 71% is contributed by the glaciers , 18% by the rain and rest being from the snow melt. The albedo file is decisive in governing the melt dynamics as 30% increase in the generated surface albedo results in the 10% decrease in the simulated discharge. The melt routed with the land cover and soil variables using Geo-SFM shows Nash-Sutcliffe Efficiency of 0.60 with observed discharge for the study period.

Keywords: Glacier, Glacier melt, Snowmelt, Energy balance

Procedia PDF Downloads 455
1483 Groupthink: The Dark Side of Team Cohesion

Authors: Farhad Eizakshiri

Abstract:

The potential for groupthink to explain the issues contributing to deterioration of decision-making ability within the unitary team and so to cause poor outcomes attracted a great deal of attention from a variety of disciplines, including psychology, social and organizational studies, political science, and others. Yet what remains unclear is how and why the team members’ strivings for unanimity and cohesion override their motivation to realistically appraise alternative courses of action. In this paper, the findings of a sequential explanatory mixed-methods research containing an experiment with thirty groups of three persons each and interviews with all experimental groups to investigate this issue is reported. The experiment sought to examine how individuals aggregate their views in order to reach a consensual group decision concerning the completion time of a task. The results indicated that groups made better estimates when they had no interaction between members in comparison with the situation that groups collectively agreed on time estimates. To understand the reasons, the qualitative data and informal observations collected during the task were analyzed through conversation analysis, thus leading to four reasons that caused teams to neglect divergent viewpoints and reduce the number of ideas being considered. Reasons found were the concurrence-seeking tendency, pressure on dissenters, self-censorship, and the illusion of invulnerability. It is suggested that understanding the dynamics behind the aforementioned reasons of groupthink will help project teams to avoid making premature group decisions by enhancing careful evaluation of available information and analysis of available decision alternatives and choices.

Keywords: groupthink, group decision, cohesiveness, project teams, mixed-methods research

Procedia PDF Downloads 396
1482 Epigenomic Analysis of Lgr5+ Stem Cells in Gastrointestinal Tract

Authors: Hyo-Min Kim, Seokjin Ham, Mi-Joung Yoo, Minseon Kim, Tae-Young Roh

Abstract:

The gastrointestinal (GI) tract of most animals, including murine, is highly compartmentalized epithelia which also provide distinct different functions of its own tissue. Nevertheless, these epithelia share certain characteristics that enhance immune responses to infections and maintain the barrier function of the intestine. GI tract epithelia also undergo regeneration not only in homeostatic conditions but also in a response to the damage. A full turnover of the murine gastrointestinal epithelium occurs every 4-5 day, a process that is regulated and maintained by a minor population of Lgr5+ adult stem cell that commonly conserved in the bottom of crypts through GI tract. Maintenance of the stem cell is somehow regulated by epigenetic factors according to recent studies. Chromatin vacancy, remodelers, histone variants and histone modifiers could affect adult stem cell fate. In this study, Lgr5-EGFP reporter mouse was used to take advantage of exploring the epigenetic dynamics among Lgr5 positive mutual stem cell in GI tract. Cells were isolated by fluorescence-activated cell sorting (FACS), gene expression levels, chromatin accessibility changes and histone modifications were analyzed. Some notable chromatin structural related epigenetic variants were detected. To identify the overall cell-cell interaction inside the stem cell niche, an extensive genome-wide analysis should be also followed. According to the results, nevertheless, we expected a broader understanding of cellular niche maintaining stem cells and epigenetic barriers through conserved stem cell in GI tract. We expect that our study could provide more evidence of adult stem cell plasticity and more chances to understand each stem cell that takes parts in certain organs.

Keywords: adult stem cell, epigenetics, LGR5 stem cell, gastrointestinal tract

Procedia PDF Downloads 229
1481 Artificial Bee Colony Optimization for SNR Maximization through Relay Selection in Underlay Cognitive Radio Networks

Authors: Babar Sultan, Kiran Sultan, Waseem Khan, Ijaz Mansoor Qureshi

Abstract:

In this paper, a novel idea for the performance enhancement of secondary network is proposed for Underlay Cognitive Radio Networks (CRNs). In Underlay CRNs, primary users (PUs) impose strict interference constraints on the secondary users (SUs). The proposed scheme is based on Artificial Bee Colony (ABC) optimization for relay selection and power allocation to handle the highlighted primary challenge of Underlay CRNs. ABC is a simple, population-based optimization algorithm which attains global optimum solution by combining local search methods (Employed and Onlooker Bees) and global search methods (Scout Bees). The proposed two-phase relay selection and power allocation algorithm aims to maximize the signal-to-noise ratio (SNR) at the destination while operating in an underlying mode. The proposed algorithm has less computational complexity and its performance is verified through simulation results for a different number of potential relays, different interference threshold levels and different transmit power thresholds for the selected relays.

Keywords: artificial bee colony, underlay spectrum sharing, cognitive radio networks, amplify-and-forward

Procedia PDF Downloads 581
1480 Two-Dimensional Transition Metal Dichalcogenides for Photodetection and Biosensing

Authors: Mariam Badmus, Bothina Manasreh

Abstract:

Transition metal dichalcogenides (TMDs) have gained significant attention as two-dimensional (2D) materials due to their intrinsic band gaps and unique properties, which make them ideal candidates for electronic and photonic applications. Unlike graphene, which lacks a band gap, TMDs (MX₂, where M is a transition metal and X is a chalcogen such as sulfur, selenium, or tellurium) exhibit semiconductor behavior and can be exfoliated into monolayers, enhancing their properties. The properties of these materials are investigated using density functional theory, a quantum mechanical computational method to solve Schrodinger equation for many body problems to calculate electron density of the atoms involved on which the energy and properties of a system depend. They show promise for use in photodetectors, biosensors, memory devices, and other technologies in communications, health, and energy sectors. In particular, metallic TMDs, which lack an intrinsic band gap, benefit from doping with transition metals, this improves their electronic and optical properties. Doping monolayer TMDs yields more significant improvements than doping bulk materials. Notably, doping with metals such as vanadium enhances the magnetization of TMDs, expanding their potential applications in spintronics. This work highlights the effects of doping on TMDs and explores strategies for optimizing their performance for advanced technological applications.

Keywords: concentration, doping, magnetization, monolayer

Procedia PDF Downloads 11
1479 The Effect of Oil Pollution on Marine Microbial Populations in Israeli Coastal Waters

Authors: Yael Shai, Dror L. Angel, Dror Zurel, Peleg Astrahan, Maxim Rubin-Blum, Eyal Rahav

Abstract:

The high demand for oil and its by-products is symptomatic of the 21st century and occasionally leads to oil spills and pollution of coastal waters. Marine oil pollution may originate from a variety of sources -urban runoff, tanker cleaning, drilling activities, and oil spills. These events may release large amounts of highly toxic polycyclic aromatic hydrocarbons (PAHs) and other pollutants to coastal water, thereby threatening local marine life. Here, we investigated the effects of crude oil on the temporal dynamics of phytoplankton and heterotrophic bacteria in Israeli coastal waters. To this end, we added crude oil (500 µm thick layer, with and without additional nutrients; NO₃ and PO₄) to mesocosms (1m³ bags) containing oligotrophic surface coastal water collected near Haifa during summer and winter. Changes in phytoplankton biomass, activity and diversity were monitored daily for 5-6 days. Our results demonstrate that crude oil addition resulted in a pronounced decrease in phytoplankton biomass and production rates, while heterotrophic bacterial production increased significantly. Importantly, a few days post addition we found that the oil-degrading bacteria, Oleibacter sp. and Oleispira sp. appeared in the mesocosms and that the addition of nutrients (along with the crude oil) further increased this trend. This suggests that oil-degrading bacteria may be NO₃ and PO₄ limited in Israeli coastal waters. The results of this study should enable us to establish improved science-based environmental policy with respect to handling crude oil pollution in this region.

Keywords: heterotrophic bacteria, nutrients, mesocosm, oil pollution, oligotrophic, phytoplankton

Procedia PDF Downloads 159
1478 Non-Linear Velocity Fields in Turbulent Wave Boundary Layer

Authors: Shamsul Chowdhury

Abstract:

The objective of this paper is to present the detailed analysis of the turbulent wave boundary layer produced by progressive finite-amplitude waves theory. Most of the works have done for the mass transport in the turbulent boundary layer assuming the eddy viscosity is not time varying, where the sediment movement is induced by the mean velocity. Near the ocean bottom, the waves produce a thin turbulent boundary layer, where the flow is highly rotational, and shear stress associated with the fluid motion cannot be neglected. The magnitude and the predominant direction of the sediment transport near the bottom are known to be closely related to the flow in the wave induced boundary layer. The magnitude of water particle velocity at the Crest phase differs from the one of the Trough phases due to the non-linearity of the waves, which plays an important role to determine the sediment movement. The non-linearity of the waves become predominant in the surf zone area, where the sediment movement occurs vigorously. Therefore, in order to describe the flow near the bottom and relationship between the flow and the movement of the sediment, the analysis was done using the non-linear boundary layer equation and the finite amplitude wave theory was applied to represent the velocity fields in the turbulent wave boundary layer. At first, the calculation was done for turbulent wave boundary layer by two-dimensional model where throughout the calculation is non-linear. But Stokes second order wave profile is adopted at the upper boundary. The calculated profile was compared with the experimental data. Finally, the calculation is done based on various modes of the velocity and turbulent energy. The mean velocity is found to differ from condition of the relative depth and the roughness. It is also found that due to non-linearity, the absolute value for velocity and turbulent energy as well as Reynolds stress are asymmetric. The mean velocity of the laminar boundary layer is always positive but in the turbulent boundary layer plays a very complicated role.

Keywords: wave boundary, mass transport, mean velocity, shear stress

Procedia PDF Downloads 262
1477 Effect of Black Locust Trees on the Nitrogen Dynamics of Black Pine Trees in Shonai Coastal Forest, Japan

Authors: Kazushi Murata, Fabian Watermann, O. B. Herve Gonroudobou, Le Thuy Hang, Toshiro Yamanaka, M. Larry Lopez C.

Abstract:

Aims: Black pine coastal forests play an important role as a windbreak and as a natural barrier to sand and salt spray inland in Japan. The recent invasion of N₂-fxing black locust (Robinia pseudoacacia) trees in these forests is expected to have a nutritional contribution to black pine trees growth. Thus, the effect of this new source of N on black pine trees' N assimilation needs to be assessed. Methods: In order to evaluate this contribution, tree-ring isotopic composition (δ¹⁵N) and nitrogen content (%N) of black pine (Pinus thunbergii) trees in a pure stand (BPP) and a mixed stand (BPM) with black locust (BL) trees were measured for the period 2000–2019 for BPP and BL and 1990–2019 for BPM. The same measurements were conducted in plant tissues and in soil samples. Results: The tree ring δ15N values showed that for the last 30 years, BPM trees gradually switched from BPP to BL-derived soil N starting in the 1990s, becoming the dominant N source from 2000 as no significant diference was found between BPM and BL tree ring δ¹⁵N values from 2000 to 2019. No difference in root and sapwood BPM and BL δ¹⁵N values were found, but BPM foliage (−2.1‰) was different to BPP (−4.4‰) and BL (−0.3‰), which is related to the different N assimilation pathways between BP and BL. Conclusions: Based on the results of this study, the assimilation of BL-derived N inferred from the BPM tissues' δ¹⁵N values is the result of an increase in soil bioavailable N with a higher δ¹⁵N value.

Keywords: nitrogen-15, N₂-fxing species, mixed stand, soil, tree rings

Procedia PDF Downloads 65
1476 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits

Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.

Abstract:

With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.

Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme

Procedia PDF Downloads 134
1475 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach

Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre

Abstract:

The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.

Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast

Procedia PDF Downloads 217
1474 Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control

Authors: Jalal Eddine Benmansour, Khouane Boulanoir, Nacera Bekhadda, Elhassen Benfriha

Abstract:

This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments.

Keywords: attitude control, flexible satellite, vibration control, disturbance observer

Procedia PDF Downloads 86
1473 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications

Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani

Abstract:

This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.

Keywords: human activity detection, media pipe, machine learning, metaverse applications

Procedia PDF Downloads 179
1472 Exploring Sense of Belonging in Toronto: A Multigenerational Perspective and Social Sustainability

Authors: Homa Hedayat

Abstract:

In the dynamic urban landscape of Toronto, the concept of belonging assumes paramount importance. As global challenges—such as the pandemic, financial instability, and geopolitical shifts—reshape our world, understanding how different generations of immigrants establish connections within this multicultural metropolis becomes increasingly vital. Our research delves into forming a sense of belonging in urban spaces, specifically focusing on the experiences of Iranian immigrants residing in Toronto. By examining their perceptions of public places, attachment to residential neighborhoods, and the impact of the urban environment, we contribute to a more holistic understanding of social sustainability and community well-being. We unravel the intricate interplay between individual characteristics, housing context, and neighborhood dynamics through qualitative interviews and a quantitative survey. This research presents a study of the perception of public places and sense of belonging in residential neighbourhoods by younger and older Iranian immigrants living in the Toronto metropolitan area. Few works in the existing literature have investigated the relationship immigrants develop with the shared spaces of the city and their residential environment and how that relationship can impact the development of a ‘sense of belonging’ in the city. Ultimately, our findings pave the way for inclusive and cohesive urban environments, fostering connections across generations and enhancing Toronto’s resilience and harmony. As Toronto continues to evolve, nurturing a sense of belonging becomes paramount. Our research emphasizes the importance of social cohesion and community well-being. By fostering connections across generations, we pave the way for a more resilient and harmonious city.

Keywords: sense of belonging, multigenerational, urban spaces, social sustainability

Procedia PDF Downloads 59
1471 Free Vibration of Axially Functionally Graded Simply Supported Beams Using Differential Transformation Method

Authors: A. Selmi

Abstract:

Free vibration analysis of homogenous and axially functionally graded simply supported beams within the context of Euler-Bernoulli beam theory is presented in this paper. The material properties of the beams are assumed to obey the linear law distribution. The effective elastic modulus of the composite was predicted by using the rule of mixture. Here, the complexities which appear in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using a relatively new approach called the Differential Transformation Method. This technique is applied for solving differential equation of transverse vibration of axially functionally graded beams. Natural frequencies and corresponding normalized mode shapes are calculated for different Young’s modulus ratios. MATLAB code is designed to solve the transformed differential equation of the beam. Comparison of the present results with the exact solutions proves the effectiveness, the accuracy, the simplicity, and computational stability of the differential transformation method. The effect of the Young’s modulus ratio on the normalized natural frequencies and mode shapes is found to be very important.

Keywords: differential transformation method, functionally graded material, mode shape, natural frequency

Procedia PDF Downloads 309
1470 Commercial Management vs. Quantity Surveying: Hoax or Harmonization

Authors: Zelda Jansen Van Rensburg

Abstract:

Purpose: This study investigates the perceived disparities between Quantity Surveying and Commercial Management in the construction industry, questioning if these differences are substantive or merely semantic. It aims to challenge the conventional notion of Commercial Managers’ superiority by critically evaluating QS and CM roles, exploring CM integration possibilities, examining qualifications for aspiring Commercial Managers, assessing regulatory frameworks, and considering terminology redefinition for global QS professional enhancement. Design: Utilizing mixed methods like literature reviews, surveys, interviews, and document analyses, this research examines the QS-CM relationship. Insights from industry professionals, academics, and regulatory bodies inform the investigation into changing QS roles. Findings: Empirical data highlight evolving roles, showcasing areas of convergence and divergence between QSs and CM. Potential CM integration into QS practice and qualifications for aspiring Commercial Managers are identified. Limitations/Implications: Limitations include potential bias in self-reported data and findings. Nevertheless, the research informs future practices and educational approaches in QS and CM, reflecting the changing roles and responsibilities of Quantity Surveyors. Practical Implications: Findings inform industry practitioners, educators, and regulators, stressing the need to adapt to changing QS roles and integrate CM principles where applicable. Value to the Conference Theme: Aligned with ‘Evolving roles and responsibilities of Quantity Surveyors,’ this research offers insights crucial for understanding the changing dynamics within the QS profession and informs strategies to navigate these shifts effectively.

Keywords: quantity surveying, commercial management, cost engineering, quantity survey

Procedia PDF Downloads 40
1469 Neurological Complications of HIV/AIDS: Case of Meningitis Caused by Cryptococcus neoformans and Tuberculous Meningitis

Authors: Ndarusanze Berchmans

Abstract:

This research work focused on the analysis of the observations of tuberculous meningitis in HIV-positive patients who were treated by the Prince Regent Charles Hospital in Bujumbura. A number of 246 seropositive patients were examined by the laboratory of Prince Regent Charles in the period between 2010 and 2015. We did a retrospective study; we used data from the registers of the laboratories mentioned above; the objective was to approach the epidemiological, biological, clinical, and therapeutic characteristics of tuberculosis meningitis infection: 124 women (50.40% of AIDS patients) and 122 men (49.59% of AIDS patients) were subject to the diagnosis by identification of cerebrospinal fluid (CSF). The average age of the patients was 30 years for this period. The population at risk has an average age of between 34 and 42 years for the years between 2010-2015. From 2010 to 2012, cases of opportunistic diseases (e.g., tuberculous meningitis and Cryptococcus neoformans meningitis), often found in immunocompromised, were observed at a high rate; in this period, there was a disturbance of the rhythm providing antiretroviral drugs to people with AIDS. The rate of the two meningitis (tuberculous meningitis and Cryptococcus neoformans meningitis) remained above 10% to gradually decrease until 2015, with the gradual return of antiretrovirals. This period records an overall average of 25 cases of tuberculous meningitis, or a percentage of 10.16%. For the year 2015, there were 4 cases of tuberculous meningitis out of a total of 35 seropositive examined (11.42%). This year's percentage shows that the number of tuberculous meningitis cases has fallen from the rate in previous years. This is the result of the care given by associations against HIV/AIDS to HIV-positive people. This decrease in cases of tuberculous meningitis is due to the acquisition of antiretrovirals by all HIV-positive people treated by hospitals. For the moment, these hospitals are taking care of many AIDS patients by providing them permanently with antiretrovirals; Besides that, there are many patients who are supported by associations whose activities are directed against HIV/AIDS.

Keywords: Cryptococcus neoformans meningitis, tuberculosis meningitis, neurological complications, epidemiology of meningitis

Procedia PDF Downloads 224
1468 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models

Authors: Bipasha Sen, Aditya Agarwal

Abstract:

Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.

Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition

Procedia PDF Downloads 123
1467 Derivation of Trigonometric Identities and Solutions through Baudhayan Numbers

Authors: Rakesh Bhatia

Abstract:

Students often face significant challenges in understanding and applying trigonometric identities, primarily due to the overwhelming need to memorize numerous formulas. This often leads to confusion, frustration, and difficulty in effectively using these formulas across diverse types of problems. Traditional methods of learning trigonometry demand considerable time and effort, which can further hinder comprehension and application. Vedic Mathematics offers an innovative and simplified approach to overcoming these challenges. This paper explores how Baudhayan Numbers, can be used to derive trigonometric identities and simplify calculations related to height and distance. Unlike conventional approaches, this method minimizes the need for extensive paper-based calculations, promoting a conceptual understanding. Using Vedic Mathematics Sutras such as Anurupyena and Vilokanam, this approach enables the derivation of over 100 trigonometric identities through a single, unified approach. The simplicity and efficiency of this technique not only make learning trigonometry more accessible but also foster computational thinking. Beyond academics, the practical applications of this method extend to engineering fields such as bridge design and construction, where precise trigonometric calculations are critical. This exploration underscores the potential of Vedic Mathematics to revolutionize the learning and application of trigonometry by offering a streamlined, intuitive, and versatile framework.

Keywords: baudhayan numbers, anurupyena, vilokanam, sutras

Procedia PDF Downloads 7
1466 Development of Drug Delivery Systems for Endoplasmic Reticulum Amino Peptidases Modulators Using Electrospinning

Authors: Filipa Vasconcelos

Abstract:

The administration of endoplasmic reticulum amino peptidases (ERAP1 or ERAP2) inhibitors can be used for therapeutic approaches against cancer and auto-immune diseases. However, one of the main shortcomings of drug delivery systems (DDS) is associated with the drug off-target distribution, which can lead to an increase in its side effects on the patient’s body. To overcome such limitations, the encapsulation of four representative compounds of ERAP inhibitors into Polycaprolactone (PCL), Polyvinyl-alcohol (PVA), crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes is proposed as a safe and controlled drug release system. The use of electrospun fibrous meshes as a DDS allows efficient solvent evaporation giving limited time to the encapsulated drug to recrystallize, continuous delivery of the drug while the fibers degrade, prevention of initial burst release (sustained release), tunable dosages, and the encapsulation of other agents. This is possible due to the fibers' small diameters and resemblance to the extracellular matrix (confirmed by scanning electron microscopy results), high specific surface area, and good mechanical strength/stability. Furthermore, release studies conducted on PCL, PVA, crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes with each of the ERAP compounds encapsulated demonstrated that they were capable of releasing >60%, 50%, 40%, and 45% of the total ERAP concentration, respectively. Fibrous meshes with ERAP_E compound encapsulated achieved higher released concentrations (75.65%, 62.41%, 56.05%, and 65.39%, respectively). Toxicity studies of fibrous meshes with encapsulated compounds are currently being accessed in vitro, as well as pharmacokinetics and dynamics studies. The last step includes the implantation of the drug-loaded fibrous meshes in vivo.

Keywords: drug delivery, electrospinning, ERAP inhibitors, liposomes

Procedia PDF Downloads 106
1465 Synthesis, Characterization and Biological Activites of Azomethine Derivatives

Authors: Lynda Golea, Rachid Chebaki

Abstract:

Schiff bases contain heterocyclic structural units with N and O donor atoms which plays an important role in coordination chemistry. Azomethine groups are a broad class of widely used compounds with applications in many fields, including analytical, inorganic chemistry and biological. Schiff's base is of promising research interest due to the widespread antibacterial resistance in medical science. In addition, the research is essential to generate Schiff base metal complexes with various applications. Schiff complexes have been used as drugs and have antibacterial, antifungal, antiviral, and anti-inflammatory properties. The various donor atoms they contain offer a special ability for metal binding. In this research on the physicochemical properties of azomethine groups, we synthesized and studied the Schiff base compounds by a condensation reaction of tryptamines and acetophenone in ethanol. The structure of the prepared compound was interpreted using 1H NMR, 13C NMR, UV-vis and FT-IR. A computational analysis at the level of DFT with functional B3LYP in conjunction with the base 6-311+G (d, p) was conducted to study its electronic and molecular structure. The biological study was performed on three bacterial strains usually causing infection, including Gram-positive and Gram-negative, for antibacterial activity. Results showed moderate biological activity and proportional activity with increasing concentration.

Keywords: azomethine, HOMO, LUMO, RMN, molecular docking

Procedia PDF Downloads 63
1464 De-Novo Structural Elucidation from Mass/NMR Spectra

Authors: Ismael Zamora, Elisabeth Ortega, Tatiana Radchenko, Guillem Plasencia

Abstract:

The structure elucidation based on Mass Spectra (MS) data of unknown substances is an unresolved problem that affects many different fields of application. The recent overview of software available for structure elucidation of small molecules has shown the demand for efficient computational tool that will be able to perform structure elucidation of unknown small molecules and peptides. We developed an algorithm for De-Novo fragment analysis based on MS data that proposes a set of scored and ranked structures that are compatible with the MS and MSMS spectra. Several different algorithms were developed depending on the initial set of fragments and the structure building processes. Also, in all cases, several scores for the final molecule ranking were computed. They were validated with small and middle databases (DB) with the eleven test set compounds. Similar results were obtained from any of the databases that contained the fragments of the expected compound. We presented an algorithm. Or De-Novo fragment analysis based on only mass spectrometry (MS) data only that proposed a set of scored/ranked structures that was validated on different types of databases and showed good results as proof of concept. Moreover, the solutions proposed by Mass Spectrometry were submitted to the prediction of NMR spectra in order to elucidate which of the proposed structures was compatible with the NMR spectra collected.

Keywords: De Novo, structure elucidation, mass spectrometry, NMR

Procedia PDF Downloads 295
1463 Estimating Interdependence of Social Statuses in a Cooperative Breeding Birds through Mathematical Modelling

Authors: Sinchan Ghosh, Fahad Al Basir, Santanu Ray, Sabyasachi Bhattacharya

Abstract:

The cooperatively breeding birds have two major ranks for the sexually mature birds. The breeders mate and produce offspring while the non-breeding helpers increase the chick production rate through help in mate-finding and allo-parenting. However, the chicks also cooperate to raise their younger siblings through warming, defending and food sharing. Although, the existing literatures describes the evolution of allo-parenting in birds but do not differentiate the significance of allo-parenting in sexually immature and mature helpers separately. This study addresses the significance of both immature and mature helpers’ contribution to the total sustainable bird population in a breeding site using Blue-tailed bee-eater as a test-bed species. To serve this purpose, a mathematical model has been built considering each social status and chicks as separate but interactive compartments. Also, to observe the dynamics of each social status with changing prey abundance, a prey population has been introduced as an additional compartment. The model was analyzed for stability condition and was validated using field-data. A simulation experiment was then performed to observe the change in equilibria with a varying helping rate from both the helpers. The result from the simulation experiment suggest that the cooperative breeding population changes its population sizes significantly with a change in helping rate from the sexually immature helpers. On the other hand, the mature helpers do not contribute to the stability of the population equilibrium as much as the immature helpers.

Keywords: Blue-tailed bee eater, Altruism, Mathematical Ethology, Behavioural modelling

Procedia PDF Downloads 162
1462 Biophysical Characterization of Archaeal Cyclophilin Like Chaperone Protein

Authors: Vineeta Kaushik, Manisha Goel

Abstract:

Chaperones are proteins that help other proteins fold correctly, and are found in all domains of life i.e., prokaryotes, eukaryotes and archaea. Various comparative genomic studies have suggested that the archaeal protein folding machinery appears to be highly similar to that found in eukaryotes. In case of protein folding; slow rotation of peptide prolyl-imide bond is often the rate limiting step. Formation of the prolyl-imide bond during the folding of a protein requires the assistance of other proteins, termed as peptide prolyl cis-trans isomerases (PPIases). Cyclophilins constitute the class of peptide prolyl isomerases with a wide range of biological function like protein folding, signaling and chaperoning. Most of the cyclophilins exhibit PPIase enzymatic activity and play active role in substrate protein folding which classifies them as a category of molecular chaperones. Till date, there is not very much data available in the literature on archaeal cyclophilins. We aim to compare the structural and biochemical features of the cyclophilin protein from within the three domains to elucidate the features affecting their stability and enzyme activity. In the present study, we carry out in-silico analysis of the cyclophilin proteins to predict their conserved residues, sites under positive selection and compare these proteins to their bacterial and eukaryotic counterparts to predict functional divergence. We also aim to clone and express these proteins in heterologous system and study their biophysical characteristics in detail using techniques like CD and fluorescence spectroscopy. Overall we aim to understand the features contributing to the folding, stability and dynamics of the archaeal cyclophilin proteins.

Keywords: biophysical characterization, x-ray crystallography, chaperone-like activity, cyclophilin, PPIase activity

Procedia PDF Downloads 213