Search results for: permanent magnet machine
3073 Developed Text-Independent Speaker Verification System
Authors: Mohammed Arif, Abdessalam Kifouche
Abstract:
Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based.Keywords: speaker verification, text-independent, support vector machine, Gaussian mixture model, cepstral analysis
Procedia PDF Downloads 583072 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: drive test, LTE, machine learning, uplink throughput prediction
Procedia PDF Downloads 1583071 Use of Cellulosic Fibres in Double Layer Porous Asphalt
Authors: Márcia Afonso, Marisa Dinis-Almeida, Cristina Fael
Abstract:
Climate change, namely precipitation patterns alteration, has led to extreme conditions such as floods and droughts. In turn, excessive construction has led to the waterproofing of the soil, increasing the surface runoff and decreasing the groundwater recharge capacity. The permeable pavements used in areas with low traffic lead to a decrease in the probability of floods peaks occurrence and the sediments reduction and pollutants transport, ensuring rainwater quality improvement. This study aims to evaluate the porous asphalt performance, developed in the laboratory, with addition of cellulosic fibres. One of the main objectives of cellulosic fibres use is to stop binder drainage, preventing its loss during storage and transport. Comparing to the conventional porous asphalt the cellulosic fibres addition improved the porous asphalt performance. The cellulosic fibres allowed the bitumen content increase, enabling retention and better aggregates coating and, consequently, a greater mixture durability. With this solution, it is intended to develop better practices of resilience and adaptation to the extreme climate changes and respond to the sustainability current demands, through the eco-friendly materials use. The mix design was performed for different size aggregates (with fine aggregates – PA1 and with coarse aggregates – PA2). The percentage influence of the fibres to be used was studied. It was observed that overall, the binder drainage decreases as the cellulose fibres percentage increases. It was found that the PA2 mixture obtained most binder drainage relative to PA1 mixture, irrespective of the fibres percentage used. Subsequently, the performance was evaluated through laboratory tests of indirect tensile stiffness modulus, water sensitivity, permeability and permanent deformation. The stiffness modulus for the two mixtures groups (with and without cellulosic fibres) presented very similar values between them. For the water sensitivity test it was observed that porous asphalt containing more fine aggregates are more susceptible to the water presence than mixtures with coarse aggregates. The porous asphalt with coarse aggregates have more air voids which allow water to pass easily leading to ITSR higher values. In the permeability test was observed that asphalt porous without cellulosic fibres presented had lower permeability than asphalt porous with cellulosic fibres. The resistance to permanent deformation results indicates better behaviour of porous asphalt with cellulosic fibres, verifying a bigger rut depth in porous asphalt without cellulosic fibres. In this study, it was observed that porous asphalt with bitumen higher percentages improve the performance to permanent deformation. This fact was only possible due to the bitumen retention by the cellulosic fibres.Keywords: binder drainage, cellulosic fibres, permanent deformation, porous asphalt
Procedia PDF Downloads 2283070 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: computational social science, movie preference, machine learning, SVM
Procedia PDF Downloads 2603069 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters
Authors: Eyhab El-Kharashi, Maher El-Dessouki
Abstract:
The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion
Procedia PDF Downloads 5603068 Design and Performance Evaluation of Synchronous Reluctance Machine (SynRM)
Authors: Hadi Aghazadeh, Mohammadreza Naeimi, Seyed Ebrahim Afjei, Alireza Siadatan
Abstract:
Torque ripple, maximum torque and high efficiency are important issues in synchronous reluctance machine (SynRM). This paper presents a view on design of a high efficiency, low torque ripple and high torque density SynRM. To achieve this goal SynRM parameters is calculated (such as insulation ratios in the d-and q-axes and the rotor slot pitch), while the torque ripple can be minimized by determining the best rotor slot pitch in the d-axis. The presented analytical-finite element method (FEM) approach gives the optimum distribution of air gap and iron portion for the maximizing torque density with minimum torque ripple.Keywords: torque ripple, efficiency, insulation ratio, FEM, synchronous reluctance machine (SynRM), induction motor (IM)
Procedia PDF Downloads 2293067 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning
Authors: Melody Yin
Abstract:
Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time
Procedia PDF Downloads 1683066 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 1013065 Practical Model of Regenerative Braking Using DC Machine and Boost Converter
Authors: Shah Krupa Rajendra, Amit Kumar
Abstract:
Increasing use of traditional vehicles driven by internal combustion engine is responsible for the environmental pollution. Further, it leads to depletion of limited energy resources. Therefore, it is required to explore alternative energy sources for the transportation. The promising solution is to use electric vehicle. However, it suffers from limited driving range. Regenerative braking increases the range of the electric vehicle to a certain extent. In this paper, a novel methodology utilizing regenerative braking is described. The model comprising of DC machine, feedback based boost converter and micro-controller is proposed. The suggested method is very simple and reliable. The proposed model successfully shows the energy being saved into during regenerative braking process.Keywords: boost converter, DC machine, electric vehicle, micro-controller, regenerative braking
Procedia PDF Downloads 2733064 Plant Disease Detection Using Image Processing and Machine Learning
Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra
Abstract:
One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.Keywords: plant diseases, machine learning, image processing, deep learning
Procedia PDF Downloads 123063 Machine Learning Data Architecture
Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap
Abstract:
Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning
Procedia PDF Downloads 653062 Machine Learning for Classifying Risks of Death and Length of Stay of Patients in Intensive Unit Care Beds
Authors: Itamir de Morais Barroca Filho, Cephas A. S. Barreto, Ramon Malaquias, Cezar Miranda Paula de Souza, Arthur Costa Gorgônio, João C. Xavier-Júnior, Mateus Firmino, Fellipe Matheus Costa Barbosa
Abstract:
Information and Communication Technologies (ICT) in healthcare are crucial for efficiently delivering medical healthcare services to patients. These ICTs are also known as e-health and comprise technologies such as electronic record systems, telemedicine systems, and personalized devices for diagnosis. The focus of e-health is to improve the quality of health information, strengthen national health systems, and ensure accessible, high-quality health care for all. All the data gathered by these technologies make it possible to help clinical staff with automated decisions using machine learning. In this context, we collected patient data, such as heart rate, oxygen saturation (SpO2), blood pressure, respiration, and others. With this data, we were able to develop machine learning models for patients’ risk of death and estimate the length of stay in ICU beds. Thus, this paper presents the methodology for applying machine learning techniques to develop these models. As a result, although we implemented these models on an IoT healthcare platform, helping clinical staff in healthcare in an ICU, it is essential to create a robust clinical validation process and monitoring of the proposed models.Keywords: ICT, e-health, machine learning, ICU, healthcare
Procedia PDF Downloads 1143061 How Is a Machine-Translated Literary Text Organized in Coherence? An Analysis Based upon Theme-Rheme Structure
Abstract:
With the ultimate goal to automatically generate translated texts with high quality, machine translation has made tremendous improvements. However, its translations of literary works are still plagued with problems in coherence, esp. the translation between distant language pairs. One of the causes of the problems is probably the lack of linguistic knowledge to be incorporated into the training of machine translation systems. In order to enable readers to better understand the problems of machine translation in coherence, to seek out the potential knowledge to be incorporated, and thus to improve the quality of machine translation products, this study applies Theme-Rheme structure to examine how a machine-translated literary text is organized and developed in terms of coherence. Theme-Rheme structure in Systemic Functional Linguistics is a useful tool for analysis of textual coherence. Theme is the departure point of a clause and Rheme is the rest of the clause. In a text, as Themes and Rhemes may be connected with each other in meaning, they form thematic and rhematic progressions throughout the text. Based on this structure, we can look into how a text is organized and developed in terms of coherence. Methodologically, we chose Chinese and English as the language pair to be studied. Specifically, we built a comparable corpus with two modes of English translations, viz. machine translation (MT) and human translation (HT) of one Chinese literary source text. The translated texts were annotated with Themes, Rhemes and their progressions throughout the texts. The annotated texts were analyzed from two respects, the different types of Themes functioning differently in achieving coherence, and the different types of thematic and rhematic progressions functioning differently in constructing texts. By analyzing and contrasting the two modes of translations, it is found that compared with the HT, 1) the MT features “pseudo-coherence”, with lots of ill-connected fragments of information using “and”; 2) the MT system produces a static and less interconnected text that reads like a list; these two points, in turn, lead to the less coherent organization and development of the MT than that of the HT; 3) novel to traditional and previous studies, Rhemes do contribute to textual connection and coherence though less than Themes do and thus are worthy of notice in further studies. Hence, the findings suggest that Theme-Rheme structure be applied to measuring and assessing the coherence of machine translation, to being incorporated into the training of the machine translation system, and Rheme be taken into account when studying the textual coherence of both MT and HT.Keywords: coherence, corpus-based, literary translation, machine translation, Theme-Rheme structure
Procedia PDF Downloads 2073060 An Optimal Hybrid EMS System for a Hyperloop Prototype Vehicle
Authors: J. F. Gonzalez-Rojo, Federico Lluesma-Rodriguez, Temoatzin Gonzalez
Abstract:
Hyperloop, a new mode of transport, is gaining significance. It consists of the use of a ground-based transport system which includes a levitation system, that avoids rolling friction forces, and which has been covered with a tube, controlling the inner atmosphere lowering the aerodynamic drag forces. Thus, hyperloop is proposed as a solution to the current limitation on ground transportation. Rolling and aerodynamic problems, that limit large speeds for traditional high-speed rail or even maglev systems, are overcome using a hyperloop solution. Zeleros is one of the companies developing technology for hyperloop application worldwide. It is working on a concept that reduces the infrastructure cost and minimizes the power consumption as well as the losses associated with magnetic drag forces. For this purpose, Zeleros proposes a Hybrid ElectroMagnetic Suspension (EMS) for its prototype. In the present manuscript an active and optimal electromagnetic suspension levitation method based on nearly zero power consumption individual modules is presented. This system consists of several hybrid permanent magnet-coil levitation units that can be arranged along the vehicle. The proposed unit manages to redirect the magnetic field along a defined direction forming a magnetic circuit and minimizing the loses due to field dispersion. This is achieved using an electrical steel core. Each module can stabilize the gap distance using the coil current and either linear or non-linear control methods. The ratio between weight and levitation force for each unit is 1/10. In addition, the quotient between the lifted weight and power consumption at the target gap distance is 1/3 [kg/W]. One degree of freedom (DoF) (along the gap direction) is controlled by a single unit. However, when several units are present, a 5 DoF control (2 translational and 3 rotational) can be achieved, leading to the full attitude control of the vehicle. The proposed system has been successfully tested reaching TRL-4 in a laboratory test bench and is currently in TRL-5 state development if the module association in order to control 5 DoF is considered.Keywords: active optimal control, electromagnetic levitation, HEMS, high-speed transport, hyperloop
Procedia PDF Downloads 1473059 Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications
Authors: Hatim Laalej, Jon Stammers
Abstract:
In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time.Keywords: machining, manufacturing, tool wear, signal processing
Procedia PDF Downloads 2453058 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue
Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov
Abstract:
The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport
Procedia PDF Downloads 1153057 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 2063056 Comprehensive Study of Data Science
Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly
Abstract:
Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.Keywords: data science, machine learning, data analytics, artificial intelligence
Procedia PDF Downloads 843055 Association between Caries Status of First Permanent Molar with Oral Health Care Practice in Children Aged 9-12 Years in Lubuk Kilangan, Padang City
Authors: Cytha Nilam Chairani, Ditha Noviantika, Hidayati Amir, Nurul Khairiyah, Siti Rahmadita, Fadila Khairani
Abstract:
Background: Dental caries is one of the most common diseases with high prevalence in children. The first permanent molar (FPM) has an essential role in establishing the occlusion. Nevertheless, FPM is very prone to caries because of various factors, such as their anatomical structure and early emergence in oral cavity. It is due to the little knowledge from parents and children regarding the timing of emergence of FPM in oral cavity which is still considered as primary teeth. Furthermore, the lack of knowledge from parents and children may affect their oral hygiene practice resulting to carious process. Objective: The aim of this study was to assess the status of FPM caries and its association with children’s oral hygiene practice in 9-12-year-old school children in Lubuk Kilangan Community Health Centre, Padang City. Methods: A cross-sectional study was performed in 50 school children (9-12 years old) using random sampling technique from two randomly selected schools in Lubuk Kilangan Community Health Centre, Padang City. A questionnaire was developed from other studies consisting of four closed ended questions regarding oral health practice. The data obtained were analyzed statistically using Mann-Whitney Test to assess the status of FPM caries and its association with children’s oral hygiene practice. Results: The results showed that 32% of children had FPMs sound and the remaining 68% had FPMs carious which were grouped into 1-2 FPMs carious (60%) and 3-4 FPMs carious (8%). The caries status of mandibular FPM (64%) was higher compared to maxillary FPM (10%). Conclusion: There was significant association in subject who did not visit dentist in the last 6 months which had more carious FPMs compared to subject who visited dentist (p < 0.05). There was no significant association between the status of FPM caries and knowledge of the timing eruption of FPM, oral hygiene instruction from parents and tooth brushing (p > 0.05).Keywords: dental caries, children, first permanent molar, oral hygiene practice
Procedia PDF Downloads 2753054 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.Keywords: machine learning, text classification, NLP techniques, semantic representation
Procedia PDF Downloads 1023053 Climate-Smart Agriculture for Sustainable Maize-Wheat Production: Effects on Crop Productivity, Profitability and Irrigation Water Use
Authors: S. K. Kakraliya, R. D. Jat, H. S. Jat, P. C. Sharma, M. L. Jat
Abstract:
The traditional rice-wheat (RW) system in the IGP of South Asia is tillage, water, energy, and capital intensive. Coupled with more pumping of groundwater over the years to meet the high irrigation water requirement of the RW system has resulted in over-exploitation of groundwater. Replacement of traditional rice with less water crops such as maize under climate-smart agriculture (CSA) based management (tillage, crop establishment and residue management) practices are required to promote sustainable intensification. Furthermore, inefficient nutrient management practices are responsible for low crop yields and nutrient use efficiencies in maize-wheat (MW) system. A 7-year field experiment was conducted in farmer’s participatory strategic research mode at Taraori, Karnal, India to evaluate the effects of tillage and crop establishment (TCE) methods, residue management, mungbean integration, and nutrient management practices on crop yields, water productivity and profitability of MW system. The main plot treatments included four combinations of TCE, residue and mungbean integration [conventional tillage (CT), conventional tillage with mungbean (CT + MB), permanent bed (PB) and permanent bed with MB (PB + MB] with three nutrient management practices [farmer’s fertilizer practice (FFP), recommended dose of fertilizer (RDF) and site-specific nutrient management (SSNM)] using Nutrient Expert® as subplot treatments. System productivity, water use efficiency (WUE) and net returns under PB + MB were significantly increased by 25–30%, 28–31% and 35–40% compared to CT respectively, during seven years of experimentation. The integration of MB in MW system contributed ~25and ~ 28% increases in system productivity and net returns compared with no MB, respectively. SSNM based nutrient management increased the mean (averaged across 7 yrs) system productivity by 12- 15% compared with FFP. The study revealed that CSA based sustainable intensification (PB + MB) and SSNM approach provided opportunities for enhancing crop productivity, WUE and profitability of the MW system in India.Keywords: Conservation Agriculture, Precision water and nutrient management, Permanent beds, Crop yields
Procedia PDF Downloads 1323052 Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 543051 CPT Pore Water Pressure Correlations with PDA to Identify Pile Drivability Problem
Authors: Fauzi Jarushi, Paul Cosentino, Edward Kalajian, Hadeel Dekhn
Abstract:
At certain depths during large diameter displacement pile driving, rebound well over 0.25 inches was experienced, followed by a small permanent set during each hammer blow. High pile rebound (HPR) soils may stop the pile driving and results in a limited pile capacity. In some cases, rebound leads to pile damage, delaying the construction project, and the requiring foundations redesign. HPR was evaluated at seven Florida sites, during driving of square precast, prestressed concrete piles driven into saturated, fine silty to clayey sands and sandy clays. Pile Driving Analyzer (PDA) deflection versus time data recorded during installation, was used to develop correlations between cone penetrometer (CPT) pore-water pressures, pile displacements and rebound. At five sites where piles experienced excessive HPR with minimal set, the pore pressure yielded very high positive values of greater than 20 tsf. However, at the site where the pile rebounded, followed by an acceptable permanent set, the measured pore pressure ranged between 5 and 20 tsf. The pore pressure exhibited values of less than 5 tsf at the site where no rebound was noticed. In summary, direct correlations between CPTu pore pressure and rebound were produced, allowing identification of soils that produce HPR.Keywords: CPTU, pore water pressure, pile rebound
Procedia PDF Downloads 3213050 Machine Learning Approach to Project Control Threshold Reliability Evaluation
Authors: Y. Kim, H. Lee, M. Park, B. Lee
Abstract:
Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.Keywords: machine learning, project control, project progress monitoring, schedule
Procedia PDF Downloads 2443049 Using AI for Analysing Political Leaders
Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu
Abstract:
This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence
Procedia PDF Downloads 863048 Application of Mobile Aluminium Light Structure Housing System in Sustainable Building Process
Authors: Wang Haining, Zhang Hong
Abstract:
In China, rapid urbanization needs more and more buildings constructed for the growing population in cities. With the help of the methodology which contains investigation, contrastive analysis, design based on component with BIM and experiment before real construction, this research based on mobile light structure system, trying to the sustainable problems partly in present China by systematic study. The system cannot replace the permanent heavy structure completely. So the goal is the improvement of the whole building system by the addition of light structure. This house system uses modularized envelopes and standardized connections, which are pre-fabricated and assembled in factories and transported like containers. Aluminum is used as the structural material in this system, and inorganic thermal insulation material used in the envelope, which have high fireproof properties. The relationship between manufactory and construction of the system is progressive hierarchy. They exist as First Industrial, Second Industrial, Third Industrial and Site Assembly Stage. It could maximize the land usage capacity by fully exploit the area where normal permanent architecture can't take advantage of. Not only the building system itself especially the thermal isolated materials used and active solar photovoltaic system equipped can save energy, but also the way of product development is sustainable.Keywords: aluminum house, light Structure, rapid assembly, repeat construction
Procedia PDF Downloads 4933047 Robustness of the Fuzzy Adaptive Speed Control of a Multi-Phase Asynchronous Machine
Authors: Bessaad Taieb, Benbouali Abderrahmen
Abstract:
Fuzzy controllers are a powerful tool for controlling complex processes. However, its robustness capacity remains moderately limited because it loses its property for large ranges of parametric variations. In this paper, the proposed control method is designed, based on a fuzzy adaptive controller used as a remedy for this problem. For increase the robustness of the vector control and to maintain the performance of the five-phase asynchronous machine despite the presence of disturbances (variation of rotor resistance, rotor inertia variations, sudden variations in the load etc.), by applying the method of behaviour model control (BMC). The results of simulation show that the fuzzy adaptive control provides best performance and has a more robustness as the fuzzy (FLC) and as a conventional (PI) controller.Keywords: fuzzy adaptive control, behaviour model control, vector control, five-phase asynchronous machine
Procedia PDF Downloads 963046 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams
Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew
Abstract:
Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions
Procedia PDF Downloads 1173045 Provisional Settlements and Urban Resilience: The Transformation of Refugee Camps into Cities
Authors: Hind Alshoubaki
Abstract:
The world is now confronting a widespread urban phenomenon: refugee camps, which have mostly been established in ‘rushing mode,’ pointing toward affording temporary settlements for refugees that provide them with minimum levels of safety, security and protection from harsh weather conditions within a very short time period. In fact, those emergency settlements are transforming into permanent ones since time is a decisive factor in terms of construction and camps’ age. These play an essential role in transforming their temporary character into a permanent one that generates deep modifications to the city’s territorial structure, shaping a new identity and creating a contentious change in the city’s form and history. To achieve a better understanding for the transformation of refugee camps, this study is based on a mixed-methods approach: the qualitative approach explores different refugee camps and analyzes their transformation process in terms of population density and the changes to the city’s territorial structure and urban features. The quantitative approach employs a statistical regression analysis as a reliable prediction of refugees’ satisfaction within the Zaatari camp in order to predict its future transformation. Obviously, refugees’ perceptions of their current conditions will affect their satisfaction, which plays an essential role in transforming emergency settlements into permanent cities over time. The test basically discusses five main themes: the access and readiness of schools, the dispersion of clinics and shopping centers; the camp infrastructure, the construction materials, and the street networks. The statistical analysis showed that Syrian refugees were not satisfied with their current conditions inside the Zaatari refugee camp and that they had started implementing changes according to their needs, desires, and aspirations because they are conscious about the fact of their prolonged stay in this settlement. Also, the case study analyses showed that neglecting the fact that construction takes time leads settlements being created with below-minimum standards that are deteriorating and creating ‘slums,’ which lead to increased crime rates, suicide, drug use and diseases and deeply affect cities’ urban tissues. For this reason, recognizing the ‘temporary-eternal’ character of those settlements is the fundamental concept to consider refugee camps from the beginning as definite permanent cities. This is the key factor to minimize the trauma of displacement on both refugees and the hosting countries. Since providing emergency settlements within a short time period does not mean using temporary materials, having a provisional character or creating ‘makeshift cities.’Keywords: refugee, refugee camp, temporary, Zaatari
Procedia PDF Downloads 1343044 Optimal Location of the I/O Point in the Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.Keywords: parking system, optimal location, response time, S/R machine
Procedia PDF Downloads 409