Search results for: linear dynamical boundary condition
7833 Dynamical Characteristics of Interaction between Water Droplet and Aerosol Particle in Dedusting Technology
Authors: Ding Jue, Li Jiahua, Lei Zhidi, Weng Peifen, Li Xiaowei
Abstract:
With the rapid development of national modern industry, people begin to pay attention to environmental pollution and harm caused by industrial dust. Based on above, a numerical study on the dedusting technology of industrial environment was conducted. The dynamic models of multicomponent particles collision and coagulation, breakage and deposition are developed, and the interaction of water droplet and aerosol particle in 2-Dimension flow field was researched by Eulerian-Lagrangian method and Multi-Monte Carlo method. The effects of the droplet scale, movement speed of droplet and the flow field structure on scavenging efficiency were analyzed. The results show that under the certain condition, 30μm of droplet has the best scavenging efficiency. At the initial speed 1m/s of droplets, droplets and aerosol particles have more time to interact, so it has a better scavenging efficiency for the particle.Keywords: water droplet, aerosol particle, collision and coagulation, multi-monte carlo method
Procedia PDF Downloads 3077832 An Improved Mesh Deformation Method Based on Radial Basis Function
Authors: Xuan Zhou, Litian Zhang, Shuixiang Li
Abstract:
Mesh deformation using radial basis function interpolation method has been demonstrated to produce quality meshes with relatively little computational cost using a concise algorithm. However, it still suffers from the limited deformation ability, especially in large deformation. In this paper, a pre-displacement improvement is proposed to improve the problem that illegal meshes always appear near the moving inner boundaries owing to the large relative displacement of the nodes near inner boundaries. In this improvement, nodes near the inner boundaries are first associated to the near boundary nodes, and a pre-displacement based on the displacements of associated boundary nodes is added to the nodes near boundaries in order to make the displacement closer to the boundary deformation and improve the deformation capability. Several 2D and 3D numerical simulation cases have shown that the pre-displacement improvement for radial basis function (RBF) method significantly improves the mesh quality near inner boundaries and deformation capability, with little computational burden increasement.Keywords: mesh deformation, mesh quality, background mesh, radial basis function
Procedia PDF Downloads 3667831 Subclass of Close-To-Convex Harmonic Mappings
Authors: Jugal K. Prajapat, Manivannan M.
Abstract:
In this article we have studied a class of sense preserving harmonic mappings in the unit disk D. Let B⁰H (α, β) denote the class of sense-preserving harmonic mappings f=h+g ̅ in the open unit disk D and satisfying the condition |z h״(z)+α (h׳(z)-1) | ≤ β - |z g″(z)+α g′(z)| (α > -1, β > 0). We have proved that B⁰H (α, β) is close-to-convex in D. We also prove that the functions in B⁰H (α, β) are stable harmonic univalent, stable harmonic starlike and stable harmonic convex in D for different values of its parameters. Further, the coefficient estimates, growth results, area theorem, boundary behavior, convolution and convex combination properties of the class B⁰H (α, β) of harmonic mapping are obtained.Keywords: analytic, univalent, starlike, convex and close-to-convex
Procedia PDF Downloads 1767830 Chaotic Search Optimal Design and Modeling of Permanent Magnet Synchronous Linear Motor
Authors: Yang Yi-Fei, Luo Min-Zhou, Zhang Fu-Chun, He Nai-Bao, Xing Shao-Bang
Abstract:
This paper presents an electromagnetic finite element model of permanent magnet synchronous linear motor and distortion rate of the air gap flux density waveform is analyzed in detail. By designing the sample space of the parameters, nonlinear regression modeling of the orthogonal experimental design is introduced. We put forward for possible air gap flux density waveform sine electromagnetic scheme. Parameters optimization of the permanent magnet synchronous linear motor is also introduced which is based on chaotic search and adaptation function. Simulation results prove that the pole shifting does not affect the motor back electromotive symmetry based on the structural parameters, it provides a novel way for the optimum design of permanent magnet synchronous linear motor and other engineering.Keywords: permanent magnet synchronous linear motor, finite element analysis, chaotic search, optimization design
Procedia PDF Downloads 4177829 Modified Evaluation of the Hydro-Mechanical Dependency of the Water Coefficient of Permeability of a Clayey Sand with a Novel Permeameter for Unsaturated Soils
Authors: G. Adelian, A. Mirzaii, S. S. Yasrobi
Abstract:
This paper represents data of an extensive experimental laboratory testing program for the measurement of the water coefficient of permeability of clayey sand in different hydraulic and mechanical boundary conditions. A novel permeameter was designed and constructed for the experimental testing program, suitable for the study of flow in unsaturated soils in different hydraulic and mechanical loading conditions. In this work, the effect of hydraulic hysteresis, net isotropic confining stress, water flow condition, and sample dimensions are evaluated on the water coefficient of permeability of understudying soil. The experimental results showed a hysteretic variation for the water coefficient of permeability versus matrix suction and degree of saturation, with higher values in drying portions of the SWCC. The measurement of the water permeability in different applied net isotropic stress also signified that the water coefficient of permeability increased within the increment of net isotropic consolidation stress. The water coefficient of permeability also appeared to be independent of different applied flow heads, water flow condition, and sample dimensions.Keywords: water permeability, unsaturated soils, hydraulic hysteresis, void ratio, matrix suction, degree of saturation
Procedia PDF Downloads 5277828 A Sliding Model Control for a Hybrid Hyperbolic Dynamic System
Authors: Xuezhang Hou
Abstract:
In the present paper, a hybrid hyperbolic dynamic system formulated by partial differential equations with initial and boundary conditions is considered. First, the system is transformed to an abstract evolution system in an appropriate Hilbert space, and spectral analysis and semigroup generation of the system operator is discussed. Subsequently, a sliding model control problem is proposed and investigated, and an equivalent control method is introduced and applied to the system. Finally, a significant result that the state of the system can be approximated by an ideal sliding mode under control in any accuracy is derived and examined.Keywords: hyperbolic dynamic system, sliding model control, semigroup of linear operators, partial differential equations
Procedia PDF Downloads 1367827 Dynamics of a Reaction-Diffusion Problems Modeling Two Predators Competing for a Prey
Authors: Owolabi Kolade Matthew
Abstract:
In this work, we investigate both the analytical and numerical studies of the dynamical model comprising of three species system. We analyze the linear stability of stationary solutions in the one-dimensional multi-system modeling the interactions of two predators and one prey species. The stability analysis has a lot of implications for understanding the various spatiotemporal and chaotic behaviors of the species in the spatial domain. The analysis results presented have established the possibility of the three interacting species to coexist harmoniously, this feat is achieved by combining the local and global analyzes to determine the global dynamics of the system. In the presence of diffusion, a viable exponential time differencing method is applied to multi-species nonlinear time-dependent partial differential equation to address the points and queries that may naturally arise. The scheme is described in detail, and justified by a number of computational experiments.Keywords: asymptotically stable, coexistence, exponential time differencing method, global and local stability, predator-prey model, nonlinear, reaction-diffusion system
Procedia PDF Downloads 4127826 On the Solution of Boundary Value Problems Blended with Hybrid Block Methods
Authors: Kizito Ugochukwu Nwajeri
Abstract:
This paper explores the application of hybrid block methods for solving boundary value problems (BVPs), which are prevalent in various fields such as science, engineering, and applied mathematics. Traditionally, numerical approaches such as finite difference and shooting methods, often encounter challenges related to stability and convergence, particularly in the context of complex and nonlinear BVPs. To address these challenges, we propose a hybrid block method that integrates features from both single-step and multi-step techniques. This method allows for the simultaneous computation of multiple solution points while maintaining high accuracy. Specifically, we employ a combination of polynomial interpolation and collocation strategies to derive a system of equations that captures the behavior of the solution across the entire domain. By directly incorporating boundary conditions into the formulation, we enhance the stability and convergence properties of the numerical solution. Furthermore, we introduce an adaptive step-size mechanism to optimize performance based on the local behavior of the solution. This adjustment allows the method to respond effectively to variations in solution behavior, improving both accuracy and computational efficiency. Numerical tests on a variety of boundary value problems demonstrate the effectiveness of the hybrid block methods. These tests showcase significant improvements in accuracy and computational efficiency compared to conventional methods, indicating that our approach is robust and versatile. The results suggest that this hybrid block method is suitable for a wide range of applications in real-world problems, offering a promising alternative to existing numerical techniques.Keywords: hybrid block methods, boundary value problem, polynomial interpolation, adaptive step-size control, collocation methods
Procedia PDF Downloads 337825 From Linear to Nonlinear Deterrence: Deterrence for Rising Power
Authors: Farhad Ghasemi
Abstract:
Along with transforming the international system into a complex and chaotic system, the fundamental question arises: how can deterrence be reconstructed conceptually and theoretically in this system model? The deterrence system is much more complex today than it was seven decades ago. This article suggests that the perception of deterrence as a linear system is a fundamental mistake because it does not consider the new dynamics of the international system, including network power dynamics. The author aims to improve this point by focusing on complexity and chaos theories, especially their nonlinearity and cascading failure principles. This article proposes that the perception of deterrence as a linear system is a fundamental mistake, as the new dynamics of the surrounding international system do not take into account. The author recognizes deterrence as a nonlinear system and introduces it as a concept in strategic studies.Keywords: complexity, international system, deterrence, linear deterrence, nonlinear deterrence
Procedia PDF Downloads 1427824 Geometrically Linear Symmetric Free Vibration Analysis of Sandwich Beam
Authors: Ibnorachid Zakaria, El Bikri Khalid, Benamar Rhali, Farah Abdoun
Abstract:
The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave like Euler-Bernoulli beams while the core layer like a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters for a clamped-clamped and simple supported-simple-supported beams. The effects of material properties and geometric parameters on the natural frequencies are also investigated.Keywords: linear vibration, sandwich, shear deformation, Timoshenko zig-zag model
Procedia PDF Downloads 4727823 Effect of Annealing Temperature on the Photoelectric Work Function of Silver-Zinc Oxide Contact Materials
Authors: Bouchou Aïssa, Mohamed Akbi
Abstract:
Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermo dynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver-metal oxide (Ag-MeO) electrical contacts (Ag-ZnO (92/8), before and after surface heat treatments at 296 K 813 K, under UHV conditions (residual gas pressure of 1.4 x 10-7 mbar). The electron work function (EWF) of silver zinc oxide materials was measured photoelectrically, using both Fowler’s method of isothermal curves and linearized Fowler plots. In this paper, we present the development of a method for measuring photoelectric work function of contact materials. Also reported in this manuscript are the results of experimental work whose purpose has been the buildup of a reliable photoelectric system and associated monochromatic ultra-violet radiations source, and the photoelectric measurement of the electron work functions (EWF) of contact materials. In order to study the influence of annealing temperature on the EWF, a vacuum furnace was used for heating the metallic samples up to 800 K. The EWF of the silver – zinc oxide materials were investigated to study the influence of annealing temperature on the EWF. In the present study, the photoelectric measurements about Ag-ZnO(92/8) contacts have shown a linear decrease of the EWF with increasing temperature, i.e. the temperature coefficient is constant and negative: for the first annealing # 1, in the temperature range [299 K 823 K]. On the contrary, a linear increase was observed with increasing temperature (i.e. , being constant and positive), for the next annealing # 2, in the temperature range [296 K 813 K]. The EWFs obtained for silver-zinc oxide Ag-ZnO(92/8) show an obvious dependence on the annealing temperature which is strongly associated with the evolution of the arrangement on ZnO nano particles on the Ag-ZnO contact surface as well as surface charge distribution.Keywords: Photoemission, Electron work function, Fowler methods, Ag-ZnO contact materials, Vacuum heat treatment
Procedia PDF Downloads 4167822 Effect of Loose Bonding and Corrugated Boundary Surface on Propagation of Rayleigh-Type Wave
Authors: Kshitish Ch. Mistri, Abhishek Kumar Singh
Abstract:
The effect of undulatory boundary surface of a medium as well as the degree of bonding between two consecutive mediums, on the propagation of surface waves is an unavoidable matter of fact. Therefore, this paper investigates the propagation of Rayleigh-type wave in a corrugated fibre-reinforced layer overlying an initially stressed orthotropic half-space under gravity. Also, the two mediums are assumed to be loosely (or imperfectly) bonded. Numerical computation of the obtained frequency equation has been carried out which aids to analyze the influence of corrugation, loose bonding, initial stress and gravity on the phase velocity of Rayleigh-type wave. Moreover, the presence and absence of corrugation, loose bonding and initial stress are also discussed in a comparative manner.Keywords: corrugated boundary surface, fibre-reinforced layer, initial stress, loose bonding, orthotropic half-space, Rayleigh-type wave
Procedia PDF Downloads 2767821 Parametric Study on Dynamic Analysis of Composite Laminated Plate
Authors: Junaid Kameran Ahmed
Abstract:
A laminated plate composite of graphite/epoxy has been analyzed dynamically in the present work by using a quadratic element (8-node diso-parametric), and by depending on 1st order shear deformation theory, every node in this element has 6-degrees of freedom (displacement in x, y, and z axis and twist about x, y, and z axis). The dynamic analysis in the present work covered parametric studies on a composite laminated plate (square plate) to determine its effect on the natural frequency of the plate. The parametric study is represented by set of changes (plate thickness, number of layers, support conditions, layer orientation), and the plates have been simulated by using ANSYS package 12. The boundary conditions considered in this study, at all four edges of the plate, are simply supported and fixed boundary condition. The results obtained from ANSYS program show that the natural frequency for both fixed and simply supported increases with increasing the number of layers, but this increase in the natural frequency for the first five modes will be neglected after 10 layers. And it is observed that the natural frequency of a composite laminated plate will change with the change of ply orientation, the natural frequency increases and it will be at maximum with angle 45 of ply for simply supported laminated plate, and maximum natural frequency will be with cross-ply (0/90) for fixed laminated composite plate. It is also observed that the natural frequency increase is approximately doubled when the thickness is doubled.Keywords: laminated plate, orthotropic plate, square plate, natural frequency (free vibration), composite (graphite / epoxy)
Procedia PDF Downloads 3487820 Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate
Authors: Anna Bykalyuk, Frédéric Kuznik, Kévyn Johannes
Abstract:
In this paper, the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM).Keywords: CFD modeling, natural convection, thermal conductive plate, time-depending boundary conditions
Procedia PDF Downloads 2777819 Suitability of Satellite-Based Data for Groundwater Modelling in Southwest Nigeria
Authors: O. O. Aiyelokun, O. A. Agbede
Abstract:
Numerical modelling of groundwater flow can be susceptible to calibration errors due to lack of adequate ground-based hydro-metrological stations in river basins. Groundwater resources management in Southwest Nigeria is currently challenged by overexploitation, lack of planning and monitoring, urbanization and climate change; hence to adopt models as decision support tools for sustainable management of groundwater; they must be adequately calibrated. Since river basins in Southwest Nigeria are characterized by missing data, and lack of adequate ground-based hydro-meteorological stations; the need for adopting satellite-based data for constructing distributed models is crucial. This study seeks to evaluate the suitability of satellite-based data as substitute for ground-based, for computing boundary conditions; by determining if ground and satellite based meteorological data fit well in Ogun and Oshun River basins. The Climate Forecast System Reanalysis (CFSR) global meteorological dataset was firstly obtained in daily form and converted to monthly form for the period of 432 months (January 1979 to June, 2014). Afterwards, ground-based meteorological data for Ikeja (1981-2010), Abeokuta (1983-2010), and Oshogbo (1981-2010) were compared with CFSR data using Goodness of Fit (GOF) statistics. The study revealed that based on mean absolute error (MEA), coefficient of correlation, (r) and coefficient of determination (R²); all meteorological variables except wind speed fit well. It was further revealed that maximum and minimum temperature, relative humidity and rainfall had high range of index of agreement (d) and ratio of standard deviation (rSD), implying that CFSR dataset could be used to compute boundary conditions such as groundwater recharge and potential evapotranspiration. The study concluded that satellite-based data such as the CFSR should be used as input when constructing groundwater flow models in river basins in Southwest Nigeria, where majority of the river basins are partially gaged and characterized with long missing hydro-metrological data.Keywords: boundary condition, goodness of fit, groundwater, satellite-based data
Procedia PDF Downloads 1307818 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer
Authors: Yilei Song, Linlin Tian, Ning Zhao
Abstract:
Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake
Procedia PDF Downloads 1747817 Flexural Behavior of Voided Slabs Reinforced With Basalt Bars
Authors: Jazlah Majeed Sulaiman, Lakshmi P.
Abstract:
Concrete slabs are considered to be very ductile structural members. Openings in reinforced slabs are necessary so as to install the mechanical, electrical and pumping (MEP) conduits and ducts. However, these openings reduce the load-carrying capacity, stiffness, energy, and ductility of the slabs. To resolve the undesirable effects of openings in the slab behavior, it is significant to achieve the desired strength against the loads acting on it. The use of Basalt Fiber Reinforcement Polymers (BFRP) as reinforcement has become a valid sustainable option as they produce less greenhouse gases, resist corrosion and have higher tensile strength. In this paper, five slab models are analyzed using non-linear static analysis in ANSYS Workbench to study the effect of openings on slabs reinforced with basalt bars. A parametric numerical study on the loading condition and the shape and size of the opening is conducted, and their load and displacement values are compared. One of the models is validated experimentally.Keywords: concrete slabs, openings, BFRP, sustainable, corrosion resistant, non-linear static analysis, ANSYS
Procedia PDF Downloads 1137816 Chemical Reaction, Heat and Mass Transfer on Unsteady MHD Flow along a Vertical Stretching Sheet with Heat Generation/Absorption and Variable Viscosity
Authors: Jatindra Lahkar
Abstract:
The effect of chemical reaction on laminar mixed convection flow and heat and mass transfer along a vertical unsteady stretching sheet is investigated, in the presence of heat generation/absorption with variable viscosity and viscous dissipation. The governing non-linear partial differential equations are reduced to ordinary differential equations using similarity transformation and solved numerically using the fourth order Runge-Kutta method along with shooting technique. The effects of various flow parameters on the velocity, temperature and concentration distributions are analyzed and presented graphically. Skin-friction coefficient, Nusselt number and Sherwood number are derived at the sheet. It is observed that the influence of chemical reaction, the fluid flow along the sheet accelerate with the increase of chemical reaction parameter, on the other hand, temperature of the fluid increases with increase of chemical reaction parameter but concentration of the fluid reduces with it. The boundary layer decreases on the surface of the sheet for all values of unsteadiness parameter, increasing values of the chemical reaction parameter. The increases in the values of Sc cause the species concentration and its boundary layer thickness to decrease resulting in less induced flow and higher fluid temperatures. This is depicted in the decreases in the velocity and species concentration and increases in the fluid temperature as Sc increases.Keywords: chemical reaction, heat generation/absorption, magnetic number, unsteadiness, variable viscosity
Procedia PDF Downloads 3077815 Causes of Deteriorations of Flexible Pavement, Its Condition Rating and Maintenance
Authors: Pooja Kherudkar, Namdeo Hedaoo
Abstract:
There are various causes for asphalt pavement distresses which can develop prematurely or with aging in services. These causes are not limited to aging of bitumen binder but include poor quality materials and construction, inadequate mix design, inadequate pavement structure design considering the traffic and lack of preventive maintenance. There is physical evidence available for each type of pavement distress. Distress in asphalt pavements can be categorized in different distress modes like fracture (cracking and spalling), distortion (permanent deformation and slippage), and disintegration (raveling and potholes). This study shows the importance of severity determination of distresses for the selection of appropriate preventive maintenance treatment. Distress analysis of the deteriorated roads was carried out. Four roads of urban flexible pavements from Pune city was selected as a case study. The roads were surveyed to detect the types, to measure the severity and extent of the distresses. Causes of distresses were investigated. The pavement condition rating values of the roads were calculated. These ranges of ratings were as follows; 1 for poor condition road, 1.1 to 2 for fair condition road and 2.1 to 3 for good condition road. Out of the four roads, two roads were found to be in fair condition and the other two were found in good condition. From the various preventive maintenance treatments like crack seal, fog seal, slurry seal, microsurfacing, surface dressing and thin hot mix/cold mix bituminous overlays, the effective maintenance treatments with respect to the surface condition and severity levels of the existing pavement were recommended.Keywords: distress analysis, pavement condition rating, preventive maintenance treatments, surface distress measurement
Procedia PDF Downloads 1987814 A New Approach in a Problem of a Supersonic Panel Flutter
Authors: M. V. Belubekyan, S. R. Martirosyan
Abstract:
On the example of an elastic rectangular plate streamlined by a supersonic gas flow, we have investigated the phenomenon of divergence and of panel flatter of the overrunning of the gas flow at a free edge under assumption of the presence of concentrated inertial masses and moments at the free edge. We applied a new approach of finding of solution of these problems, which was developed based on the algorithm for an analytical solution finding. This algorithm is easy to use for theoretical studies for the wides circle of nonconservative problems of linear elastic stability. We have established the relation between the characteristics of natural vibrations of the plate and velocity of the streamlining gas flow, which enables one to draw some conclusions on the stability of disturbed motion of the plate depending on the parameters of the system plate-flow. Its solution shows that either the divergence or the localized divergence and the flutter instability are possible. The regions of the stability and instability in space of parameters of the problem are identified. We have investigated the dynamic behavior of the disturbed motion of the panel near the boundaries of region of the stability. The safe and dangerous boundaries of region of the stability are found. The transition through safe boundary of the region of the stability leads to the divergence or localized divergence arising in the vicinity of free edge of the rectangular plate. The transition through dangerous boundary of the region of the stability leads to the panel flutter. The deformations arising at the flutter are more dangerous to the skin of the modern aircrafts and rockets resulting to the loss of the strength and appearance of the fatigue cracks.Keywords: stability, elastic plate, divergence, localized divergence, supersonic panels flutter
Procedia PDF Downloads 4617813 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity
Authors: Roslinda Nazar, Ezad Hafidz Hafidzuddin, Norihan M. Arifin, Ioan Pop
Abstract:
In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate, and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.Keywords: boundary layer, exponentially stretching/shrinking sheet, generalized slip, heat transfer, numerical solutions
Procedia PDF Downloads 4327812 MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions
Authors: Ibrahim Yakubu Seini, Oluwole Daniel Makinde
Abstract:
MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface.Keywords: boundary layer, surface slip, MHD flow, chemical reaction, heat transfer, mass transfer
Procedia PDF Downloads 5397811 Coexistence of Two Different Types of Intermittency near the Boundary of Phase Synchronization in the Presence of Noise
Authors: Olga I. Moskalenko, Maksim O. Zhuravlev, Alexey A. Koronovskii, Alexander E. Hramov
Abstract:
Intermittent behavior near the boundary of phase synchronization in the presence of noise is studied. In certain range of the coupling parameter and noise intensity the intermittency of eyelet and ring intermittencies is shown to take place. Main results are illustrated using the example of two unidirectionally coupled Rössler systems. Similar behavior is shown to take place in two hydrodynamical models of Pierce diode coupled unidirectionally.Keywords: chaotic oscillators, phase synchronization, noise, intermittency of intermittencies
Procedia PDF Downloads 6427810 Inclined Convective Instability in a Porous Layer Saturated with Non-Newtonian Fluid
Authors: Rashmi Dubey
Abstract:
The study aims at investigating the onset of thermal convection in an inclined porous layer saturated with a non-Newtonian fluid. The layer is infinitely extended and has a finite width confined between two boundaries with constant pressure conditions, where the lower one is maintained at a higher temperature. Over the years, this area of research has attracted many scientists and researchers, for it has a plethora of applications in the fields of sciences and engineering, such as in civil engineering, geothermal sites, petroleum industries, etc.Considering the possibilities in a practical scenario, an inclined porous layer is considered, which can be used to develop a generalized model applicable to any inclination. Using the isobaric boundaries, the hydrodynamic boundary conditions are derived for the power-law model and are used to obtain the basic state flow. The convection in the basic state flow is driven by the thermal buoyancy in the flow system and is carried away further due to hydrodynamic boundaries. A linear stability analysis followed by a normal-mode analysis is done to investigate the onset of convection in the buoyancy-driven flow. The analysis shows that the convective instability is always initiated by the non-traveling modes for the Newtonian fluid, but prevails in the form of oscillatory modes, for up to a certain inclination of the porous layer. However, different behavior is observed for the dilatant and pseudoplastic fluids.Keywords: thermal convection, linear stability, porous media flow, Inclined porous layer
Procedia PDF Downloads 1237809 Fundamental Solutions for Discrete Dynamical Systems Involving the Fractional Laplacian
Authors: Jorge Gonzalez Camus, Valentin Keyantuo, Mahamadi Warma
Abstract:
In this work, we obtain representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. The focus is on the linear problem of the simplified Moore - Gibson - Thompson equation, where the discrete fractional Laplacian and the Caputo fractional derivate of order on (0,2] are involved. As a particular case, we obtain the explicit solution for the discrete heat equation and discrete wave equation. Furthermore, we show the explicit solution for the equation involving the perturbed Laplacian by the identity operator. The main tool for obtaining the explicit solution are the Laplace and discrete Fourier transforms, and Stirling's formula. The methodology mainly is to apply both transforms in the equation, to find the inverse of each transform, and to prove that this solution is well defined, using Stirling´s formula.Keywords: discrete fractional Laplacian, explicit representation of solutions, fractional heat and wave equations, fundamental
Procedia PDF Downloads 2097808 A Novel Combustion Engine, Design and Modeling
Authors: M. A. Effati, M. R. Hojjati, M. Razmdideh
Abstract:
Nowadays, engine developments have focused on internal combustion engine design call for increased engine power, reduced engine size and improved fuel economy, simultaneously. In this paper, a novel design for combustion engine is proposed. Two combustion chambers were designed in two sides of cylinder. Piston was designed in a way that two sides of piston would transfer heat energy due to combustion to linear motion. This motion would convert to rotary motion through the designed mechanism connected to connecting rod. Connecting rod operation was analyzed to evaluate applied stress in 3000, 4500 and 6000 rpm. Boundary conditions including generated pressure in each side of cylinder in these 3 situations was calculated.Keywords: combustion engine, design, finite element method, modeling
Procedia PDF Downloads 5137807 Delay-Dependent Passivity Analysis for Neural Networks with Time-Varying Delays
Authors: H. Y. Jung, Jing Wang, J. H. Park, Hao Shen
Abstract:
This brief addresses the passivity problem for neural networks with time-varying delays. The aim is focus on establishing the passivity condition of the considered neural networks.Keywords: neural networks, passivity analysis, time-varying delays, linear matrix inequality
Procedia PDF Downloads 5707806 Determination of Optimum Water Consumptive Using Deficit Irrigation Model for Barely: A Case Study in Arak, Iran
Authors: Mohsen Najarchi
Abstract:
This research was carried out in five fields (5-15 hectares) in Arak located in center of Iran, to determine optimum level of water consumed for Barely in four stages growth (vegetative, yield formation, flowering, and ripening). Actual evapotranspiration was calculated using measured water requirement in the fields. Five levels of water requirement equal to 50, 60, 70, 80, and 90 percents formed the treatments. To determine the optimum level of water requirement linear programming was used. The study showed 60 percent water requirement (40 percent deficit irrigation) has been the optimum level of irrigation for winter wheat in four stages of growth. Comparison between all of the treatments indicated above with normal condition (100% water requirement) shows increasing in water use efficiency. Although 40% deficit irrigation treatment lead to decrease of 38% in yield, net benefit was increasing in 11.37%. Furthermore, in comparison with normal condition, 70% of water requirement increased water use efficiency as 30%.Keywords: optimum, deficit irrigation, water use efficiency, evapotranspiration
Procedia PDF Downloads 3967805 A Deletion-Cost Based Fast Compression Algorithm for Linear Vector Data
Authors: Qiuxiao Chen, Yan Hou, Ning Wu
Abstract:
As there are deficiencies of the classic Douglas-Peucker Algorithm (DPA), such as high risks of deleting key nodes by mistake, high complexity, time consumption and relatively slow execution speed, a new Deletion-Cost Based Compression Algorithm (DCA) for linear vector data was proposed. For each curve — the basic element of linear vector data, all the deletion costs of its middle nodes were calculated, and the minimum deletion cost was compared with the pre-defined threshold. If the former was greater than or equal to the latter, all remaining nodes were reserved and the curve’s compression process was finished. Otherwise, the node with the minimal deletion cost was deleted, its two neighbors' deletion costs were updated, and the same loop on the compressed curve was repeated till the termination. By several comparative experiments using different types of linear vector data, the comparison between DPA and DCA was performed from the aspects of compression quality and computing efficiency. Experiment results showed that DCA outperformed DPA in compression accuracy and execution efficiency as well.Keywords: Douglas-Peucker algorithm, linear vector data, compression, deletion cost
Procedia PDF Downloads 2517804 Study of Linear Generator for Vibration Energy Harvesting of Frequency more than 50Hz
Authors: Seong-Jin Cho, Jin Ho Kim
Abstract:
Energy harvesting is the technology which gathers and converts external energies such as light, vibration and heat which are disposed into reusable electrical energy and uses such electrical energy. The vibration energy harvesting is very interesting technology because it produces very high density of energy and unaffected by the climate. Vibration energy can be harvested by the electrostatic, electromagnetic and piezoelectric systems. The electrostatic system has low energy conversion efficiency, and the piezoelectric system is expensive and needs the frequent maintenance because it is made of piezoelectric ceramic. On the other hand, the electromagnetic system has a long life time and high harvesting efficiency, and it is relatively cheap. The electromagnetic harvesting system includes the linear generator and the rotary-type generator. The rotary-type generators require the additional mechanical conversion device if it uses linear motion of vibration. But, the linear generator uses directly linear motion of vibration without a mechanical conversion device, and it has uncomplicated structure and light weight compared with the rotary-type generator. Therefore, the linear electromagnetic generator can be useful in using vibration energy harvesting. The pole transformer systems need electricity sensor system for sending voltage and power information to administrator. Therefore, the battery is essential, and its regular maintenance of replacement is required. In case of the transformer of high location in mountainous areas, the person can’t easily access it resulting in high maintenance cost. To overcome these problems, we designed and developed the linear electromagnetic generator which can replace battery in electricity sensor system for sending voltage and power information of the pole transformer. And, it uses vibration energy of frequency more than 50 Hz by the pole transformer. In order to analyze the electromagnetic characteristics of small linear electric generator, a commercial electromagnetic finite element analysis program "MAXWELL" was used. Then, through the actual production and experiment of linear generator, we confirmed output power of linear generator.Keywords: energy harvesting, frequency, linear generator, experiment
Procedia PDF Downloads 260