Search results for: differential settlement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2150

Search results for: differential settlement

1760 Existence and Concentration of Solutions for a Class of Elliptic Partial Differential Equations Involving p-Biharmonic Operator

Authors: Debajyoti Choudhuri, Ratan Kumar Giri, Shesadev Pradhan

Abstract:

The perturbed nonlinear Schrodinger equation involving the p-biharmonic and the p-Laplacian operators involving a real valued parameter and a continuous real valued potential function defined over the N- dimensional Euclidean space has been considered. By the variational technique, an existence result pertaining to a nontrivial solution to this non-linear partial differential equation has been proposed. Further, by the Concentration lemma, the concentration of solutions to the same problem defined on the set consisting of those elements where the potential function vanishes as the real parameter approaches to infinity has been addressed.

Keywords: p-Laplacian, p-biharmonic, elliptic PDEs, Concentration lemma, Sobolev space

Procedia PDF Downloads 237
1759 Mural Exhibition as a Promotive Strategy to Proper Hygiene and Sanitation Practices among Children: A Case Study from Urban Slum Schools in Nairobi, Kenya

Authors: Abdulaziz Kikanga, Kellen Muchira, Styvers Kathuni, Paul Saitoti

Abstract:

Background: Provision of adequate levels of water, sanitation, and hygiene in schools is a strategic objective in achieving universal primary education among children in low and middle-income countries. However, lack of proper sanitation and hygiene practices in schools, especially those in informal settlement has resulted to an increased rate of school absenteeism thereby affecting the education and health outcomes of the children in those setting. Intervention or Response: Catholic Relief Services in Kenya supports five schools in informal settlements of Nairobi by painting of key hygiene messages on school walls to promote proper hygiene and sanitation practices among the school children. The mural exhibitions depict the essence of proper hygiene practices, proper latrine use, and hand washing after visiting the latrine. The artwork is context specific and its aimed at improving the uptake of proper hygiene and sanitation practices among the school children. Review of project related documents was conducted including interviews with the school children. Thematic analysis was used to interpret the qualitative information generated. Results and Lessons Learnt: 12 school children have interviewed on proper hygiene and sanitation practices and the exercise revealed that painted murals were the best communication platforms for creating awareness on proper sanitation on issues relating to water, sanitation, and hygiene in schools. The painting mural provided a strong knowledge base for the formation of healthy habits in both the school and informal settlement. In addition, these sanitation messages on the school walls empower the children to share these practices with their siblings, parents, and other family members thereby acting as agents of change to proper hygiene and sanitation in those informal settlements. The findings revealed that by adopting proper sanitation and hygiene practices, there has been a reduction of school absenteeism due to a decrease in disease related to inadequate sanitation and hygiene in schools. Conclusion: The adoption of proper sanitation in schools entails more than just a painted mural wall. Insights revealed that to have a lasting sanitation and hygiene intervention, there is a need to invest in effective hygiene educational programming that encourages the formation of proper hygiene habits and promotes changes in behavior.

Keywords: education outcomes, informal settlement, mural exhibition, school hygiene and sanitation

Procedia PDF Downloads 256
1758 Application of a Modified Crank-Nicolson Method in Metallurgy

Authors: Kobamelo Mashaba

Abstract:

The molten slag has a high substantial temperatures range between 1723-1923, carrying a huge amount of useful energy for reducing energy consumption and CO₂ emissions under the heat recovery process. Therefore in this study, we investigated the performance of the modified crank Nicolson method for a delayed partial differential equation on the heat recovery of molten slag in the metallurgical mining environment. It was proved that the proposed method converges quickly compared to the classic method with the existence of a unique solution. It was inferred from numerical result that the proposed methodology is more viable and profitable for the mining industry.

Keywords: delayed partial differential equation, modified Crank-Nicolson Method, molten slag, heat recovery, parabolic equation

Procedia PDF Downloads 102
1757 A Variable Structural Control for a Flexible Lamina

Authors: Xuezhang Hou

Abstract:

A control problem of a flexible Lamina formulated by partial differential equations with viscoelastic boundary conditions is studied in this paper. The problem is written in standard form of linear infinite dimensional system in an appropriate energy Hilbert space. The semigroup approach of linear operators is adopted in investigating wellposedness of the closed loop system. A variable structural control for the system is proposed, and meanwhile an equivalent control method is applied to the thin plate system. A significant result on control theory that the thin plate can be approximated by ideal sliding mode in any accuracy in terms of semigroup approach is obtained.

Keywords: partial differential equations, flexible lamina, variable structural control, semigroup of linear operators

Procedia PDF Downloads 87
1756 A Nonlinear Stochastic Differential Equation Model for Financial Bubbles and Crashes with Finite-Time Singularities

Authors: Haowen Xi

Abstract:

We propose and solve exactly a class of non-linear generalization of the Black-Scholes process of stochastic differential equations describing price bubble and crashes dynamics. As a result of nonlinear positive feedback, the faster-than-exponential price positive growth (bubble forming) and negative price growth (crash forming) are found to be the power-law finite-time singularity in which bubbles and crashes price formation ending at finite critical time tc. While most literature on the market bubble and crash process focuses on the nonlinear positive feedback mechanism aspect, very few studies concern the noise level on the same process. The present work adds to the market bubble and crashes literature by studying the external sources noise influence on the critical time tc of the bubble forming and crashes forming. Two main results will be discussed: (1) the analytical expression of expected value of the critical time is found and unexpected critical slowing down due to the coupling external noise is predicted; (2) numerical simulations of the nonlinear stochastic equation is presented, and the probability distribution of Prob(tc) is found to be the inverse gamma function.

Keywords: bubble, crash, finite-time-singular, numerical simulation, price dynamics, stochastic differential equations

Procedia PDF Downloads 133
1755 Vibration of Nonhomogeneous Timoshenko Nanobeam Resting on Winkler-Pasternak Foundation

Authors: Somnath Karmakar, S. Chakraverty

Abstract:

This work investigates the vibration of nonhomogeneous Timoshenko nanobeam resting on the Winkler-Pasternak foundation. Eringen’s nonlocal theory has been used to investigate small-scale effects. The Differential Quadrature method is used to obtain the frequency parameters with various classical boundary conditions. The nonhomogeneous beam model has been considered, where Young’s modulus and density of the beam material vary linearly and quadratically. Convergence of frequency parameters is also discussed. The influence of mechanical properties and scaling parameters on vibration frequencies are investigated for different boundary conditions.

Keywords: Timoshenko beam, Eringen's nonlocal theory, differential quadrature method, nonhomogeneous nanobeam

Procedia PDF Downloads 115
1754 Impact of the Time Interval in the Numerical Solution of Incompressible Flows

Authors: M. Salmanzadeh

Abstract:

In paper, we will deal with incompressible Couette flow, which represents an exact analytical solution of the Navier-Stokes equations. Couette flow is perhaps the simplest of all viscous flows, while at the same time retaining much of the same physical characteristics of a more complicated boundary-layer flow. The numerical technique that we will employ for the solution of the Couette flow is the Crank-Nicolson implicit method. Parabolic partial differential equations lend themselves to a marching solution; in addition, the use of an implicit technique allows a much larger marching step size than would be the case for an explicit solution. Hence, in the present paper we will have the opportunity to explore some aspects of CFD different from those discussed in the other papers.

Keywords: incompressible couette flow, numerical method, partial differential equation, Crank-Nicolson implicit

Procedia PDF Downloads 538
1753 Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading

Authors: Qassun S. Mohammed Shafiqu, Murtadha A. Abdulrasool

Abstract:

The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model.

Keywords: shallow foundation, seismic behavior, raft thickness, damping ratio

Procedia PDF Downloads 149
1752 Nonlinear Evolution on Graphs

Authors: Benniche Omar

Abstract:

We are concerned with abstract fully nonlinear differential equations having the form y’(t)=Ay(t)+f(t,y(t)) where A is an m—dissipative operator (possibly multi—valued) defined on a subset D(A) of a Banach space X with values in X and f is a given function defined on I×X with values in X. We consider a graph K in I×X. We recall that K is said to be viable with respect to the above abstract differential equation if for each initial data in K there exists at least one trajectory starting from that initial data and remaining in K at least for a short time. The viability problem has been studied by many authors by using various techniques and frames. If K is closed, it is shown that a tangency condition, which is mainly linked to the dynamic, is crucial for viability. In the case when X is infinite dimensional, compactness and convexity assumptions are needed. In this paper, we are concerned with the notion of near viability for a given graph K with respect to y’(t)=Ay(t)+f(t,y(t)). Roughly speaking, the graph K is said to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)), if for each initial data in K there exists at least one trajectory remaining arbitrary close to K at least for short time. It is interesting to note that the near viability is equivalent to an appropriate tangency condition under mild assumptions on the dynamic. Adding natural convexity and compactness assumptions on the dynamic, we may recover the (exact) viability. Here we investigate near viability for a graph K in I×X with respect to y’(t)=Ay(t)+f(t,y(t)) where A and f are as above. We emphasis that the t—dependence on the perturbation f leads us to introduce a new tangency concept. In the base of a tangency conditions expressed in terms of that tangency concept, we formulate criteria for K to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)). As application, an abstract null—controllability theorem is given.

Keywords: abstract differential equation, graph, tangency condition, viability

Procedia PDF Downloads 145
1751 On the PTC Thermistor Model with a Hyperbolic Tangent Electrical Conductivity

Authors: M. O. Durojaye, J. T. Agee

Abstract:

This paper is on the one-dimensional, positive temperature coefficient (PTC) thermistor model with a hyperbolic tangent function approximation for the electrical conductivity. The method of asymptotic expansion was adopted to obtain the steady state solution and the unsteady-state response was obtained using the method of lines (MOL) which is a well-established numerical technique. The approach is to reduce the partial differential equation to a vector system of ordinary differential equations and solve numerically. Our analysis shows that the hyperbolic tangent approximation introduced is well suitable for the electrical conductivity. Numerical solutions obtained also exhibit correct physical characteristics of the thermistor and are in good agreement with the exact steady state solutions.

Keywords: electrical conductivity, hyperbolic tangent function, PTC thermistor, method of lines

Procedia PDF Downloads 323
1750 Asymptotic Expansion of the Korteweg-de Vries-Burgers Equation

Authors: Jian-Jun Shu

Abstract:

It is common knowledge that many physical problems (such as non-linear shallow-water waves and wave motion in plasmas) can be described by the Korteweg-de Vries (KdV) equation, which possesses certain special solutions, known as solitary waves or solitons. As a marriage of the KdV equation and the classical Burgers (KdVB) equation, the Korteweg-de Vries-Burgers (KdVB) equation is a mathematical model of waves on shallow water surfaces in the presence of viscous dissipation. Asymptotic analysis is a method of describing limiting behavior and is a key tool for exploring the differential equations which arise in the mathematical modeling of real-world phenomena. By using variable transformations, the asymptotic expansion of the KdVB equation is presented in this paper. The asymptotic expansion may provide a good gauge on the validation of the corresponding numerical scheme.

Keywords: asymptotic expansion, differential equation, Korteweg-de Vries-Burgers (KdVB) equation, soliton

Procedia PDF Downloads 253
1749 Immigration without Settlement: Causes and Consequences of Exclusionary Migration Regime in East Asia

Authors: Yen-Fen Tseng

Abstract:

Studying migration regimes enables one to identify clusters of countries with policy features in common. A few researchers have pointed out the origin of hardship experienced by foreign workers in Taiwan, Japan, and South Korea, stems from their exclusionary migration regime. This paper aims to understand the causes and consequences of the East Asia migration regime, exploring the common exclusionary policies features of Taiwan, Japan, and South Korea, focusing on the foreign labor policy. It will then present explanations as to factors shaping migration regime; the perspective of factors within political system is adopted, as opposed to political economy and pluralist society approach. In the minds of political elites across East Asia, there exists a powerful belief in mono-ethnicity, namely, the benefits of mono-ethnicity and the social ill of “minority problems”. Guest workers policies of various alterations become the compromise between the want for foreign labor and the desire to maintain mono-ethnicity. The paper discusses the absence of immigrant settlement and formation of ethnic communities as a result of the reluctant hosts. Migrant workers in these societies commonly suffer from irregular working conditions as well as unprotected rights out of their denied legality. The case of Taiwan will be presented with greater details, drawing on data from both first-hand and secondary sources.

Keywords: migration regime, guest worker policies, East Asia, society

Procedia PDF Downloads 381
1748 Interface Analysis of Annealed Al/Cu Cladded Sheet

Authors: Joon Ho Kim, Tae Kwon Ha

Abstract:

Effect of aging treatment on microstructural aspects of interfacial layers of the Cu/Al clad sheet produced by Differential Speed Rolling (DSR) process were studied by Electron Back Scattered Diffraction (EBSD). Clad sheet of Al/Cu has been fabricated by using DSR, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100°C with speed ratio of 2, in which the total thickness reduction was 45%. Interface layers of clad sheet were analyzed by EBSD after subsequent annealing at 400°C for 30 to 120 min. With increasing annealing time, thickness of interface layer and fraction of high angle grain boundary were increased and average grain size was decreased.

Keywords: aluminium/copper clad sheet, differential speed rolling, interface layer, microstructure, annealing, electron back scattered diffraction

Procedia PDF Downloads 367
1747 Dynamic Behavior of Brain Tissue under Transient Loading

Authors: Y. J. Zhou, G. Lu

Abstract:

In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.

Keywords: analytical method, mechanical responses, spherical wave propagation, traumatic brain injury

Procedia PDF Downloads 270
1746 Synthesis of KCaVO4:Sm³⁺/PMMA Luminescent Nanocomposites and Their Optical Property Measurements

Authors: Sumara Khursheed, Jitendra Sharma

Abstract:

The present work reports synthesis of nanocomposites (NCs) of phosphor (KCaVO4:Sm3+) embedded poly(methylmethacrylate) (PMMA) using solution casting method and their optical properties measurements for their possible application in making flexible luminescent films. X-ray diffraction analyses were employed to obtain the structural parameters as crystallinity, shape and size of the obtained NCs. The emission and excitation spectra were obtained using Photoluminescence spectroscopy to quantify the spectral properties of these fluorescent polymer/phosphor films. Optical energy gap has been estimated using UV-VIS spectroscopy while differential scanning calorimetry (DSC) was exploited to measure the thermal properties of the NC films in terms of their thermal stability, glass transition temperature and degree of crystallinity etc.

Keywords: nanocomposites, luminescence, XRD, differential scanning calorimetry, PMMA

Procedia PDF Downloads 170
1745 Compact Finite Difference Schemes for Fourth Order Parabolic Partial Differential Equations

Authors: Sufyan Muhammad

Abstract:

Recently, in achieving highly efficient but at the same time highly accurate solutions has become the major target of numerical analyst community. The concept is termed as compact schemes and has gained great popularity and consequently, we construct compact schemes for fourth order parabolic differential equations used to study vibrations in structures. For the superiority of newly constructed schemes, we consider range of examples. We have achieved followings i.e. (a) numerical scheme utilizes minimum number of stencil points (which means new scheme is compact); (b) numerical scheme is highly accurate (which means new scheme is reliable) and (c) numerical scheme is highly efficient (which means new scheme is fast).

Keywords: central finite differences, compact schemes, Bernoulli's equations, finite differences

Procedia PDF Downloads 288
1744 Lyapunov and Input-to-State Stability of Stochastic Differential Equations

Authors: Arcady Ponosov, Ramazan Kadiev

Abstract:

Input-to-State Stability (ISS) is widely used in deterministic control theory but less known in the stochastic case. Roughly speaking, the theory explains when small perturbations of the right-hand sides of the system on the entire semiaxis cause only small changes in the solutions of the system, again on the entire semiaxis. This property is crucial in many applications. In the report, we explain how to define and study ISS for systems of linear stochastic differential equations with or without delays. The central result connects ISS with the property of Lyapunov stability. This relationship is well-known in the deterministic setting, but its stochastic version is new. As an application, a method of studying asymptotic Lyapunov stability for stochastic delay equations is described and justified. Several examples are provided that confirm the efficiency and simplicity of the framework.

Keywords: asymptotic stability, delay equations, operator methods, stochastic perturbations

Procedia PDF Downloads 178
1743 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement

Authors: Sai Sankalp Vemavarapu

Abstract:

This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.

Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation

Procedia PDF Downloads 164
1742 Mathematical Model of Cancer Growth under the Influence of Radiation Therapy

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of cancer growth under the influence of radiation therapy. The effect of this type of therapy is considered as an additional equation of discussed model. Numerical simulations show that delay, which is added to ordinary differential equations and represent time needed for transformation from one type of cells to the other one, affects the behavior of the system. The validation and verification of proposed model is based on medical data. Analytical results are illustrated by numerical examples of the model dynamics. The model is able to reconstruct dynamics of treatment of cancer and may be used to determine the most effective treatment regimen based on the study of the behavior of individual treatment protocols.

Keywords: mathematical modeling, numerical simulation, ordinary differential equations, radiation therapy

Procedia PDF Downloads 409
1741 Dialectic Relationship between Urban Pattern Structural Methods and Construction Materials in Traditional Settlements

Authors: Sawsan Domi

Abstract:

Identifying urban patterns of traditional settlements perfumed in various ways. One of them through the three-dimensional ‘reading’ of the urban web: the density of structures, the construction materials and the colors used. Objectives of this study are to paraphrase and understand the relation between the formation of the traditional settlements and the shape and structure of their structural method. In the beginning, the study considered the components of the historical neighborhood, which reflected the social and economical effects in the urban planning pattern. Then, by analyzing the main components of the old neighborhood which included: analysis of urban patterns & streets systems, analysis of traditional architectural elements and the construction materials and their usage. ‘’Hamasa’’ Neighborhood in ‘’Al Buraimi’’ Governorate is considered as one of the most important archaeological sites in the Sultanate of Oman. The vivid features of this archaeological site are the living witness to the genius of the Omani person and his unique architecture. ‘’Hamasa’’ Neighborhood is also considered as the oldest human settlement at ‘’Al Buraimi’’ Governorate. It used to be the gathering area for Arab and Omani tribes who are coming from other governorates of Oman. In this old settlement, local characters were created to meet the climate problems and the social, religious requirements of the life. Traditional buildings were built of materials that were available in the surround environment and within hand reach. The Historical component was containing four main separate neighborhoods. The morphological structure of ‘’Hamasa’’ was characterized by a continuous and densely built-up pattern, featuring close interdependence between the spatial and functional pattern. The streets linked the plots, the marketplace and the open areas. Consequently, the traditional fabric had narrow streets with one- and two- storey houses. The material used in building facilities at ‘’Hamasa’' historical are from the traditionally used materials. These materials were cleverly used in building of local facilities. Most of these materials are locally made and formed, and used by the locals. ‘’Hamasa’’ neighborhood is an example of analyzing the urban patterns and geometrical features. The old ‘’ Hamasa’’ retains the patterns of its old settlements. Urban patterns were defined by both forms and structure. The traditional architecture of ‘’Hamasa’’ neighborhood has evolved as a direct result of its climatic conditions. The study figures out that the neighborhood characterized by the used construction materials, the scope of the residential structures and by the streets system. All formed the urban pattern of the settlement.

Keywords: urban pattern, construction materials, neighborhood, architectural elements, historical

Procedia PDF Downloads 98
1740 Double Negative Differential Resistance Features in Series AIN/GaN Double-Barrier Resonant Tunneling Diodes Vertically Integrated by Plasma-Assisted Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

This study reports on the epitaxial growth of a GaN-based resonant tunneling diode (RTD) structure with stable and repeatable double negative differential resistance (NDR) characteristics at room temperature on a c-plane GaN-on-sapphire template using plasma-assisted molecular beam epitaxy (PA-MBE) technology. In this structure, two independent AlN/GaN RTDs are epitaxially connected in series in the vertical growth direction through a silicon-doped GaN layer. As the collector electrode bias voltage increases, the two RTDs respectively align the ground state energy level in the quantum well with the 2DEG energy level in the emitter accumulation well to achieve quantum resonant tunneling and then reach the negative differential resistance (NDR) region. The two NDR regions exhibit similar peak current densities and peak-to-valley current ratios, which are 230 kA/cm² and 249 kA/cm², 1.33 and 1.38, respectively, for a device with a collector electrode mesa diameter of 1 µm. The consistency of the NDR is much higher than the results of on-chip discrete RTD device interconnection, resulting from the smaller chip area, fewer interconnect parasitic parameters, and less process complexity. The methods and results presented in this paper show the brilliant prospects of GaN RTDs in the development of multi-value logic digital circuits.

Keywords: MBE, AlN/GaN, RTDs, double NDR

Procedia PDF Downloads 64
1739 Creating Sustainable Human Settlements: An Analysis of Planning Intervention in Addressing Informal Settlements in South Africa

Authors: Takudzwa C. Taruza, Carel B. Schoeman, Ilse M. Schoeman

Abstract:

The proliferation of informal settlements remains one of the major planning challenges in democratic South Africa. In spite of the various local, national and international initiatives to promote the creation of sustainable human settlements, informal settlements continue to exist as spatially marginalised societies characterised by poverty, unemployment, squalor conditions and disaster risks. It is argued that, in practice, intervention is mainly directed at achieving set quantitative targets and goals rather than improving the lives of the inhabitants. The relevant planning instruments do not adequately address the integration of informal settlements into the broader planning framework. This paper is based on the analysis of the informal settlement intervention within the North West Province. Financial constraints, bureaucracy in housing delivery and lack of horizontal and vertical integration in spatial planning and programme implementation are amongst the major factors that caused stagnation in some of the upgrading programmes which in turn hindered the attainment of the target set as part of the Outcome 8 Delivery Agreement. Moreover, the absence of distinct indicators for the assessment of the qualitative progress of upgrading programmes indicates shortcomings in the intervention policies and programmes to promote the creation of sustainable human settlements. Thus, this paper seeks to proffer an assessment toolkit as well as a framework for the implementation of a Sustainable Informal Settlement Programme.

Keywords: formalization of informal settlements, planning intervention, sustainable formalization indicators, sustainable human settlements

Procedia PDF Downloads 256
1738 Formulation of Corrector Methods from 3-Step Hybid Adams Type Methods for the Solution of First Order Ordinary Differential Equation

Authors: Y. A. Yahaya, Ahmad Tijjani Asabe

Abstract:

This paper focuses on the formulation of 3-step hybrid Adams type method for the solution of first order differential equation (ODE). The methods which was derived on both grid and off grid points using multistep collocation schemes and also evaluated at some points to produced Block Adams type method and Adams moulton method respectively. The method with the highest order was selected to serve as the corrector. The convergence was valid and efficient. The numerical experiments were carried out and reveal that hybrid Adams type methods performed better than the conventional Adams moulton method.

Keywords: adam-moulton type (amt), corrector method, off-grid, block method, convergence analysis

Procedia PDF Downloads 627
1737 Inverter Based Gain-Boosting Fully Differential CMOS Amplifier

Authors: Alpana Agarwal, Akhil Sharma

Abstract:

This work presents a fully differential CMOS amplifier consisting of two self-biased gain boosted inverter stages, that provides an alternative to the power hungry operational amplifier. The self-biasing avoids the use of external biasing circuitry, thus reduces the die area, design efforts, and power consumption. In the present work, regulated cascode technique has been employed for gain boosting. The Miller compensation is also applied to enhance the phase margin. The circuit has been designed and simulated in 1.8 V 0.18 µm CMOS technology. The simulation results show a high DC gain of 100.7 dB, Unity-Gain Bandwidth of 107.8 MHz, and Phase Margin of 66.7o with a power dissipation of 286 μW and makes it suitable candidate for the high resolution pipelined ADCs.

Keywords: CMOS amplifier, gain boosting, inverter-based amplifier, self-biased inverter

Procedia PDF Downloads 304
1736 Student Project on Using a Spreadsheet for Solving Differential Equations by Euler's Method

Authors: Andriy Didenko, Zanin Kavazovic

Abstract:

Engineering students often have certain difficulties in mastering major theoretical concepts in mathematical courses such as differential equations. Student projects were proposed to motivate students’ learning and can be used as a tool to promote students’ interest in the material. Authors propose a student project that includes the use of Microsoft Excel. This instructional tool is often overlooked by both educators and students. An integral component of the experimental part of such a project is the exploration of an interactive spreadsheet. The aim is to assist engineering students in better understanding of Euler’s method. This method is employed to numerically solve first order differential equations. At first, students are invited to select classic equations from a list presented in a form of a drop-down menu. For each of these equations, students can select and modify certain key parameters and observe the influence of initial condition on the solution. This will give students an insight into the behavior of the method in different configurations as solutions to equations are given in numerical and graphical forms. Further, students could also create their own equations by providing functions of their own choice and a variety of initial conditions. Moreover, they can visualize and explore the impact of the length of the time step on the convergence of a sequence of numerical solutions to the exact solution of the equation. As a final stage of the project, students are encouraged to develop their own spreadsheets for other numerical methods and other types of equations. Such projects promote students’ interest in mathematical applications and further improve their mathematical and programming skills.

Keywords: student project, Euler's method, spreadsheet, engineering education

Procedia PDF Downloads 135
1735 DEA-Based Variable Structure Position Control of DC Servo Motor

Authors: Ladan Maijama’a, Jibril D. Jiya, Ejike C. Anene

Abstract:

This paper presents Differential Evolution Algorithm (DEA) based Variable Structure Position Control (VSPC) of Laboratory DC servomotor (LDCSM). DEA is employed for the optimal tuning of Variable Structure Control (VSC) parameters for position control of a DC servomotor. The VSC combines the techniques of Sliding Mode Control (SMC) that gives the advantages of small overshoot, improved step response characteristics, faster dynamic response and adaptability to plant parameter variations, suppressed influences of disturbances and uncertainties in system behavior. The results of the simulation responses of the VSC parameters adjustment by DEA were performed in Matlab Version 2010a platform and yield better dynamic performance compared with the untuned VSC designed.

Keywords: differential evolution algorithm, laboratory DC servomotor, sliding mode control, variable structure control

Procedia PDF Downloads 416
1734 Optical Parametric Oscillators Lidar Sounding of Trace Atmospheric Gases in the 3-4 µm Spectral Range

Authors: Olga V. Kharchenko

Abstract:

Applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3–4 µm is studied in this work. A technique based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS) is developed for lidar sounding of trace atmospheric gases (TAG). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases.

Keywords: atmosphere, lidar sounding, DIAL, DOAS, trace gases, nonlinear crystal

Procedia PDF Downloads 403
1733 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation

Procedia PDF Downloads 401
1732 Investigating the Form of the Generalised Equations of Motion of the N-Bob Pendulum and Computing Their Solution Using MATLAB

Authors: Divij Gupta

Abstract:

Pendular systems have a range of both mathematical and engineering applications, ranging from modelling the behaviour of a continuous mass-density rope to utilisation as Tuned Mass Dampers (TMD). Thus, it is of interest to study the differential equations governing the motion of such systems. Here we attempt to generalise these equations of motion for the plane compound pendulum with a finite number of N point masses. A Lagrangian approach is taken, and we attempt to find the generalised form for the Euler-Lagrange equations of motion for the i-th bob of the N -bob pendulum. The co-ordinates are parameterized as angular quantities to reduce the number of degrees of freedom from 2N to N to simplify the form of the equations. We analyse the form of these equations up to N = 4 to determine the general form of the equation. We also develop a MATLAB program to compute a solution to the system for a given input value of N and a given set of initial conditions.

Keywords: classical mechanics, differential equation, lagrangian analysis, pendulum

Procedia PDF Downloads 211
1731 Factor Analysis Based on Semantic Differential of the Public Perception of Public Art: A Case Study of the Malaysia National Monument

Authors: Yuhanis Ibrahim, Sung-Pil Lee

Abstract:

This study attempts to address factors that contribute to outline public art factors assessment, memorial monument specifically. Memorial monuments hold significant and rich message whether the intention of the art is to mark and commemorate important event or to inform younger generation about the past. Public monument should relate to the public and raise awareness about the significant issue. Therefore, by investigating the impact of the existing public memorial art will hopefully shed some lights to the upcoming public art projects’ stakeholders to ensure the lucid memorial message is delivered to the public directly. Public is the main actor as public is the fundamental purpose that the art was created. Perception is framed as one of the reliable evaluation tools to assess the public art impact factors. The Malaysia National Monument was selected to be the case study for the investigation. The public’s perceptions were gathered using a questionnaire that involved (n-115) participants to attain keywords, and next Semantical Differential Methodology (SDM) was adopted to evaluate the perceptions about the memorial monument. These perceptions were then measured with Reliability Factor and then were factorised using Factor Analysis of Principal Component Analysis (PCA) method to acquire concise factors for the monument assessment. The result revealed that there are four factors that influence public’s perception on the monument which are aesthetic, audience, topology, and public reception. The study concludes by proposing the factors for public memorial art assessment for the next future public memorial projects especially in Malaysia.

Keywords: factor analysis, public art, public perception, semantical differential methodology

Procedia PDF Downloads 502