Search results for: cascade distribution
4838 Determining Best Fitting Distributions for Minimum Flows of Streams in Gediz Basin
Authors: Naci Büyükkaracığan
Abstract:
Today, the need for water sources is swiftly increasing due to population growth. At the same time, it is known that some regions will face with shortage of water and drought because of the global warming and climate change. In this context, evaluation and analysis of hydrological data such as the observed trends, drought and flood prediction of short term flow has great deal of importance. The most accurate selection probability distribution is important to describe the low flow statistics for the studies related to drought analysis. As in many basins In Turkey, Gediz River basin will be affected enough by the drought and will decrease the amount of used water. The aim of this study is to derive appropriate probability distributions for frequency analysis of annual minimum flows at 6 gauging stations of the Gediz Basin. After applying 10 different probability distributions, six different parameter estimation methods and 3 fitness test, the Pearson 3 distribution and general extreme values distributions were found to give optimal results.Keywords: Gediz Basin, goodness-of-fit tests, minimum flows, probability distribution
Procedia PDF Downloads 2714837 Max-Entropy Feed-Forward Clustering Neural Network
Authors: Xiaohan Bookman, Xiaoyan Zhu
Abstract:
The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution under some limited conditions. As this paper defines two processes in Feed-Forward Neural Network, our limited condition is the abstracted features of samples which are worked out in the abstraction process. And the final outputs are the probability distribution for different clusters in the clustering process. As Entropy-Based Principle is considered into the feed-forward neural network, a clustering method is born. We have conducted some experiments on six open UCI data sets, comparing with a few baselines and applied purity as the measurement. The results illustrate that our method outperforms all the other baselines that are most popular clustering methods.Keywords: feed-forward neural network, clustering, max-entropy principle, probabilistic models
Procedia PDF Downloads 4354836 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter
Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar
Abstract:
Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).Keywords: filter media, hydraulic loading rate, residence time distribution, tracer
Procedia PDF Downloads 2774835 A Benchtop Experiment to Study Changes in Tracer Distribution in the Subarachnoid Space
Authors: Smruti Mahapatra, Dipankar Biswas, Richard Um, Michael Meggyesy, Riccardo Serra, Noah Gorelick, Steven Marra, Amir Manbachi, Mark G. Luciano
Abstract:
Intracranial pressure (ICP) is profoundly regulated by the effects of cardiac pulsation and the volume of the incoming blood. Furthermore, these effects on ICP are incremented by the presence of a rigid skull that does not allow for changes in total volume during the cardiac cycle. These factors play a pivotal role in cerebrospinal fluid (CSF) dynamics and distribution, with consequences that are not well understood to this date and that may have a deep effect on the Central Nervous System (CNS) functioning. We designed this study with two specific aims: (a) To study how pulsatility influences local CSF flow, and (b) To study how modulating intracranial pressure affects drug distribution throughout the SAS globally. In order to achieve these aims, we built an elaborate in-vitro model of the SAS closely mimicking the dimensions and flow rates of physiological systems. To modulate intracranial pressure, we used an intracranially implanted, cardiac-gated, volume-oscillating balloon (CADENCE device). Commercially available dye was used to visualize changes in CSF flow. We first implemented two control cases, seeing how the tracer behaves in the presence of pulsations from the brain phantom and the balloon individually. After establishing the controls, we tested 2 cases, having the brain and the balloon pulsate together in sync and out of sync. We then analyzed the distribution area using image processing software. The in-sync case produced a significant increase, 5x times, in the tracer distribution area relative to the out-of-sync case. Assuming that the tracer fluid would mimic blood flow movement, a drug introduced in the SAS with such a system in place would enhance drug distribution and increase the bioavailability of therapeutic drugs to a wider spectrum of brain tissue.Keywords: blood-brain barrier, cardiac-gated, cerebrospinal fluid, drug delivery, neurosurgery
Procedia PDF Downloads 1834834 Atomistic Insight into the System of Trapped Oil Droplet/ Nanofluid System in Nanochannels
Authors: Yuanhao Chang, Senbo Xiao, Zhiliang Zhang, Jianying He
Abstract:
The role of nanoparticles (NPs) in enhanced oil recovery (EOR) is being increasingly emphasized. In this study, the motion of NPs and local stress distribution of tapped oil droplet/nanofluid in nanochannels are studied with coarse-grained modeling and molecular dynamic simulations. The results illustrate three motion patterns for NPs: hydrophilic NPs are more likely to adsorb on the channel and stay near the three-phase contact areas, hydrophobic NPs move inside the oil droplet as clusters and more mixed NPs are trapped at the oil-water interface. NPs in each pattern affect the flow of fluid and the interfacial thickness to various degrees. Based on the calculation of atomistic stress, the characteristic that the higher value of stress occurs at the place where NPs aggregate can be obtained. Different occurrence patterns correspond to specific local stress distribution. Significantly, in the three-phase contact area for hydrophilic NPs, the local stress distribution close to the pattern of structural disjoining pressure is observed, which proves the existence of structural disjoining pressure in molecular dynamics simulation for the first time. Our results guide the design and screen of NPs for EOR and provide a basic understanding of nanofluid applications.Keywords: local stress distribution, nanoparticles, enhanced oil recovery, molecular dynamics simulation, trapped oil droplet, structural disjoining pressure
Procedia PDF Downloads 1344833 Constructing the Joint Mean-Variance Regions for Univariate and Bivariate Normal Distributions: Approach Based on the Measure of Cumulative Distribution Functions
Authors: Valerii Dashuk
Abstract:
The usage of the confidence intervals in economics and econometrics is widespread. To be able to investigate a random variable more thoroughly, joint tests are applied. One of such examples is joint mean-variance test. A new approach for testing such hypotheses and constructing confidence sets is introduced. Exploring both the value of the random variable and its deviation with the help of this technique allows checking simultaneously the shift and the probability of that shift (i.e., portfolio risks). Another application is based on the normal distribution, which is fully defined by mean and variance, therefore could be tested using the introduced approach. This method is based on the difference of probability density functions. The starting point is two sets of normal distribution parameters that should be compared (whether they may be considered as identical with given significance level). Then the absolute difference in probabilities at each 'point' of the domain of these distributions is calculated. This measure is transformed to a function of cumulative distribution functions and compared to the critical values. Critical values table was designed from the simulations. The approach was compared with the other techniques for the univariate case. It differs qualitatively and quantitatively in easiness of implementation, computation speed, accuracy of the critical region (theoretical vs. real significance level). Stable results when working with outliers and non-normal distributions, as well as scaling possibilities, are also strong sides of the method. The main advantage of this approach is the possibility to extend it to infinite-dimension case, which was not possible in the most of the previous works. At the moment expansion to 2-dimensional state is done and it allows to test jointly up to 5 parameters. Therefore the derived technique is equivalent to classic tests in standard situations but gives more efficient alternatives in nonstandard problems and on big amounts of data.Keywords: confidence set, cumulative distribution function, hypotheses testing, normal distribution, probability density function
Procedia PDF Downloads 1744832 Distribution System Planning with Distributed Generation and Capacitor Placements
Authors: Nattachote Rugthaicharoencheep
Abstract:
This paper presents a feeder reconfiguration problem in distribution systems. The objective is to minimize the system power loss and to improve bus voltage profile. The optimization problem is subjected to system constraints consisting of load-point voltage limits, radial configuration format, no load-point interruption, and feeder capability limits. A method based on genetic algorithm, a search algorithm based on the mechanics of natural selection and natural genetics, is proposed to determine the optimal pattern of configuration. The developed methodology is demonstrated by a 33-bus radial distribution system with distributed generations and feeder capacitors. The study results show that the optimal on/off patterns of the switches can be identified to give the minimum power loss while respecting all the constraints.Keywords: network reconfiguration, distributed generation capacitor placement, loss reduction, genetic algorithm
Procedia PDF Downloads 1754831 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning
Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park
Abstract:
This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds is not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.Keywords: structural healthcare monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation
Procedia PDF Downloads 4334830 Invasive Ranges of Gorse (Ulex europaeus) in South Australia and Sri Lanka Using Species Distribution Modelling
Authors: Champika S. Kariyawasam
Abstract:
The distribution of gorse (Ulex europaeus) plants in South Australia has been modelled using 126 presence-only location data as a function of seven climate parameters. The predicted range of U. europaeus is mainly along the Mount Lofty Ranges in the Adelaide Hills and on Kangaroo Island. Annual precipitation and yearly average aridity index appeared to be the highest contributing variables to the final model formulation. The Jackknife procedure was employed to identify the contribution of different variables to gorse model outputs and response curves were used to predict changes with changing environmental variables. Based on this analysis, it was revealed that the combined effect of one or more variables could make a completely different impact to the original variables on their own to the model prediction. This work also demonstrates the need for a careful approach when selecting environmental variables for projecting correlative models to climatically distinct area. Maxent acts as a robust model when projecting the fitted species distribution model to another area with changing climatic conditions, whereas the generalized linear model, bioclim, and domain models to be less robust in this regard. These findings are important not only for predicting and managing invasive alien gorse in South Australia and Sri Lanka but also in other countries of the invasive range.Keywords: invasive species, Maxent, species distribution modelling, Ulex europaeus
Procedia PDF Downloads 1344829 A Two-Pronged Truncated Deferred Sampling Plan for Log-Logistic Distribution
Authors: Braimah Joseph Odunayo, Jiju Gillariose
Abstract:
This paper is aimed at developing a sampling plan that uses information from precedent and successive lots for lot disposition with a pretention that the life-time of a particular product assumes a Log-logistic distribution. A Two-pronged Truncated Deferred Sampling Plan (TTDSP) for Log-logistic distribution is proposed when the testing is truncated at a precise time. The best possible sample sizes are obtained under a given Maximum Allowable Percent Defective (MAPD), Test Suspension Ratios (TSR), and acceptance numbers (c). A formula for calculating the operating characteristics of the proposed plan is also developed. The operating characteristics and mean-ratio values were used to measure the performance of the plan. The findings of the study show that: Log-logistic distribution has a decreasing failure rate; furthermore, as mean-life ratio increase, the failure rate reduces; the sample size increase as the acceptance number, test suspension ratios and maximum allowable percent defective increases. The study concludes that the minimum sample sizes were smaller, which makes the plan a more economical plan to adopt when cost and time of production are costly and the experiment being destructive.Keywords: consumers risk, mean life, minimum sample size, operating characteristics, producers risk
Procedia PDF Downloads 1404828 Experimental Investigation of Seawater Thermophysical Properties: Understanding Climate Change Impacts on Marine Ecosystems Through Internal Pressure and Cohesion Energy Analysis
Authors: Nishaben Dholakiya, Anirban Roy, Ranjan Dey
Abstract:
The unprecedented rise in global temperatures has triggered complex changes in marine ecosystems, necessitating a deeper understanding of seawater's thermophysical properties by experimentally measuring ultrasonic velocity and density at varying temperatures and salinity. This study investigates the critical relationship between temperature variations and molecular-level interactions in Arabian Sea surface waters, specifically focusing on internal pressure (π) and cohesion energy density (CED) as key indicators of ecosystem disruption. Our experimental findings reveal that elevated temperatures significantly reduce internal pressure, weakening the intermolecular forces that maintain seawater's structural integrity. This reduction in π correlates directly with decreased habitat stability for marine organisms, particularly affecting pressure-sensitive species and their physiological processes. Similarly, the observed decline in cohesion energy density at higher temperatures indicates a fundamental shift in water molecule organization, impacting the dissolution and distribution of vital nutrients and gases. These molecular-level changes cascade through the ecosystem, affecting everything from planktonic organisms to complex food webs. By employing advanced machine learning techniques, including Stacked Ensemble Machine Learning (SEML) and AdaBoost (AB), we developed highly accurate predictive models (>99% accuracy) for these thermophysical parameters. The results provide crucial insights into the mechanistic relationship between climate warming and marine ecosystem degradation, offering valuable data for environmental policymaking and conservation strategies. The novelty of this research serves as no such thermodynamic investigation has been conducted before in literature, whereas this research establishes a quantitative framework for understanding how molecular-level changes in seawater properties directly influence marine ecosystem stability, emphasizing the urgent need for climate change mitigation efforts.Keywords: thermophysical properties, Arabian Sea, internal pressure, cohesion energy density, machine learning
Procedia PDF Downloads 34827 Evaluation of the Effect of Turbulence Caused by the Oscillation Grid on Oil Spill in Water Column
Authors: Mohammad Ghiasvand, Babak Khorsandi, Morteza Kolahdoozan
Abstract:
Under the influence of waves, oil in the sea is subject to vertical scattering in the water column. Scientists' knowledge of how oil is dispersed in the water column is one of the lowest levels of knowledge among other processes affecting oil in the marine environment, which highlights the need for research and study in this field. Therefore, this study investigates the distribution of oil in the water column in a turbulent environment with zero velocity characteristics. Lack of laboratory results to analyze the distribution of petroleum pollutants in deep water for information Phenomenon physics on the one hand and using them to calibrate numerical models on the other hand led to the development of laboratory models in research. According to the aim of the present study, which is to investigate the distribution of oil in homogeneous and isotropic turbulence caused by the oscillating Grid, after reaching the ideal conditions, the crude oil flow was poured onto the water surface and oil was distributed in deep water due to turbulence was investigated. In this study, all experimental processes have been implemented and used for the first time in Iran, and the study of oil diffusion in the water column was considered one of the key aspects of pollutant diffusion in the oscillating Grid environment. Finally, the required oscillation velocities were taken at depths of 10, 15, 20, and 25 cm from the water surface and used in the analysis of oil diffusion due to turbulence parameters. The results showed that with the characteristics of the present system in two static modes and network motion with a frequency of 0.8 Hz, the results of oil diffusion in the four mentioned depths at a frequency of 0.8 Hz compared to the static mode from top to bottom at 26.18, 57 31.5, 37.5 and 50% more. Also, after 2.5 minutes of the oil spill at a frequency of 0.8 Hz, oil distribution at the mentioned depths increased by 49, 61.5, 85, and 146.1%, respectively, compared to the base (static) state.Keywords: homogeneous and isotropic turbulence, oil distribution, oscillating grid, oil spill
Procedia PDF Downloads 754826 Atlantic Sailfish (Istiophorus albicans) Distribution off the East Coast of Florida from 2003 to 2018 in Response to Sea Surface Temperature
Authors: Meredith M. Pratt
Abstract:
The Atlantic sailfish (Istiophorus albicans) ranges from 40°N to 40°S in the Western Atlantic Ocean and has great economic and recreational value for sport fishers. Off the eastern coast of Florida, charter boats often target this species. Stuart, Florida, bills itself as the sailfish capital of the world. Sailfish tag data from The Billfish Foundation and NOAA was used to determine the relationship between sea surface temperature (SST) and the distribution of Atlantic sailfish caught and released over a fifteen-year period (2003 to 2018). Tagging information was collected from local sports fishermen in Florida. Using the time and location of each landed sailfish, a satellite-derived SST value was obtained for each point. The purpose of this study was to determine if sea surface warming was associated with changes in sailfish distribution. On average, sailfish were caught at 26.16 ± 1.70°C (x̄ ± s.d.) over the fifteen-year period. The most sailfish catches occurred at temperatures ranging from 25.2°C to 25.5°C. Over the fifteen-year period, sailfish catches decreased at lower temperatures (~23°C and ~24°C) and at 31°C. At ~25°C and ~30°C there was no change in catch numbers of sailfish. From 26°C to 29°C, there was an increase in the number of sailfish. Based on these results, increasing ocean temperatures will have an impact on the distribution and habitat utilization of sailfish. Warming sea surface temperatures create a need for more policy and regulation to protect the Atlantic sailfish and related highly migratory billfish species.Keywords: atlantic sailfish, Billfish, istiophorus albicans, sea surface temperature
Procedia PDF Downloads 1434825 Spatial Differentiation of Elderly Care Facilities in Mountainous Cities: A Case Study of Chongqing
Abstract:
In this study, a web crawler was used to collect POI sample data from 38 districts and counties of Chongqing in 2022, and ArcGIS was combined to coordinate and projection conversion and realize data visualization. Nuclear density analysis and spatial correlation analysis were used to explore the spatial distribution characteristics of elderly care facilities in Chongqing, and K mean cluster analysis was carried out with GeoDa to study the spatial concentration degree of elderly care resources in 38 districts and counties. Finally, the driving force of spatial differentiation of elderly care facilities in various districts and counties of Chongqing is studied by using the method of geographic detector. The results show that: (1) in terms of spatial distribution structure, the distribution of elderly care facilities in Chongqing is unbalanced, showing a distribution pattern of ‘large dispersion and small agglomeration’ and the asymmetric pattern of ‘west dense and east sparse, north dense and south sparse’ is prominent. (2) In terms of the spatial matching between elderly care resources and the elderly population, there is a weak coordination between the input of elderly care resources and the distribution of the elderly population at the county level in Chongqing. (3) The analysis of the results of the geographical detector shows that the single factor influence is mainly the number of elderly population, public financial revenue and district and county GDP. The high single factor influence is mainly caused by the elderly population, public financial income, and district and county GDP. The influence of each influence factor on the spatial distribution of elderly care facilities is not simply superimposed but has a nonlinear enhancement effect or double factor enhancement. It is necessary to strengthen the synergistic effect of two factors and promote the synergistic effect of multiple factors.Keywords: aging, elderly care facilities, spatial differentiation, geographical detector, driving force analysis, Mountain city
Procedia PDF Downloads 384824 Estimation of Particle Size Distribution Using Magnetization Data
Authors: Navneet Kaur, S. D. Tiwari
Abstract:
Magnetic nanoparticles possess fascinating properties which make their behavior unique in comparison to corresponding bulk materials. Superparamagnetism is one such interesting phenomenon exhibited only by small particles of magnetic materials. In this state, the thermal energy of particles become more than their magnetic anisotropy energy, and so particle magnetic moment vectors fluctuate between states of minimum energy. This situation is similar to paramagnetism of non-interacting ions and termed as superparamagnetism. The magnetization of such systems has been described by Langevin function. But, the estimated fit parameters, in this case, are found to be unphysical. It is due to non-consideration of particle size distribution. In this work, analysis of magnetization data on NiO nanoparticles is presented considering the effect of particle size distribution. Nanoparticles of NiO of two different sizes are prepared by heating freshly synthesized Ni(OH)₂ at different temperatures. Room temperature X-ray diffraction patterns confirm the formation of single phase of NiO. The diffraction lines are seen to be quite broad indicating the nanocrystalline nature of the samples. The average crystallite size are estimated to be about 6 and 8 nm. The samples are also characterized by transmission electron microscope. Magnetization of both sample is measured as function of temperature and applied magnetic field. Zero field cooled and field cooled magnetization are measured as a function of temperature to determine the bifurcation temperature. The magnetization is also measured at several temperatures in superparamagnetic region. The data are fitted to an appropriate expression considering a distribution in particle size following a least square fit procedure. The computer codes are written in PYTHON. The presented analysis is found to be very useful for estimating the particle size distribution present in the samples. The estimated distributions are compared with those determined from transmission electron micrographs.Keywords: anisotropy, magnetization, nanoparticles, superparamagnetism
Procedia PDF Downloads 1434823 Tracking the Effect of Ibutilide on Amplitude and Frequency of Fibrillatory Intracardiac Electrograms Using the Regression Analysis
Authors: H. Hajimolahoseini, J. Hashemi, D. Redfearn
Abstract:
Background: Catheter ablation is an effective therapy for symptomatic atrial fibrillation (AF). The intracardiac electrocardiogram (IEGM) collected during this procedure contains precious information that has not been explored to its full capacity. Novel processing techniques allow looking at these recordings from different perspectives which can lead to improved therapeutic approaches. In our previous study, we showed that variation in amplitude measured through Shannon Entropy could be used as an AF recurrence risk stratification factor in patients who received Ibutilide before the electrograms were recorded. The aim of this study is to further investigate the effect of Ibutilide on characteristics of the recorded signals from the left atrium (LA) of a patient with persistent AF before and after administration of the drug. Methods: The IEGMs collected from different intra-atrial sites of 12 patients were studied and compared before and after Ibutilide administration. First, the before and after Ibutilide IEGMs that were recorded within a Euclidian distance of 3 mm in LA were selected as pairs for comparison. For every selected pair of IEGMs, the Probability Distribution Function (PDF) of the amplitude in time domain and magnitude in frequency domain was estimated using the regression analysis. The PDF represents the relative likelihood of a variable falling within a specific range of values. Results: Our observations showed that in time domain, the PDF of amplitudes was fitted to a Gaussian distribution while in frequency domain, it was fitted to a Rayleigh distribution. Our observations also revealed that after Ibutilide administration, the IEGMs would have significantly narrower short-tailed PDFs both in time and frequency domains. Conclusion: This study shows that the PDFs of the IEGMs before and after administration of Ibutilide represents significantly different properties, both in time and frequency domains. Hence, by fitting the PDF of IEGMs in time domain to a Gaussian distribution or in frequency domain to a Rayleigh distribution, the effect of Ibutilide can easily be tracked using the statistics of their PDF (e.g., standard deviation) while this is difficult through the waveform of IEGMs itself.Keywords: atrial fibrillation, catheter ablation, probability distribution function, time-frequency characteristics
Procedia PDF Downloads 1594822 Functioning of Public Distribution System and Calories Intake in the State of Maharashtra
Authors: Balasaheb Bansode, L. Ladusingh
Abstract:
The public distribution system is an important component of food security. It is a massive welfare program undertaken by Government of India and implemented by state government since India being a federal state; for achieving multiple objectives like eliminating hunger, reduction in malnutrition and making food consumption affordable. This program reaches at the community level through the various agencies of the government. The paper focuses on the accessibility of PDS at household level and how the present policy framework results in exclusion and inclusion errors. It tries to explore the sanctioned food grain quantity received by differentiated ration cards according to income criterion at household level, and also it has highlighted on the type of corruption in food distribution that is generated by the PDS system. The data used is of secondary nature from NSSO 68 round conducted in 2012. Bivariate and multivariate techniques have been used to understand the working and consumption of food for this paper.Keywords: calories intake, entitle food quantity, poverty aliviation through PDS, target error
Procedia PDF Downloads 3324821 The Role of Leapfrogging: Cross-Level Interactions and MNE Decision-Making in Conflict-Settings
Authors: Arrian Cornwell, Larisa Yarovaya, Mary Thomson
Abstract:
This paper seeks to examine the transboundary nature of foreign subsidiary exit vs. stay decisions when threatened by conflict in a host country. Using the concepts of nested vulnerability and teleconnections, we show that the threat of conflict can transcend bounded territories and have non-linear outcomes for actors, institutions and systems at broader scales of analysis. To the best of our knowledge, this has not been done before. By introducing the concepts of ‘leapfrogging upwards’ and ‘cascading downwards’, we develop a two-stage model which characterises the impacts of conflict as transboundary phenomena. We apply our model to a dataset of 266 foreign subsidiaries in six conflict-afflicted host countries over 2011-2015. Our results indicate that information is transmitted upwards and subsequent pressure flows cascade downwards, which, in turn, influence exit decisions.Keywords: subsidiary exit, conflict, information transmission, pressure flows, transboundary
Procedia PDF Downloads 2764820 Nonparametric Copula Approximations
Authors: Serge Provost, Yishan Zang
Abstract:
Copulas are currently utilized in finance, reliability theory, machine learning, signal processing, geodesy, hydrology and biostatistics, among several other fields of scientific investigation. It follows from Sklar's theorem that the joint distribution function of a multidimensional random vector can be expressed in terms of its associated copula and marginals. Since marginal distributions can easily be determined by making use of a variety of techniques, we address the problem of securing the distribution of the copula. This will be done by using several approaches. For example, we will obtain bivariate least-squares approximations of the empirical copulas, modify the kernel density estimation technique and propose a criterion for selecting appropriate bandwidths, differentiate linearized empirical copulas, secure Bernstein polynomial approximations of suitable degrees, and apply a corollary to Sklar's result. Illustrative examples involving actual observations will be presented. The proposed methodologies will as well be applied to a sample generated from a known copula distribution in order to validate their effectiveness.Keywords: copulas, Bernstein polynomial approximation, least-squares polynomial approximation, kernel density estimation, density approximation
Procedia PDF Downloads 734819 Influence of the Non-Uniform Distribution of Filler Porosity on the Thermal Performance of Sensible Heat Thermocline Storage Tanks
Authors: Yuchao Hua, Lingai Luo
Abstract:
Thermal energy storage is of critical importance for the highly-efficient utilization of renewable energy sources. Over the past decades, single-tank thermocline technology has attracted much attention owing to its high cost-effectiveness. In the present work, we investigate the influence of the filler porosity’s non-uniform distribution on the thermal performance of the packed-bed sensible heat thermocline storage tanks on the basis of the analytical model obtained by the Laplace transform. It is found that when the total amount of filler materials (i.e., the integration of porosity) is fixed, the different porosity distributions can result in the significantly-different behaviors of outlet temperature and thus the varied charging and discharging efficiencies. Our results indicate that a non-uniform distribution of the fillers with the proper design can improve the heat storage performance without changing the total amount of the filling materials.Keywords: energy storage, heat thermocline storage tank, packed bed, transient thermal analysis
Procedia PDF Downloads 934818 Numerical Investigation of Fluid Flow and Temperature Distribution on Power Transformer Windings Using Open Foam
Authors: Saeed Khandan Siar, Stefan Tenbohlen, Christian Breuer, Raphael Lebreton
Abstract:
The goal of this article is to investigate the detailed temperature distribution and the fluid flow of an oil cooled winding of a power transformer by means of computational fluid dynamics (CFD). The experimental setup consists of three passes of a zig-zag cooled disc type winding, in which losses are modeled by heating cartridges in each winding segment. A precise temperature sensor measures the temperature of each turn. The laboratory setup allows the exact control of the boundary conditions, e.g. the oil flow rate and the inlet temperature. Furthermore, a simulation model is solved using the open source computational fluid dynamics solver OpenFOAM and validated with the experimental results. The model utilizes the laminar and turbulent flow for the different mass flow rate of the oil. The good agreement of the simulation results with experimental measurements validates the model.Keywords: CFD, conjugated heat transfer, power transformers, temperature distribution
Procedia PDF Downloads 4224817 The Effect of Different Parameters on a Single Invariant Lateral Displacement Distribution to Consider the Higher Modes Effect in a Displacement-Based Pushover Procedure
Authors: Mohamad Amin Amini, Mehdi Poursha
Abstract:
Nonlinear response history analysis (NL-RHA) is a robust analytical tool for estimating the seismic demands of structures responding in the inelastic range. However, because of its conceptual and numerical complications, the nonlinear static procedure (NSP) is being increasingly used as a suitable tool for seismic performance evaluation of structures. The conventional pushover analysis methods presented in various codes (FEMA 356; Eurocode-8; ATC-40), are limited to the first-mode-dominated structures, and cannot take higher modes effect into consideration. Therefore, since more than a decade ago, researchers developed enhanced pushover analysis procedures to take higher modes effect into account. The main objective of this study is to propose an enhanced invariant lateral displacement distribution to take higher modes effect into consideration in performing a displacement-based pushover analysis, whereby a set of laterally applied displacements, rather than forces, is monotonically applied to the structure. For this purpose, the effect of different parameters such as the spectral displacement of ground motion, the modal participation factor, and the effective modal participating mass ratio on the lateral displacement distribution is investigated to find the best distribution. The major simplification of this procedure is that the effect of higher modes is concentrated into a single invariant lateral load distribution. Therefore, only one pushover analysis is sufficient without any need to utilize a modal combination rule for combining the responses. The invariant lateral displacement distribution for pushover analysis is then calculated by combining the modal story displacements using the modal combination rules. The seismic demands resulting from the different procedures are compared to those from the more accurate nonlinear response history analysis (NL-RHA) as a benchmark solution. Two structures of different heights including 10 and 20-story special steel moment resisting frames (MRFs) were selected and evaluated. Twenty ground motion records were used to conduct the NL-RHA. The results show that more accurate responses can be obtained in comparison with the conventional lateral loads when the enhanced modal lateral displacement distributions are used.Keywords: displacement-based pushover, enhanced lateral load distribution, higher modes effect, nonlinear response history analysis (NL-RHA)
Procedia PDF Downloads 2784816 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis
Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim
Abstract:
This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model
Procedia PDF Downloads 3674815 Loss Allocation in Radial Distribution Networks for Loads of Composite Types
Authors: Sumit Banerjee, Chandan Kumar Chanda
Abstract:
The paper presents allocation of active power losses and energy losses to consumers connected to radial distribution networks in a deregulated environment for loads of composite types. A detailed comparison among four algorithms, namely quadratic loss allocation, proportional loss allocation, pro rata loss allocation and exact loss allocation methods are presented. Quadratic and proportional loss allocations are based on identifying the active and reactive components of current in each branch and the losses are allocated to each consumer, pro rata loss allocation method is based on the load demand of each consumer and exact loss allocation method is based on the actual contribution of active power loss by each consumer. The effectiveness of the proposed comparison among four algorithms for composite load is demonstrated through an example.Keywords: composite type, deregulation, loss allocation, radial distribution networks
Procedia PDF Downloads 2864814 Passenger Flow Characteristics of Seoul Metropolitan Subway Network
Authors: Kang Won Lee, Jung Won Lee
Abstract:
Characterizing the network flow is of fundamental importance to understand the complex dynamics of networks. And passenger flow characteristics of the subway network are very relevant for an effective transportation management in urban cities. In this study, passenger flow of Seoul metropolitan subway network is investigated and characterized through statistical analysis. Traditional betweenness centrality measure considers only topological structure of the network and ignores the transportation factors. This paper proposes a weighted betweenness centrality measure that incorporates monthly passenger flow volume. We apply the proposed measure on the Seoul metropolitan subway network involving 493 stations and 16 lines. Several interesting insights about the network are derived from the new measures. Using Kolmogorov-Smirnov test, we also find out that monthly passenger flow between any two stations follows a power-law distribution and other traffic characteristics such as congestion level and throughflow traffic follow exponential distribution.Keywords: betweenness centrality, correlation coefficient, power-law distribution, Korea traffic DB
Procedia PDF Downloads 2894813 Residual Stress Around Embedded Particles in Bulk YBa2Cu3Oy Samples
Authors: Anjela Koblischka-Veneva, Michael R. Koblischka
Abstract:
To increase the flux pinning performance of bulk YBa2Cu3O7-δ (YBCO or Y-123) superconductors, it is common to employ secondary phase particles, either Y2BaCuO5 (Y-211) particles created during the growth of the samples or additionally added (nano)particles of various types, embedded in the superconducting Y-123 matrix. As the crystallographic parameters of all the particles indicate a misfit to Y-123, there will be residual strain within the Y-123 matrix around such particles. With a dedicated analysis of electron backscatter diffraction (EBSD) data obtained on various bulk, Y-123 superconductor samples, the strain distribution around such embedded secondary phase particles can be revealed. The results obtained are presented in form of Kernel Average Misorientation (KAM) mappings. Around large Y-211 particles, the strain can be so large that YBCO subgrains are formed. Therefore, it is essential to properly control the particle size as well as their distribution within the bulk sample to obtain the best performance. The impact of the strain distribution on the flux pinning properties is discussed.Keywords: Bulk superconductors, EBSD, Strain, YBa2Cu3Oy
Procedia PDF Downloads 1504812 Multi-Subpopulation Genetic Algorithm with Estimation of Distribution Algorithm for Textile Batch Dyeing Scheduling Problem
Authors: Nhat-To Huynh, Chen-Fu Chien
Abstract:
Textile batch dyeing scheduling problem is complicated which includes batch formation, batch assignment on machines, batch sequencing with sequence-dependent setup time. Most manufacturers schedule their orders manually that are time consuming and inefficient. More power methods are needed to improve the solution. Motivated by the real needs, this study aims to propose approaches in which genetic algorithm is developed with multi-subpopulation and hybridised with estimation of distribution algorithm to solve the constructed problem for minimising the makespan. A heuristic algorithm is designed and embedded into the proposed algorithms to improve the ability to get out of the local optima. In addition, an empirical study is conducted in a textile company in Taiwan to validate the proposed approaches. The results have showed that proposed approaches are more efficient than simulated annealing algorithm.Keywords: estimation of distribution algorithm, genetic algorithm, multi-subpopulation, scheduling, textile dyeing
Procedia PDF Downloads 2994811 Comparison of Heuristic Methods for Solving Traveling Salesman Problem
Authors: Regita P. Permata, Ulfa S. Nuraini
Abstract:
Traveling Salesman Problem (TSP) is the most studied problem in combinatorial optimization. In simple language, TSP can be described as a problem of finding a minimum distance tour to a city, starting and ending in the same city, and exactly visiting another city. In product distribution, companies often get problems in determining the minimum distance that affects the time allocation. In this research, we aim to apply TSP heuristic methods to simulate nodes as city coordinates in product distribution. The heuristics used are sub tour reversal, nearest neighbor, farthest insertion, cheapest insertion, nearest insertion, and arbitrary insertion. We have done simulation nodes using Euclidean distances to compare the number of cities and processing time, thus we get optimum heuristic method. The results show that the optimum heuristic methods are farthest insertion and nearest insertion. These two methods can be recommended to solve product distribution problems in certain companies.Keywords: Euclidean, heuristics, simulation, TSP
Procedia PDF Downloads 1274810 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.Keywords: forecasting, generalized extreme value (GEV), meteorology, return level
Procedia PDF Downloads 4774809 An E-Government Implementation Model for Peruvian State Companies Based on COBIT 5.0: Definition and Goals of the Model
Authors: M. Bruzza, M. Tupia, F. Rodríguez
Abstract:
As part of the regulatory compliance process and the streamlining of public administration, the Peruvian government has implemented the National E-Government Plan in all state institutions with the aim of providing citizens with solid services based on the use of Information and Communications Technologies (ICT). As part of the regulations, the requisites to be met by public institutions have been submitted. However, the lack of an implementation model was detected, one that can serve as a guide to such institutions in order to materialize the organizational and technological structures needed, which allow them to provide the required digital services. This paper develops an implementation model of electronic government (e-government) for Peru’s state institutions, in compliance with current regulations based on a COBIT 5.0 framework. Furthermore, the paper introduces phase 1 of this model: business and IT goals, the goals cascade and the future model of processes.Keywords: e-government, u-government, COBIT, implementation model
Procedia PDF Downloads 324