Search results for: reduced folate carriers
257 Anticancer Potentials of Aqueous Tinospora cordifolia and Its Bioactive Polysaccharide, Arabinogalactan on Benzo(a)Pyrene Induced Pulmonary Tumorigenesis: A Study with Relevance to Blood Based Biomarkers
Authors: Vandana Mohan, Ashwani Koul
Abstract:
Aim: To evaluate the potential of Aqueous Tinospora cordifolia stem extract (Aq.Tc) and Arabinogalactan (AG) on pulmonary carcinogenesis and associated tumor markers. Background: Lung cancer is one of the most frequent malignancy with high mortality rate due to limitation of early detection resulting in low cure rates. Current research effort focuses on identifying some blood-based biomarkers like CEA, ctDNA and LDH which may have potential to detect cancer at an early stage, evaluation of therapeutic response and its recurrence. Medicinal plants and their active components have been widely investigated for their anticancer potentials. Aqueous preparation of T. Cordifolia extract is enriched in the polysaccharide fraction i.e., AG when compared with other types of extract. Moreover, reports are available of polysaccharide fraction of T. Cordifolia in in vitro lung cancer models which showed profound anti-metastatic activity against these cell lines. However, not much has been explored about its effect in in vivo lung cancer models and the underlying mechanism involved. Experimental Design: Mice were randomly segregated into six groups. Group I animals served as control. Group II animals were administered with Aq. Tc extract (200 mg/kg b.w.) p.o.on the alternate days. Group III animals were fed with AG (7.5 mg/kg b.w.) p.o. on the alternate days (thrice a week). Group IV animals were installed with Benzo(a)pyrene (50 mg/kg b.w.), i.p. twice within an interval of two weeks. Group V animals received Aq. Tc extract as in group II along with it B(a)P was installed after two weeks of Aq. Tc administration following the same protocol as for group IV. Group VI animals received AG as in group III along with it B(a)P was installed after two weeks of AG administration. Results: Administration of B(a)P to mice resulted in increased tumor incidence, multiplicity and pulmonary somatic index with concomitant increase in serum/plasma markers like CEA, ctDNA, LDH and TNF-α.Aq.Tc and AG supplementation significantly attenuated these alterations at different stages of tumorigenesis thereby showing potent anti-cancer effect in lung cancer. A pronounced decrease in serum/plasma markers were observed in animals treated with Aq.Tc as compared to those fed with AG. Also, extensive hyperproliferation of alveolar epithelium was prominent in B(a)P induced lung tumors. However, treatment of Aq.Tc and AG to lung tumor bearing mice exhibited reduced alveolar damage evident from decreased number of hyperchromatic irregular nuclei. A direct correlation between the concentration of tumor markers and the intensity of lung cancer was observed in animals bearing cancer co-treated with Aq.Tc and AG. Conclusion: These findings substantiate the chemopreventive potential of Aq.Tc and AG against lung tumorigenesis. Interestingly, Aq.Tc was found to be more effective in modulating the cancer as reflected by various observations which may be attributed to the synergism offered by various components of Aq.Tc. Further studies are in progress to understand the underlined mechanism in inhibiting lung tumorigenesis by Aq.Tc and AG.Keywords: Arabinogalactan, Benzo(a)pyrene B(a)P, carcinoembryonic antigen (CEA), circulating tumor DNA (ctDNA), lactate dehydrogenase (LDH), Tinospora cordifolia
Procedia PDF Downloads 185256 Analytical Technique for Definition of Internal Forces in Links of Robotic Systems and Mechanisms with Statically Indeterminate and Determinate Structures Taking into Account the Distributed Dynamical Loads and Concentrated Forces
Authors: Saltanat Zhilkibayeva, Muratulla Utenov, Nurzhan Utenov
Abstract:
The distributed inertia forces of complex nature appear in links of rod mechanisms within the motion process. Such loads raise a number of problems, as the problems of destruction caused by a large force of inertia; elastic deformation of the mechanism can be considerable, that can bring the mechanism out of action. In this work, a new analytical approach for the definition of internal forces in links of robotic systems and mechanisms with statically indeterminate and determinate structures taking into account the distributed inertial and concentrated forces is proposed. The relations between the intensity of distributed inertia forces and link weight with geometrical, physical and kinematic characteristics are determined in this work. The distribution laws of inertia forces and dead weight make it possible at each position of links to deduce the laws of distribution of internal forces along the axis of the link, in which loads are found at any point of the link. The approximation matrixes of forces of an element under the action of distributed inertia loads with the trapezoidal intensity are defined. The obtained approximation matrixes establish the dependence between the force vector in any cross-section of the element and the force vector in calculated cross-sections, as well as allow defining the physical characteristics of the element, i.e., compliance matrix of discrete elements. Hence, the compliance matrixes of an element under the action of distributed inertial loads of trapezoidal shape along the axis of the element are determined. The internal loads of each continual link are unambiguously determined by a set of internal loads in its separate cross-sections and by the approximation matrixes. Therefore, the task is reduced to the calculation of internal forces in a final number of cross-sections of elements. Consequently, it leads to a discrete model of elastic calculation of links of rod mechanisms. The discrete model of the elements of mechanisms and robotic systems and their discrete model as a whole are constructed. The dynamic equilibrium equations for the discrete model of the elements are also received in this work as well as the equilibrium equations of the pin and rigid joints expressed through required parameters of internal forces. Obtained systems of dynamic equilibrium equations are sufficient for the definition of internal forces in links of mechanisms, which structure is statically definable. For determination of internal forces of statically indeterminate mechanisms (in the way of determination of internal forces), it is necessary to build a compliance matrix for the entire discrete model of the rod mechanism, that is reached in this work. As a result by means of developed technique the programs in the MAPLE18 system are made and animations of the motion of the fourth class mechanisms of statically determinate and statically indeterminate structures with construction on links the intensity of cross and axial distributed inertial loads, the bending moments, cross and axial forces, depending on kinematic characteristics of links are obtained.Keywords: distributed inertial forces, internal forces, statically determinate mechanisms, statically indeterminate mechanisms
Procedia PDF Downloads 217255 Alternative Energy and Carbon Source for Biosurfactant Production
Authors: Akram Abi, Mohammad Hossein Sarrafzadeh
Abstract:
Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin
Procedia PDF Downloads 301254 Assessment of On-Site Solar and Wind Energy at a Manufacturing Facility in Ireland
Authors: A. Sgobba, C. Meskell
Abstract:
The feasibility of on-site electricity production from solar and wind and the resulting load management for a specific manufacturing plant in Ireland are assessed. The industry sector accounts directly and indirectly for a high percentage of electricity consumption and global greenhouse gas emissions; therefore, it will play a key role in emission reduction and control. Manufacturing plants, in particular, are often located in non-residential areas since they require open spaces for production machinery, parking facilities for the employees, appropriate routes for supply and delivery, special connections to the national grid and other environmental impacts. Since they have larger spaces compared to commercial sites in urban areas, they represent an appropriate case study for evaluating the technical and economic viability of energy system integration with low power density technologies, such as solar and wind, for on-site electricity generation. The available open space surrounding the analysed manufacturing plant can be efficiently used to produce a discrete quantity of energy, instantaneously and locally consumed. Therefore, transmission and distribution losses can be reduced. The usage of storage is not required due to the high and almost constant electricity consumption profile. The energy load of the plant is identified through the analysis of gas and electricity consumption, both internally monitored and reported on the bills. These data are not often recorded and available to third parties since manufacturing companies usually keep track only of the overall energy expenditures. The solar potential is modelled for a period of 21 years based on global horizontal irradiation data; the hourly direct and diffuse radiation and the energy produced by the system at the optimum pitch angle are calculated. The model is validated using PVWatts and SAM tools. Wind speed data are available for the same period within one-hour step at a height of 10m. Since the hub of a typical wind turbine reaches a higher altitude, complementary data for a different location at 50m have been compared, and a model for the estimate of wind speed at the required height in the right location is defined. Weibull Statistical Distribution is used to evaluate the wind energy potential of the site. The results show that solar and wind energy are, as expected, generally decoupled. Based on the real case study, the percentage of load covered every hour by on-site generation (Level of Autonomy LA) and the resulting electricity bought from the grid (Expected Energy Not Supplied EENS) are calculated. The economic viability of the project is assessed through Net Present Value, and the influence the main technical and economic parameters have on NPV is presented. Since the results show that the analysed renewable sources can not provide enough electricity, the integration with a cogeneration technology is studied. Finally, the benefit to energy system integration of wind, solar and a cogeneration technology is evaluated and discussed.Keywords: demand, energy system integration, load, manufacturing, national grid, renewable energy sources
Procedia PDF Downloads 129253 Fault Diagnosis and Fault-Tolerant Control of Bilinear-Systems: Application to Heating, Ventilation, and Air Conditioning Systems in Multi-Zone Buildings
Authors: Abderrhamane Jarou, Dominique Sauter, Christophe Aubrun
Abstract:
Over the past decade, the growing demand for energy efficiency in buildings has attracted the attention of the control community. Failures in HVAC (heating, ventilation and air conditioning) systems in buildings can have a significant impact on the desired and expected energy performance of buildings and on the user's comfort as well. FTC is a recent technology area that studies the adaptation of control algorithms to faulty operating conditions of a system. The application of Fault-Tolerant Control (FTC) in HVAC systems has gained attention in the last two decades. The objective is to maintain the variations in system performance due to faults within an acceptable range with respect to the desired nominal behavior. This paper considers the so-called active approach, which is based on fault and identification scheme combined with a control reconfiguration algorithm that consists in determining a new set of control parameters so that the reconfigured performance is "as close as possible, "in some sense, to the nominal performance. Thermal models of buildings and their HVAC systems are described by non-linear (usually bi-linear) equations. Most of the works carried out so far in FDI (fault diagnosis and isolation) or FTC consider a linearized model of the studied system. However, this model is only valid in a reduced range of variation. This study presents a new fault diagnosis (FD) algorithm based on a bilinear observer for the detection and accurate estimation of the magnitude of the HVAC system failure. The main contribution of the proposed FD algorithm is that instead of using specific linearized models, the algorithm inherits the structure of the actual bilinear model of the building thermal dynamics. As an immediate consequence, the algorithm is applicable to a wide range of unpredictable operating conditions, i.e., weather dynamics, outdoor air temperature, zone occupancy profile. A bilinear fault detection observer is proposed for a bilinear system with unknown inputs. The residual vector in the observer design is decoupled from the unknown inputs and, under certain conditions, is made sensitive to all faults. Sufficient conditions are given for the existence of the observer and results are given for the explicit computation of observer design matrices. Dedicated observer schemes (DOS) are considered for sensor FDI while unknown input bilinear observers are considered for actuator or system components FDI. The proposed strategy for FTC works as follows: At a first level, FDI algorithms are implemented, making it also possible to estimate the magnitude of the fault. Once the fault is detected, the fault estimation is then used to feed the second level and reconfigure the control low so that that expected performances are recovered. This paper is organized as follows. A general structure for fault-tolerant control of buildings is first presented and the building model under consideration is introduced. Then, the observer-based design for Fault Diagnosis of bilinear systems is studied. The FTC approach is developed in Section IV. Finally, a simulation example is given in Section V to illustrate the proposed method.Keywords: bilinear systems, fault diagnosis, fault-tolerant control, multi-zones building
Procedia PDF Downloads 172252 Effect of Endurance Training on Serum Chemerin Levels and Lipid Profile of Plasma in Obese Women
Authors: A. Moghadasein, M. Ghasemi, S. Fazelifar
Abstract:
Aim: Chemerin is a novel adipokine that play an important role in regulating lipid metabolism and abiogenesis. Chemerin is dependent on autocrine and paracrine signals for the differentiation and maturation of fat cells; it also regulates glucose uptake in fat cells and stimulates lipolysis. It has been reported that in adipocytes, chemerin enhances the insulin-stimulated glucose and causes the phosphorylation of tyrosine in Insulin receptor substrate. According to the studies, Chemerin may increase insulin sensitivity in adipose tissue and is largely associated with Body mass index, triglycerides, and blood pressure in those with normal glucose tolerance. There is limited information available regarding the effect of exercise training on serum chemerin concentrations. The purpose of this study was to investigate the effect of endurance training on serum chemerin levels and lipids of plasma in overweight women. Methodology: This study was a quasi-experimental research with a pre-post test design. After required examination and verification of high pressure by the physician, 22 obese subjects (age: 35.64±5.55 yr, weight: 75.62±9.30 kg, body mass index: 32.4±1.6 kg/m2) were randomly assigned to aerobic training (n= 12) and control (n= 12) groups. Participants completed a questionnaire indicating the lack of sports history during the past six months, the lack of anti-hypertension drugs use, hormone therapy, cardiovascular problems, and complete stoppage of menstrual cycle. Aerobic training was performed 3 times weekly for 8 weeks. Resting levels of chemerin plasma, metabolic parameters were measured prior to and after the intervention. The control group did not participate in any training program. In this study, ethical considerations included the complete description of the objectives to the study participants, ensuring the confidentiality of their information. Kolmogorov-Smirnov and Levin test were used for determining the normal distribution of data and homogeneity of variances, respectively. Analyze of variance with repeated measure were used to investigate the changes in the intra-group and the differences in inter-group of variables. Statistical operations were performed using SPSS 16 and the significance level of the tests was considered at P < 0.05. Results: After an 8 week aerobic training, levels of chemerin plasma were significantly decreased in aerobic trained group when compared with their control groups (p < 0.05).Concurrently, levels of HDL-c were significantly decreased (p < 0.05) whereas, levels of cholesterol, TG and LDL-c, showed no significant changes (p > 0.05). No significant correlations between chemerin levels and weight loss were observed in subjects with overweight women. Conclusion: The present study demonstrated, 8 weeks aerobic training, reduced serum chemerin concentrations in overweight women. Whereas, aerobic training exercise programmers affected the lipid profile response of obese subjects differently. However further research is warranted in order to unravel the molecular mechanism for the range of responses and the role of serum chemerin.Keywords: chemerin, aerobic training, lipid profile, obese women
Procedia PDF Downloads 489251 Characterization of Potato Starch/Guar Gum Composite Film Modified by Ecofriendly Cross-Linkers
Authors: Sujosh Nandi, Proshanta Guha
Abstract:
Synthetic plastics are preferred for food packaging due to high strength, stretch-ability, good water vapor and gas barrier properties, transparency and low cost. However, environmental pollution generated by these synthetic plastics is a major concern of modern human civilization. Therefore, use of biodegradable polymers as a substitute for synthetic non-biodegradable polymers are encouraged to be used even after considering drawbacks related to mechanical and barrier properties of the films. Starch is considered one of the potential raw material for the biodegradable polymer, encounters poor water barrier property and mechanical properties due to its hydrophilic nature. That apart, recrystallization of starch molecules occurs during aging which decreases flexibility and increases elastic modulus of the film. The recrystallization process can be minimized by blending of other hydrocolloids having similar structural compatibility, into the starch matrix. Therefore, incorporation of guar gum having a similar structural backbone, into the starch matrix can introduce a potential film into the realm of biodegradable polymer. However, hydrophilic nature of both starch and guar gum, water barrier property of the film is low. One of the prospective solution to enhance this could be modification of the potato starch/guar gum (PSGG) composite film using cross-linker. Over the years, several cross-linking agents such as phosphorus oxychloride, sodium trimetaphosphate, etc. have been used to improve water vapor permeability (WVP) of the films. However, these chemical cross-linking agents are toxic, expensive and take longer time to degrade. Therefore, naturally available carboxylic acid (tartaric acid, malonic acid, succinic acid, etc.) had been used as a cross-linker and found that water barrier property enhanced substantially. As per our knowledge, no works have been reported with tartaric acid and succinic acid as a cross-linking agent blended with the PSGG films. Therefore, the objective of the present study was to examine the changes in water vapor barrier property and mechanical properties of the PSGG films after cross-linked with tartaric acid (TA) and succinic acid (SA). The cross-linkers were blended with PSGG film-forming solution at four different concentrations (4, 8, 12 & 16%) and cast on teflon plate at 37°C for 20 h. From the fourier-transform infrared spectroscopy (FTIR) study of the developed films, a band at 1720cm-1 was observed which is attributed to the formation of ester group in the developed films. On the other hand, it was observed that tensile strength (TS) of the cross-linked film decreased compared to non-cross linked films, whereas strain at break increased by several folds. Moreover, the results depicted that tensile strength diminished with increasing the concentration of TA or SA and lowest TS (1.62 MPa) was observed for 16% SA. That apart, maximum strain at break was also observed for TA at 16% and the reason behind this could be a lesser degree of crystallinity of the TA cross-linked films compared to SA. However, water vapor permeability of succinic acid cross-linked film was reduced significantly, but it was enhanced significantly by addition of tartaric acid.Keywords: cross linking agent, guar gum, organic acids, potato starch
Procedia PDF Downloads 114250 Strengthening Facility-Based Systems to Improve Access to In-Patient Care for Sick Newborns in Brong Ahafo Region, Ghana
Authors: Paulina Clara Appiah, Kofi Issah, Timothy Letsa, Kennedy Nartey, Amanua Chinbuah, Adoma Dwomo-Fokuo, Jacqeline G. Asibey
Abstract:
Background: The Every Newborn Action Plan provides evidence–based interventions to end preventable deaths in high burden countries. Brong Ahafo Region is one of ten regions in Ghana with less than half of its district hospitals having sick newborn units. Facility-based neonatal care is not prioritized and under-funded, and there is also inadequate knowledge and competence to manage the sick. The aim of this intervention was to make available in–patient care for sick newborns in all 19 district hospitals through the strengthening of facility-based systems. Methods: With the development and dissemination of the National Newborn Strategy and Action Plan 2014-2018, the country was able to attract PATH which provided the region with basic resuscitation equipment, supported hospital providers’ capacity building in Helping Babies Breathe, Essential Care of Every Baby, Infection Prevention and Management and held a symposia on managing the sick newborn. Newborn advocacy was promoted through newborn champions at the facility and community levels. Hospital management was then able to mobilize resources from communities, corporate organizations and from internally generated funds; created or expanded sick newborn care units and provided essential medicines and equipment. Kangaroo Mother Care was initiated in 6 hospitals. Pediatric specialist outreach services initiated comprised telephone consultations, teaching ward rounds and participating in perinatal death audits meetings. Newborn data capture and management was improved through the provision and training on the use of standard registers provided from the national level. Results: From February 2015 to November 2017, hospitals with sick newborn units increased from 7 to 19 (37%-100%). 180 pieces each of newborn ventilation bags and masks size 0, 1 and penguin suction bulbs were distributed to the hospitals, in addition to 20 newborn mannequin sets and 90 small clinical reminder posters. 802 providers (96.9%) were trained in resuscitation, of which 96% were successfully followed up in 6 weeks, 91% in 6 months and 80% in 12 months post-training. 53 clinicians (65%) were trained and mentored to manage sick newborns. 56 specialist teaching ward rounds were conducted. Data completeness improved from 92.6% - 99.9%. Availability of essential medicines improved from 11% to 100%. Number of hospital cots increased from 116 to 248 (214%). Cot occupancy rate increased from 57.4% to 92.5%. Hospitals with phototherapy equipment increased from 0 to 12 (63%). Hospitals with incubators increased from 1 to 12 (5%-63%). Newborn deaths among admissions reduced from 6.3% to 5.4%. Conclusion: Access to in-patient care increased significantly. Newborn advocacy successfully mobilized resources required for strengthening facility –based systems.Keywords: facility-based systems, Ghana, in-patient care, newborn advocacy
Procedia PDF Downloads 249249 Inequality and Poverty Assessment on Affordable Housing in Austria: A Comprehensive Perspective on SDG 1 and SDG 10 (UniNEtZ Project)
Authors: M. Bukowski, K. Kreissl
Abstract:
Social and environmental pressures in our times bear threats that often cross-border in scale, such as climate change, poverty-driven migration, demographic change as well as socio-economic developments. One of the hot topics is prevailing in many societies across Europe and worldwide, concerns 'affordable housing' and poverty-driven international and domestic migration (including displacements through gentrification processes), focusing here on the urban and regional context. The right to adequate housing and shelter is one of the recognized in the Universal Declaration of Human rights and International Covenant on Economic, Social and Cultural Rights, and as such considered as a human right of the second generation. The decreasing supply of affordable housing, especially in urban areas, has reached dimensions that have led to an increasing 'housing crisis'. This crisis, which has even reached middle-income homes, has an even more devastating impact on low income and poor households raising poverty levels. Therefore, the understanding of the connection between housing and poverty is vital to integrate and support the different stakeholders in order to tackle poverty. When it comes to issues of inequalities and poverty within the SDG framework, multi-faceted stakeholders with different claims, distribution of resources and interactions with other development goals (spill-over and trade-offs) account for a highly complex context. To contribute to a sustainable and fair society and hence to support the UN Sustainable Development Goals, the University of Salzburg participates in the Austrian-wide universities' network 'UniNEtZ'. Our joint target is to develop an options report for the Austrian Government regarding the seventeen SDGs, so far hosted by 18 Austrian universities. In this vein, the University of Salzburg; i.e., the Centre for Ethics and Poverty Research, the departments of Geography and Geology and the Department of Sociology and Political Science are focusing on the SDG 1 (No Poverty) and SDG 10 (Reduced Inequalities). Our target and research focus is to assess and evaluate the status of SDG 1 and 10 in Austria, to find possible solutions and to support stakeholders' integration. We aim at generating and deducing appropriate options as scientific support, from interdisciplinary research studies to 'Sustainability Developing Goals and their Targets' in action. For this reason, and to deal with the complexity of the Agenda 2030, we have developed a special Model for Inequalities and Poverty Assessment (IPAM). Through the example of 'affordable housing' we provide insight into the situation focusing on sustainable outcomes, including ethical and justice perceptions. The IPAM has proven to be a helpful tool in detecting the different imponderables on the Agenda 2030, assessing the situation, showing gaps and options for ethical SDG actions combining different SDG targets. Supported by expert and expert group interviews, this assessment allows different stakeholders to overview a complex and dynamic SDG challenge (here housing) which is necessary to be involved in an action finding process.Keywords: affordable housing, inequality, poverty, sustainable development goals
Procedia PDF Downloads 104248 Effects of AI-driven Applications on Bank Performance in West Africa
Authors: Ani Wilson Uchenna, Ogbonna Chikodi
Abstract:
This study examined the impact of artificial intelligence driven applications on banks’ performance in West Africa using Nigeria and Ghana as case studies. Specifically, the study examined the extent to which deployment of smart automated teller machine impacts the banks’ net worth within the reference period in Nigeria and Ghana. It ascertained the impact of point of sale on banks’ net worth within the reference period in Nigeria and Ghana. Thirdly, it verified the extent to which webpay services can influence banks’ performance in Nigeria and Ghana and finally, determined the impact of mobile pay services on banks’ performance in Nigeria and Ghana. The study used automated teller machine (ATM), Point of sale services (POS), Mobile pay services (MOP) and Web pay services (WBP) as proxies for explanatory variables while Bank net worth was used as explained variable for the study. The data for this study were sourced from central bank of Nigeria (CBN) Statistical Bulletin as well as Bank of Ghana (BoGH) Statistical Bulletin, Ghana payment systems oversight annual report and world development indicator (WDI). Furthermore, the mixed order of integration observed from the panel unit test result justified the use of autoregressive distributed lag (ARDL) approach to data analysis which the study adopted. While the cointegration test showed the existence of cointegration among the studied variables, bound test result justified the presence of long-run relationship among the series. Again, ARDL error correction estimate established satisfactory (13.92%) speed of adjustment from long run disequilibrium back to short run dynamic relationship. The study found that while Automated teller machine (ATM) had statistically significant impact on bank net worth (BNW) of Nigeria and Ghana, point of sale services application (POS) statistically and significantly impact on bank net worth within the study period, mobile pay services application was statistically significant in impacting the changes in the bank net worth of the countries of study while web pay services (WBP) had no statistically significant impact on bank net worth of the countries of reference. The study concluded that artificial intelligence driven application have significant an positive impact on bank performance with exception of web pay which had negative impact on bank net worth. The study recommended that management of banks both in Nigerian and Ghanaian should encourage more investments in AI-powered smart ATMs aimed towards delivering more secured banking services in order to increase revenue, discourage excessive queuing in the banking hall, reduced fraud and minimize error in processing transaction. Banks within the scope of this study should leverage on modern technologies to checkmate the excesses of the private operators POS in order to build more confidence on potential customers. Government should convert mobile pay services to a counter terrorism tool by ensuring that restrictions on over-the-counter withdrawals to a minimum amount is maintained and place sanctions on withdrawals above that limit.Keywords: artificial intelligence (ai), bank performance, automated teller machines (atm), point of sale (pos)
Procedia PDF Downloads 7247 Train Timetable Rescheduling Using Sensitivity Analysis: Application of Sobol, Based on Dynamic Multiphysics Simulation of Railway Systems
Authors: Soha Saad, Jean Bigeon, Florence Ossart, Etienne Sourdille
Abstract:
Developing better solutions for train rescheduling problems has been drawing the attention of researchers for decades. Most researches in this field deal with minor incidents that affect a large number of trains due to cascading effects. They focus on timetables, rolling stock and crew duties, but do not take into account infrastructure limits. The present work addresses electric infrastructure incidents that limit the power available for train traction, and hence the transportation capacity of the railway system. Rescheduling is needed in order to optimally share the available power among the different trains. We propose a rescheduling process based on dynamic multiphysics railway simulations that include the mechanical and electrical properties of all the system components and calculate physical quantities such as the train speed profiles, voltage along the catenary lines, temperatures, etc. The optimization problem to solve has a large number of continuous and discrete variables, several output constraints due to physical limitations of the system, and a high computation cost. Our approach includes a phase of sensitivity analysis in order to analyze the behavior of the system and help the decision making process and/or more precise optimization. This approach is a quantitative method based on simulation statistics of the dynamic railway system, considering a predefined range of variation of the input parameters. Three important settings are defined. Factor prioritization detects the input variables that contribute the most to the outputs variation. Then, factor fixing allows calibrating the input variables which do not influence the outputs. Lastly, factor mapping is used to study which ranges of input values lead to model realizations that correspond to feasible solutions according to defined criteria or objectives. Generalized Sobol indexes are used for factor prioritization and factor fixing. The approach is tested in the case of a simple railway system, with a nominal traffic running on a single track line. The considered incident is the loss of a feeding power substation, which limits the power available and the train speed. Rescheduling is needed and the variables to be adjusted are the trains departure times, train speed reduction at a given position and the number of trains (cancellation of some trains if needed). The results show that the spacing between train departure times is the most critical variable, contributing to more than 50% of the variation of the model outputs. In addition, we identify the reduced range of variation of this variable which guarantees that the output constraints are respected. Optimal solutions are extracted, according to different potential objectives: minimizing the traveling time, the train delays, the traction energy, etc. Pareto front is also built.Keywords: optimization, rescheduling, railway system, sensitivity analysis, train timetable
Procedia PDF Downloads 399246 Pushover Analysis of a Typical Bridge Built in Central Zone of Mexico
Authors: Arturo Galvan, Jatziri Y. Moreno-Martinez, Daniel Arroyo-Montoya, Jose M. Gutierrez-Villalobos
Abstract:
Bridges are one of the most seismically vulnerable structures on highway transportation systems. The general process for assessing the seismic vulnerability of a bridge involves the evaluation of its overall capacity and demand. One of the most common procedures to obtain this capacity is by means of pushover analysis of the structure. Typically, the bridge capacity is assessed using non-linear static methods or non-linear dynamic analyses. The non-linear dynamic approaches use step by step numerical solutions for assessing the capacity with the consuming computer time inconvenience. In this study, a nonlinear static analysis (‘pushover analysis’) was performed to predict the collapse mechanism of a typical bridge built in the central zone of Mexico (Celaya, Guanajuato). The bridge superstructure consists of three simple supported spans with a total length of 76 m: 22 m of the length of extreme spans and 32 m of length of the central span. The deck width is of 14 m and the concrete slab depth is of 18 cm. The bridge is built by means of frames of five piers with hollow box-shaped sections. The dimensions of these piers are 7.05 m height and 1.20 m diameter. The numerical model was created using a commercial software considering linear and non-linear elements. In all cases, the piers were represented by frame type elements with geometrical properties obtained from the structural project and construction drawings of the bridge. The deck was modeled with a mesh of rectangular thin shell (plate bending and stretching) finite elements. The moment-curvature analysis was performed for the sections of the piers of the bridge considering in each pier the effect of confined concrete and its reinforcing steel. In this way, plastic hinges were defined on the base of the piers to carry out the pushover analysis. In addition, time history analyses were performed using 19 accelerograms of real earthquakes that have been registered in Guanajuato. In this way, the displacements produced by the bridge were determined. Finally, pushover analysis was applied through the control of displacements in the piers to obtain the overall capacity of the bridge before the failure occurs. It was concluded that the lateral deformation of the piers due to a critical earthquake occurred in this zone is almost imperceptible due to the geometry and reinforcement demanded by the current design standards and compared to its displacement capacity, they were excessive. According to the analysis, it was found that the frames built with five piers increase the rigidity in the transverse direction of the bridge. Hence it is proposed to reduce these frames of five piers to three piers, maintaining the same geometrical characteristics and the same reinforcement in each pier. Also, the mechanical properties of materials (concrete and reinforcing steel) were maintained. Once a pushover analysis was performed considering this configuration, it was concluded that the bridge would continue having a “correct” seismic behavior, at least for the 19 accelerograms considered in this study. In this way, costs in material, construction, time and labor would be reduced in this study case.Keywords: collapse mechanism, moment-curvature analysis, overall capacity, push-over analysis
Procedia PDF Downloads 151245 Study on Preparation and Storage of Jam Incorporating Carrots (Dacus Carrota), Banana (Musa Acuminata) and Lime (Citrus Aurantifola)
Authors: K. Premakumar, D. S. Rushani, H. N. Hettiarachchi
Abstract:
The production and consumption of preserved foods have gained much importance due to globalization, and they provide a health benefit apart from the basic nutritional functions. Therefore, a study was conducted to develop a jam incorporating carrot, banana, and lime. Considering the findings of several preliminary studies, five formulations of the jam were prepared by blending different percentages of carrot and banana including control (where the only carrot was added). The freshly prepared formulations were subjected to physicochemical and sensory analysis.Physico-Chemical parameters such as pH, TSS, titrable acidity, ascorbic acid content, total sugar and non-reducing sugar and organoleptic qualities such as colour, aroma, taste, spread ability and overall acceptability and microbial analysis (total plate count) were analyzed after formulations. Physico-Chemical Analysis of the freshly prepared Carrot –Banana Blend jam showed increasing trend in titrable acidity (from 0.8 to 0.96, as % of citric acid), TSS (from 70.05 to 67.5 0Brix), ascorbic acid content (from 0.83 to 11.465 mg/100ml), reducing sugar (from 15.64 to 20.553%) with increase in carrot pulp from 50 to 100%. pH, total sugar, and non-reducing sugar were also reduced when carrot concentration is increased. Five points hedonic scale was used to evaluate the organoleptic characters. According to Duncan's Multiple Range Test, the mean scores for all the assessed sensory characters varied significantly (p<0.05) in the freshly made carrot-banana blend jam formulations. Based on the physicochemical and sensory analysis, the most preferred carrot: banana combinations of 50:50, 100:0 and 80:20 (T1, T2, and T5) were selected for storage studies.The formulations were stored at 300 °C room temperature and 70-75% of RH for 12 weeks. The physicochemical characteristics were measured at two weeks interval during storage. The decreasing trends in pH and ascorbic acid and an increasing trend in TSS, titrable acidity, total sugar, reducing sugar and non-reducing sugar were noted with advancement of storage periods of 12 weeks. The results of the chemical analysis showed that there were significance differences (p<0.05) between the tested formulations. Sensory evaluation was done for carrot –banana blends jam after a period of 12 weeks through a panel of 16 semi-trained panelists. The sensory analysis showed that there were significant differences (p<0.05) for organoleptic characters between carrot-banana blend jam formulations. The highest overall acceptability was observed in formulation with 80% carrot and 20% banana pulp. Microbiological Analysis was carried out on the day of preparation, 1 month, 2 months and 3 months after preparation. No bacterial growth was observed in the freshly made carrot -banana blend jam. There were no counts of yeast and moulds and coliforms in all treatments after the heat treatments and during the storage period. Only the bacterial counts (Total Plate Counts) were observed after three months of storage below the critical level, and all formulations were microbiologically safe for consumption. Based on the results of physio-chemical characteristics, sensory attributes, and microbial test, the carrot –banana blend jam with 80% carrot and 20% banana (T2) was selected as best formulation and could be stored up to 12 weeks without any significant changes in the quality characteristics.Keywords: formulations, physicochemical parameters, microbiological analysis, sensory evaluation
Procedia PDF Downloads 203244 Reducing Stunting, Low Birth Weight and Underweight in Anuradhapura District in Sri Lanka, by Identifying and Addressing the Underlying Determinants of Under-Nutrition and Strengthening Families and Communities to Address Them
Authors: Saman Kumara, Duminda Guruge, Krishani Jayasinghe
Abstract:
Introduction: Nutrition strongly influences good health and development in early life. This study, based on a health promotion approach, used a community-based intervention to improve child nutrition. The approach provides the community with control of interventions, thereby building its capacity and empowering individuals and communities. The aim of this research was to reduce stunting, low birth weight and underweight in communities from Anuradhapura District in Sri Lanka, by identifying and addressing the underlying determinants of under-nutrition and strengthening families and communities to address them. Methods: A health promotion intervention was designed and implemented-based on a logical framework developed in collaboration with members of targeted community. Community members’ implements action, so they fully own the process. Members of the community identify and address the most crucial determinants of health including child health and development and monitor the initial results of their action and modify action to optimize outcomes as well as future goals. Group Discussion, group activities, awareness programs, cluster meetings, community tools and sharing success stories were major activities to address determinants. Continuous data collection was planned at different levels. Priority was given to strengthening the ability of families and groups or communities to collect meaningful data and analyze these themselves. Results: Enthusiasm and interest of the mother, happiness of the child/ family, dietary habits, money management, tobacco and alcohol use of fathers, media influences, illnesses in the child or others, hygiene and sanitary practices, community sensitiveness and domestic violence were the major perceived determinants elicited from the study. There were around 1000 well-functioning mothers groups in this district. ‘Happiness calendar’, ‘brain calendar’, ‘money tool’ and ‘stimulation books’ were created by the community members, to address determinants and measure the process. Evaluation of the process has shown positive early results, such as improvement of feeding habits among mothers, innovative ways of providing early stimulation and responsive care, greater involvement of fathers in childcare and responsive feeding. There is a positive movement of communities around child well-being through interactive play areas. Family functioning and community functioning improved. Use of alcohol and tobacco declined. Community money management improved. Underweight was reduced by 40%. Stunting and low birth weight among under-fives also declined within one year. Conclusion: The health promotion intervention was effective in changing the determinants of under-nutrition in early childhood. Addressing the underlying determinants of under-nutrition in early childhood can be recommended for similar contexts.Keywords: birth-weight, community, determinants, stunting, underweight
Procedia PDF Downloads 146243 Understanding Governance of Biodiversity-Supporting and Edible Landscapes Using Network Analysis in a Fast Urbanising City of South India
Authors: M. Soubadra Devy, Savitha Swamy, Chethana V. Casiker
Abstract:
Sustainable smart cities are emerging as an important concept in response to the exponential rise in the world’s urbanizing population. While earlier, only technical, economic and governance based solutions were considered, more and more layers are being added in recent times. With the prefix of 'sustainability', solutions which help in judicious use of resources without negatively impacting the environment have become critical. We present a case study of Bangalore city which has transformed from being a garden city and pensioners' paradise to being an IT city with a huge, young population from different regions and diverse cultural backgrounds. This has had a big impact on the green spaces in the city and the biodiversity that they support, as well as on farming/gardening practices. Edible landscapes comprising farms lands, home gardens and neighbourhood parks (NPs henceforth) were examined. The land prices of areas having NPs were higher than those that did not indicate an appreciation of their aesthetic value. NPs were part of old and new residential areas largely managed by the municipality. They comprised manicured gardens which were similar in vegetation structure and composition. Results showed that NPs that occurred in higher density supported reasonable levels of biodiversity. In situations where NPs occurred in lower density, the presence of a larger green space such as a heritage park or botanical garden enhanced the biodiversity of these parks. In contrast, farm lands and home gardens which were common within the city are being lost at an unprecedented scale to developmental projects. However, there is also the emergence of a 'neo-culture' of home-gardening that promotes 'locovory' or consumption of locally grown food as a means to a sustainable living and reduced carbon footprint. This movement overcomes the space constraint by using vertical and terrace gardening techniques. Food that is grown within cities comprises of vegetables and fruits which are largely pollinator dependent. This goes hand in hand with our landscape-level study that has shown that cities support pollinator diversity. Maintaining and improving these man-made ecosystems requires analysing the functioning and characteristics of the existing structures of governance. Social network analysis tool was applied to NPs to examine relationships, between actors and ties. The management structures around NPs, gaps, and means to strengthen the networks from the current state to a near-ideal state were identified for enhanced services. Learnings from NPs were used to build a hypothetical governance structure and functioning of integrated governance of NPs and edible landscapes to enhance ecosystem services such as biodiversity support, food production, and aesthetic value. They also contribute to the sustainability axis of smart cities.Keywords: biodiversity support, ecosystem services, edible green spaces, neighbourhood parks, sustainable smart city
Procedia PDF Downloads 138242 A Randomized Active Controlled Clinical Trial to Assess Clinical Efficacy and Safety of Tapentadol Nasal Spray in Moderate to Severe Post-Surgical Pain
Authors: Kamal Tolani, Sandeep Kumar, Rohit Luthra, Ankit Dadhania, Krishnaprasad K., Ram Gupta, Deepa Joshi
Abstract:
Background: Post-operative analgesia remains a clinical challenge, with central and peripheral sensitization playing a pivotal role in treatment-related complications and impaired quality of life. Centrally acting opioids offer poor risk benefit profile with increased intensity of gastrointestinal or central side effects and slow onset of clinical analgesia. The objective of this study was to assess the clinical feasibility of induction and maintenance therapy with Tapentadol Nasal Spray (NS) in moderate to severe acute post-operative pain. Methods: Phase III, randomized, active-controlled, non-inferiority clinical trial involving 294 cases who had undergone surgical procedures under general anesthesia or regional anesthesia. Post-surgery patients were randomized to receive either Tapentadol NS 45 mg or Tramadol 100mg IV as a bolus and subsequent 50 mg or 100 mg dose over 2-3 minutes. The frequency of administration of NS was at every 4-6 hours. At the end of 24 hrs, patients in the tramadol group who had a pain intensity score of ≥4 were switched to oral tramadol immediate release 100mg capsule until the pain intensity score reduced to <4. All patients who had achieved pain intensity ≤ 4 were shifted to a lower dose of either Tapentadol NS 22.5 mg or oral Tramadol immediate release 50mg capsule. The statistical analysis plan was envisaged as a non-inferiority trial involving comparison with Tramadol for Pain intensity difference at 60 minutes (PID60min), Sum of Pain intensity difference at 60 minutes (SPID60min), and Physician Global Assessment at 24 hrs (PGA24 hrs). Results: The per-protocol analyses involved 255 hospitalized cases undergoing surgical procedures. The median age of patients was 38.0 years. For the primary efficacy variables, Tapentadol NS was non-inferior to Inj/Oral Tramadol in relief of moderate to severe post-operative pain. On the basis of SPID60min, no clinically significant difference was observed between Tapentadol NS and Tramadol IV (1.73±2.24 vs. 1.64± 1.92, -0.09 [95% CI, -0.43, 0.60]). In the co-primary endpoint PGA24hrs, Tapentadol NS was non–inferior to Tramadol IV (2.12 ± 0.707 vs. 2.02 ±0.704, - 0.11[95% CI, -0.07, 0.28). However, on further assessment at 48hr, 72 hrs, and 120hrs, clinically superior pain relief was observed with the Tapentadol NS formulation that was statistically significant (p <0.05) at each of the time intervals. Secondary efficacy measures, including the onset of clinical analgesia and TOTPAR, showed non-inferiority to Tramadol. The safety profile and need for rescue medication were also similar in both the groups during the treatment period. The most common concomitant medications were anti-bacterial (98.3%). Conclusion: Tapentadol NS is a clinically feasible option for improved compliance as induction and maintenance therapy while offering a sustained and persistent patient response that is clinically meaningful in post-surgical settings.Keywords: tapentadol nasal spray, acute pain, tramadol, post-operative pain
Procedia PDF Downloads 248241 Landslide Hazard a Gigantic Problem in Indian Himalayan Region: Needs In-Depth Research to Minimize Disaster
Authors: Varun Joshi, M. S. Rawat
Abstract:
The Indian Himalayan Region (IHR) is inherently fragile and susceptible to landslide hazard due to its extremely weak geology, highly rugged topography and heavy monsoonal rainfall. One of the most common hazards in the IHR is landslide, and this event is particularly frequent in Himalayan states of India i.e. Jammu & Kashmir, Himachal Pradesh, Uttarakhand, Sikkim, Manipur and Arunachal Pradesh. Landslides are mostly triggered by extreme rainfall events but the incidence increases during monsoon months (June to September). Natural slopes which are otherwise stable but they get destabilized due to anthropogenic activities like construction of various developmental activities and deforestation. These activities are required to fulfill the developmental needs and upliftment of societal status in the region. Landslides also trigger during major earthquakes and reported most observable and damaging phenomena. Studies indicate that the landslide phenomenon has increased many folds due to developmental activities in Himalayan region. Gradually increasing and devastating consequences of landslides turned into one of the most important hydro-geological hazards in Himalayan states especially in Uttarakhand and Sikkim states of India. The recent most catastrophic rainfall in June 2013 in Uttarakhand lead to colossal loss of life and property. The societal damage due to this incident is still to be recovered even after three years. Sikkim earthquake of September 2011 is witnessed for triggering of large number of coseismic landslides. The rescue and relief team faced huge problem in helping the trapped villagers in remote locations of the state due to road side blockade by landslides. The recent past incidences of landslides in Uttarakhand, as well as Sikkim states, created a new domain of research in terms of understanding the phenomena of landslide and management of disaster in such situation. Every year at many locations landslides trigger which force dwellers to either evacuate their dwelling or lose their life and property. The communication and transportation networks are also severely affected by landslides at several locations. Many times the drinking water supply disturbed and shortage of daily need household items reported during monsoon months. To minimize the severity of landslide in IHR requires in-depth research and developmental planning. For most of the areas in the present study, landslide hazard zonation is done on 1:50,000 scale. The land use planning maps on extensive basis are not available. Therefore, there is a need of large-scale landslide hazard zonation and land use planning maps. If the scientist conduct research on desired aspects and their outcome of research is utilized by the government in developmental planning then the incidents of landslide could be minimized, subsequent impact on society, life and property would be reduced. Along with the scientific research, there is another need of awareness generation in the region for stake holders and local dwellers to combat with the landslide hazard, if triggered in their location.Keywords: coseismic, Indian Himalayan Region, landslide hazard zonation, Sikkim, societal, Uttarakhand
Procedia PDF Downloads 251240 Genetically Informed Precision Drug Repurposing for Rheumatoid Arthritis
Authors: Sahar El Shair, Laura Greco, William Reay, Murray Cairns
Abstract:
Background: Rheumatoid arthritis (RA) is a chronic, systematic, inflammatory, autoimmune disease that involves damages to joints and erosions to the associated bones and cartilage, resulting in reduced physical function and disability. RA is a multifactorial disorder influenced by heterogenous genetic and environmental factors. Whilst different medications have proven successful in reducing inflammation associated with RA, they often come with significant side effects and limited efficacy. To address this, the novel pharmagenic enrichment score (PES) algorithm was tested in self-reported RA patients from the UK Biobank (UKBB), which is a cohort of predominantly European ancestry, and identified individuals with a high genetic risk in clinically actionable biological pathways to identify novel opportunities for precision interventions and drug repurposing to treat RA. Methods and materials: Genetic association data for rheumatoid arthritis was derived from publicly available genome-wide association studies (GWAS) summary statistics (N=97173). The PES framework exploits competitive gene set enrichment to identify pathways that are associated with RA to explore novel treatment opportunities. This data is then integrated into WebGestalt, Drug Interaction database (DGIdb) and DrugBank databases to identify existing compounds with existing use or potential for repurposed use. The PES for each of these candidates was then profiled in individuals with RA in the UKBB (Ncases = 3,719, Ncontrols = 333,160). Results A total of 209 pathways with known drug targets after multiple testing correction were identified. Several pathways, including interferon gamma signaling and TID pathway (which relates to a chaperone that modulates interferon signaling), were significantly associated with self-reported RA in the UKBB when adjusting for age, sex, assessment centre month and location, RA polygenic risk and 10 principal components. These pathways have a major role in RA pathogenesis, including autoimmune attacks against certain citrullinated proteins, synovial inflammation, and bone loss. Encouragingly, many also relate to the mechanism of action of existing RA medications. The analyses also revealed statistically significant association between RA polygenic scores and self-reported RA with individual PES scorings, highlighting the potential utility of the PES algorithm in uncovering additional genetic insights that could aid in the identification of individuals at risk for RA and provide opportunities for more targeted interventions. Conclusions In this study, pharmacologically annotated genetic risk was explored through the PES framework to overcome inter-individual heterogeneity and enable precision drug repurposing in RA. The results showed a statistically significant association between RA polygenic scores and self-reported RA and individual PES scorings for 3,719 RA patients. Interestingly, several enriched PES pathways were targeted by already approved RA drugs. In addition, the analysis revealed genetically supported drug repurposing opportunities for future treatment of RA with a relatively safe profile.Keywords: rheumatoid arthritis, precision medicine, drug repurposing, system biology, bioinformatics
Procedia PDF Downloads 76239 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation
Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie
Abstract:
Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)
Procedia PDF Downloads 134238 Groundwater Contamination and Fluorosis: A Comprehensive Analysis
Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay
Abstract:
Groundwater contamination with fluoride has emerged as a global concern affecting millions of people, leading to the widespread occurrence of fluorosis. It affects bones and teeth, leading to dental and skeletal fluorosis. This study presents a comprehensive analysis of the relationship between groundwater contamination and fluorosis. It delves into the causes of fluoride contamination in groundwater, its spatial distribution, and adverse health impacts of fluorosis on affected communities. Fluoride contamination in groundwater can be attributed to both natural and anthropogenic sources. Geogenic sources involve the dissolution of fluoride-rich minerals present in the aquifer materials. On the other hand, anthropogenic activities such as industrial discharges, agricultural practices, and improper disposal of fluoride-containing waste contribute to the contamination of groundwater. The spatial distribution of fluoride contamination varies widely across different regions and geological formations. High fluoride levels are commonly observed in areas with fluorine-rich geological deposits. Additionally, agricultural and industrial centres often exhibit elevated fluoride concentrations due to anthropogenic contributions. Excessive fluoride ingestion during tooth development leads to dental fluorosis, characterized by enamel defects, discoloration, and dental caries. The severity of dental fluorosis varies based on fluoride exposure levels during tooth development. Long-term consumption of fluoride-contaminated water causes skeletal fluorosis, resulting in bone and joint pain, decreased joint mobility, and skeletal deformities. In severe cases, skeletal fluorosis can lead to disability and reduced quality of life. Various defluoridation techniques such as activated alumina, bone char, and reverse osmosis have been employed to reduce fluoride concentrations in drinking water. These methods effectively remove fluoride, but their implementation requires careful consideration of cost, maintenance, and sustainability. Diversifying water sources, such as rainwater harvesting and surface water supply, can reduce the reliance on fluoride-contaminated groundwater, especially in regions with high fluoride concentrations. Groundwater contamination with fluoride remains a significant public health challenge, leading to the widespread occurrence of fluorosis globally. This scientific report emphasizes the importance of understanding the relationship between groundwater contamination and fluorosis. Implementing effective mitigation strategies and preventive measures is crucial to combat fluorosis and ensure sustainable access to safe drinking water for communities worldwide. Collaborative efforts between government agencies, local communities, and scientific researchers are essential to address this issue and safeguard the health of vulnerable populations. Additionally, the report explores various mitigation strategies and preventive measures to address the issue and offers recommendations for sustainable management of groundwater resources to combat fluorosis effectively.Keywords: fluorosis, fluoride contamination, groundwater contamination, groundwater resources
Procedia PDF Downloads 95237 A Randomised Controlled Trial and Process Evaluation of the Lifestart Parenting Programme
Authors: Sharon Millen, Sarah Miller, Laura Dunne, Clare McGeady, Laura Neeson
Abstract:
This paper presents the findings from a randomised controlled trial (RCT) and process evaluation of the Lifestart parenting programme. Lifestart is a structured child-centred programme of information and practical activity for parents of children aged from birth to five years of age. It is delivered to parents in their own homes by trained, paid family visitors and it is offered to parents regardless of their social, economic or other circumstances. The RCT evaluated the effectiveness of the programme and the process evaluation documented programme delivery and included a qualitative exploration of parent and child outcomes. 424 parents and children participated in the RCT: 216 in the intervention group and 208 in the control group across the island of Ireland. Parent outcomes included: parental knowledge of child development, parental efficacy, stress, social support, parenting skills and embeddedness in the community. Child outcomes included cognitive, language and motor development and social-emotional and behavioural development. Both groups were tested at baseline (when children were less than 1 year old), mid-point (aged 3) and at post-test (aged 5). Data were collected during a home visit, which took two hours. The process evaluation consisted of interviews with parents (n=16 at baseline and end-point), and focus groups with Lifestart Coordinators (n=9) and Family Visitors (n=24). Quantitative findings from the RCT indicated that, compared to the control group, parents who received the Lifestart programme reported reduced parenting-related stress, increased knowledge of their child’s development, and improved confidence in their parenting role. These changes were statistically significant and consistent with the hypothesised pathway of change depicted in the logic model. There was no evidence of any change in parents’ embeddedness in the community. Although four of the five child outcomes showed small positive change for children who took part in the programme, these were not statistically significant and there is no evidence that the programme improves child cognitive and non-cognitive skills by immediate post-test. The qualitative process evaluation highlighted important challenges related to conducting trials of this magnitude and design in the general population. Parents reported that a key incentive to take part in study was receiving feedback from the developmental assessment, which formed part of the data collection. This highlights the potential importance of appropriate incentives in relation to recruitment and retention of participants. The interviews with intervention parents indicated that one of the first changes they experienced as a result of the Lifestart programme was increased knowledge and confidence in their parenting ability. The outcomes and pathways perceived by parents and described in the interviews are also consistent with the findings of the RCT and the theory of change underpinning the programme. This hypothesises that improvement in parental outcomes, arising as a consequence of the programme, mediate the change in child outcomes. Parents receiving the Lifestart programme reported great satisfaction with and commitment to the programme, with the role of the Family Visitor being identified as one of the key components of the programme.Keywords: parent-child relationship, parental self-efficacy, parental stress, school readiness
Procedia PDF Downloads 444236 Performance of a Lytic Bacteriophage Cocktail against Pseudomonas aeruginosa in Conditions That Simulate the Cystic Fibrosis Lung Environment
Authors: Isaac Martin, Abigail Lark, Sandra Morales, Eric W. Alton, Jane C. Davies
Abstract:
Objectives: The cystic fibrosis (CF) lung is a unique microbiological niche, wherein harmful bacteria persist for many years despite antibiotic therapy. Pseudomonas aeruginosa (Pa), the major culprit leading to lung decline and increased mortality, thrives in the lungs of patients with CF due to several factors that have been linked with poor antibiotic performance. Our group is investigating alternative therapies including bacteriophage cocktails with which we have previously demonstrated efficacy against planktonic organisms. In this study, we explored the effects of a 4-phage cocktail on Pa grown in two different conditions, intended to mirror the CF lung: a) alongside standard antibiotic treatment in pre-formed biofilms (structures formed by Pa-secreted exopolysaccharides which provide both physical and cell division barriers to antimicrobials and host defenses and b) in an acidic environment postulated to be present in the CF airway due both to the primary defect in bicarbonate secretion and secondary effects of inflammation. Methods: 16 Pa strains from CF patients at the Royal Brompton Hospital were selected based on sensitivity to a) ceftazidime/ tobramycin and b) the phage cocktail in a conventional plaque assay. To assess efficacy of phage in biofilms, 96 well plates with Pa (5x10⁷ CFU/ ml) were incubated in static conditions, allowing adherent bacterial colonies to form for 24 hr. Ceftazidime and tobramycin (both at 2 × MIC) were added, +/- bacteriophage (4x10⁸ PFU/mL) for a further 24 hr. Cell viability and biomass were estimated using fluorescent resazurin and crystal violet assays, respectively. To evaluate the effect of pH, strains were grown planktonically in shaking 96 well plates at pH 6.0, 6.6, 7.0 and 7.5 with tobramycin or phage, at varying concentrations. Cell viability was quantified by fluorescent resazurin assay. Results: For the biofilm assay, treatment groups were compared with untreated controls and expressed as percent reduction in cell viability and biomass. Addition of the 4-phage cocktail resulted in a 1.3-fold reduction in cell viability and 1.7-fold reduction in biomass (p < 0.001) when compared to standard antibiotic treatment alone. Notably, there was a 50 ± 15% reduction in cell viability and 60 ± 12% reduction in biomass (95% CI) for the 4 biofilms demonstrating the most resistance to antibiotic treatment. 83% of strains tested (n=6) showed decreased bacterial killing by tobramycin at acidic pHs (p < 0.01). However, 25% of strains (n=12) showed improved phage killing at acidic pHs (p < 0.05), with none showing the pattern of reduced efficacy at acidic pH demonstrated by tobramycin. Conclusion: The 4-phage anti-Pa cocktail tested against Pa performs well in pre-formed biofilms and in acidic environments; two conditions intended to mimic the CF lung. To our knowledge, these are the first data looking at the effects of subtle pH changes on phage-mediated bacterial killing in the context of Pa infection. These findings contribute to a growing body of evidence supporting the use of nebulised lytic bacteriophage as a treatment in the context of lung infection.Keywords: biofilm, cystic fibrosis, pH, Pseudomonas aeruginosa, lytic bacteriophage
Procedia PDF Downloads 173235 Li-Ion Batteries vs. Synthetic Natural Gas: A Life Cycle Analysis Study on Sustainable Mobility
Authors: Guido Lorenzi, Massimo Santarelli, Carlos Augusto Santos Silva
Abstract:
The growth of non-dispatchable renewable energy sources in the European electricity generation mix is promoting the research of technically feasible and cost-effective solutions to make use of the excess energy, produced when the demand is low. The increasing intermittent renewable capacity is becoming a challenge to face especially in Europe, where some countries have shares of wind and solar on the total electricity produced in 2015 higher than 20%, with Denmark around 40%. However, other consumption sectors (mainly transportation) are still considerably relying on fossil fuels, with a slow transition to other forms of energy. Among the opportunities for different mobility concepts, electric (EV) and biofuel-powered vehicles (BPV) are the options that currently appear more promising. The EVs are targeting mainly the light duty users because of their zero (Full electric) or reduced (Hybrid) local emissions, while the BPVs encourage the use of alternative resources with the same technologies (thermal engines) used so far. The batteries which are applied to EVs are based on ions of Lithium because of their overall good performance in energy density, safety, cost and temperature performance. Biofuels, instead, can be various and the major difference is in their physical state (liquid or gaseous). In this study gaseous biofuels are considered and, more specifically, Synthetic Natural Gas (SNG) produced through a process of Power-to-Gas consisting in an electrochemical upgrade (with Solid Oxide Electrolyzers) of biogas with CO2 recycling. The latter process combines a first stage of electrolysis, where syngas is produced, and a second stage of methanation in which the product gas is turned into methane and then made available for consumption. A techno-economic comparison between the two alternatives is possible, but it does not capture all the different aspects involved in the two routes for the promotion of a more sustainable mobility. For this reason, a more comprehensive methodology, i.e. Life Cycle Assessment, is adopted to describe the environmental implications of using excess electricity (directly or indirectly) for new vehicle fleets. The functional unit of the study is 1 km and the two options are compared in terms of overall CO2 emissions, both considering Cradle to Gate and Cradle to Grave boundaries. Showing how production and disposal of materials affect the environmental performance of the analyzed routes is useful to broaden the perspective on the impacts that different technologies produce, in addition to what is emitted during the operational life. In particular, this applies to batteries for which the decommissioning phase has a larger impact on the environmental balance compared to electrolyzers. The lower (more than one order of magnitude) energy density of Li-ion batteries compared to SNG implies that for the same amount of energy used, more material resources are needed to obtain the same effect. The comparison is performed in an energy system that simulates the Western European one, in order to assess which of the two solutions is more suitable to lead the de-fossilization of the transport sector with the least resource depletion and the mildest consequences for the ecosystem.Keywords: electrical energy storage, electric vehicles, power-to-gas, life cycle assessment
Procedia PDF Downloads 178234 Research on the Effect of Coal Ash Slag Structure Evolution on Its Flow Behavior During Co-gasification of Coal and Indirect Coal Liquefaction Residue
Authors: Linmin Zhang
Abstract:
Entrained-flow gasification technology is considered the most promising gasification technology because of its clean and efficient utilization characteristics. The stable fluidity of slag at high temperatures is the key to affecting the long-period operation of the gasifier. The diversity and differences of coal ash-slag systems make it difficult to meet the requirements for stable slagging in entrained-flow gasifiers. Therefore, coal blending or adding fluxes has been used in industry for a long time to improve the flow behavior of coal ash. As a by-product of the indirect coal liquefaction process, indirect coal liquefaction residue (ICLR) is a kind of industrial solid waste that is usually disposed of by stacking or landfilling. However, this disposal method will not only occupy land resources but also cause serious pollution to soil and water bodies by leachate containing toxic and harmful metals. As a carbon-containing matrix, ICLR is not only a kind of waste but also a kind of energy substance. Utilizing existing industrial gasifiers to blend combustion ICLR can not only transform industrial solid waste into fuel but also save coal resources. Moreover, the ICLR usually contains a unique ash chemical composition different from coal, which will affect the slagging performance of the gasifier. Therefore, exploring the effect of the ash addition in ICLR on the coal ash flow behavior can not only improve the slagging performance and gasification efficiency of entrained-flow gasifier by using the unique ash chemical composition of ICLR but also provide some theoretical support for the large-scale consumption of industrial solid waste. Combining molecular dynamics simulation with Raman spectroscopy experiment, the effect of ICLR addition on slag structure and fluidity was explained, and the relationship between the evolution law of slag short/medium range microstructure and macroscopic flow behavior was discussed. The research found that the high silicon and aluminum content in coal ash led to the formation of complex [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron structures at high temperature, and the [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron were connected by oxygen atoms to form a multi-membered ring structure with high polymerization degree. Due to the action of the multi-membered ring structure, the internal friction in the slag increased, and the viscosity value was higher on the macro-level. As a network-modified ion, Fe2+ could replace Si4+ and Al3+ in the multi-membered ring structure and combine with O2-, which will destroy the bridge oxygen (BO) structure and transform more complex tri cluster oxygen (TO) and bridge oxygen (BO) into simple non-bridge oxygen (NBO) structure. As a result, a large number of multi-membered rings with high polymerization degrees were depolymerized into low-membered rings with low polymerization degrees. The evolution of oxygen types and ring structures in slag reduced the structure complexity and polymerization degree of coal ash slag, resulting in a decrease in the viscosity of coal ash slag.Keywords: ash slag, coal gasification, fluidity, industrial solid waste, slag structure
Procedia PDF Downloads 29233 Polarization as a Proxy of Misinformation Spreading
Authors: Michela Del Vicario, Walter Quattrociocchi, Antonio Scala, Ana Lucía Schmidt, Fabiana Zollo
Abstract:
Information, rumors, and debates may shape and impact public opinion heavily. In the latest years, several concerns have been expressed about social influence on the Internet and the outcome that online debates might have on real-world processes. Indeed, on online social networks users tend to select information that is coherent to their system of beliefs and to form groups of like-minded people –i.e., echo chambers– where they reinforce and polarize their opinions. In this way, the potential benefits coming from the exposure to different points of view may be reduced dramatically, and individuals' views may become more and more extreme. Such a context fosters misinformation spreading, which has always represented a socio-political and economic risk. The persistence of unsubstantiated rumors –e.g., the hypothetical and hazardous link between vaccines and autism– suggests that social media do have the power to misinform, manipulate, or control public opinion. As an example, current approaches such as debunking efforts or algorithmic-driven solutions based on the reputation of the source seem to prove ineffective against collective superstition. Indeed, experimental evidence shows that confirmatory information gets accepted even when containing deliberately false claims while dissenting information is mainly ignored, influences users’ emotions negatively and may even increase group polarization. Moreover, confirmation bias has been shown to play a pivotal role in information cascades, posing serious warnings about the efficacy of current debunking efforts. Nevertheless, mitigation strategies have to be adopted. To generalize the problem and to better understand social dynamics behind information spreading, in this work we rely on a tight quantitative analysis to investigate the behavior of more than 300M users w.r.t. news consumption on Facebook over a time span of six years (2010-2015). Through a massive analysis on 920 news outlets pages, we are able to characterize the anatomy of news consumption on a global and international scale. We show that users tend to focus on a limited set of pages (selective exposure) eliciting a sharp and polarized community structure among news outlets. Moreover, we find similar patterns around the Brexit –the British referendum to leave the European Union– debate, where we observe the spontaneous emergence of two well segregated and polarized groups of users around news outlets. Our findings provide interesting insights into the determinants of polarization and the evolution of core narratives on online debating. Our main aim is to understand and map the information space on online social media by identifying non-trivial proxies for the early detection of massive informational cascades. Furthermore, by combining users traces, we are finally able to draft the main concepts and beliefs of the core narrative of an echo chamber and its related perceptions.Keywords: information spreading, misinformation, narratives, online social networks, polarization
Procedia PDF Downloads 288232 Biomimetic Dinitrosyl Iron Complexes: A Synthetic, Structural, and Spectroscopic Study
Authors: Lijuan Li
Abstract:
Nitric oxide (NO) has become a fascinating entity in biological chemistry over the past few years. It is a gaseous lipophilic radical molecule that plays important roles in several physiological and pathophysiological processes in mammals, including activating the immune response, serving as a neurotransmitter, regulating the cardiovascular system, and acting as an endothelium-derived relaxing factor. NO functions in eukaryotes both as a signal molecule at nanomolar concentrations and as a cytotoxic agent at micromolar concentrations. The latter arises from the ability of NO to react readily with a variety of cellular targets leading to thiol S-nitrosation, amino acid N-nitrosation, and nitrosative DNA damage. Nitric oxide can readily bind to metals to give metal-nitrosyl (M-NO) complexes. Some of these species are known to play roles in biological NO storage and transport. These complexes have different biological, photochemical, or spectroscopic properties due to distinctive structural features. These recent discoveries have spawned a great interest in the development of transition metal complexes containing NO, particularly its iron complexes that are central to the role of nitric oxide in the body. Spectroscopic evidence would appear to implicate species of “Fe(NO)2+” type in a variety of processes ranging from polymerization, carcinogenesis, to nitric oxide stores. Our research focuses on isolation and structural studies of non-heme iron nitrosyls that mimic biologically active compounds and can potentially be used for anticancer drug therapy. We have shown that reactions between Fe(NO)2(CO)2 and a series of imidazoles generated new non-heme iron nitrosyls of the form Fe(NO)2(L)2 [L = imidazole, 1-methylimidazole, 4-methylimidazole, benzimidazole, 5,6-dimethylbenzimidazole, and L-histidine] and a tetrameric cluster of [Fe(NO)2(L)]4 (L=Im, 4-MeIm, BzIm, and Me2BzIm), resulted from the interactions of Fe(NO)2 with a series of substituted imidazoles was prepared. Recently, a series of sulfur bridged iron di nitrosyl complexes with the general formula of [Fe(µ-RS)(NO)2]2 (R = n-Pr, t-Bu, 6-methyl-2-pyridyl, and 4,6-dimethyl-2-pyrimidyl), were synthesized by the reaction of Fe(NO)2(CO)2 with thiols or thiolates. Their structures and properties were studied by IR, UV-vis, 1H-NMR, EPR, electrochemistry, X-ray diffraction analysis and DFT calculations. IR spectra of these complexes display one weak and two strong NO stretching frequencies (νNO) in solution, but only two strong νNO in solid. DFT calculations suggest that two spatial isomers of these complexes bear 3 Kcal energy difference in solution. The paramagnetic complexes [Fe2(µ-RS)2(NO)4]-, have also been investigated by EPR spectroscopy. Interestingly, the EPR spectra of complexes exhibit an isotropic signal of g = 1.998 - 2.004 without hyperfine splitting. The observations are consistent with the results of calculations, which reveal that the unpaired electron dominantly delocalize over the two sulfur and two iron atoms. The difference of the g values between the reduced form of iron-sulfur clusters and the typical monomeric di nitrosyl iron complexes is explained, for the first time, by of the difference in unpaired electron distributions between the two types of complexes, which provides the theoretical basis for the use of g value as a spectroscopic tool to differentiate these biologically active complexes.Keywords: di nitrosyl iron complex, metal nitrosyl, non-heme iron, nitric oxide
Procedia PDF Downloads 304231 The System-Dynamic Model of Sustainable Development Based on the Energy Flow Analysis Approach
Authors: Inese Trusina, Elita Jermolajeva, Viktors Gopejenko, Viktor Abramov
Abstract:
Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the development of the way to social well-being in the frame of the ecological economics paradigm. The objective of the article is to present the results of the analysis of socio-economic systems in the context of sustainable development using the systems power (energy flows) changes analyzing method and structural Kaldor's model of GDP. In accordance with the principles of life's development and the ecological concept was formalized the tasks of sustainable development of the open, non-equilibrium, stable socio-economic systems were formalized using the energy flows analysis method. The methodology of monitoring sustainable development and level of life were considered during the research of interactions in the system ‘human - society - nature’ and using the theory of a unified system of space-time measurements. Based on the results of the analysis, the time series consumption energy and economic structural model were formulated for the level, degree and tendencies of sustainable development of the system and formalized the conditions of growth, degrowth and stationarity. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. During the research, the authors calculated and used a system of universal indicators of sustainable development in the invariant coordinate system in energy units. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. In the context of the proposed approach and methods, universal sustainable development indicators were calculated as models of development for the USA and China. The calculations used data from the World Bank database for the period from 1960 to 2019. Main results: 1) In accordance with the proposed approach, the heterogeneous energy resources of countries were reduced to universal power units, summarized and expressed as a unified number. 2) The values of universal indicators of the life’s level were obtained and compared with generally accepted similar indicators.3) The system of indicators in accordance with the requirements of sustainable development can be considered as a basis for monitoring development trends. This work can make a significant contribution to overcoming the difficulties of forming socio-economic policy, which is largely due to the lack of information that allows one to have an idea of the course and trends of socio-economic processes. The existing methods for the monitoring of the change do not fully meet this requirement since indicators have different units of measurement from different areas and, as a rule, are the reaction of socio-economic systems to actions already taken and, moreover, with a time shift. Currently, the inconsistency or inconsistency of measures of heterogeneous social, economic, environmental, and other systems is the reason that social systems are managed in isolation from the general laws of living systems, which can ultimately lead to a systemic crisis.Keywords: sustainability, system dynamic, power, energy flows, development
Procedia PDF Downloads 58230 Rainwater Harvesting is an Effective Tool for City’s Storm Water Management and People’s Willingness to Install Rainwater Harvesting System in Buildings: A Case Study in Kazipara, Dhaka, Bangladesh
Authors: M. Abu Hanif, Anika Tabassum, Fuad Hasan Ovi, Ishrat Islam
Abstract:
Water is essential for life. Enormous quantities of water are cycled each year through hydrologic cycle but only a fraction of circulated water is available each year for human use. Dhaka, the capital of Bangladesh is the 19th mega city in the world with a population of over 14 million (World City Information, 2011). As a result the growth of urban population is increasing rapidly; the city is not able to manage with altering situations due to resource limitations and management capacity. Water crisis has become an acute problem faced by the inhabitants of Dhaka city. It is found that total water demand in Dhaka city is 2,240 million liter per day (MLD) whereas supply is 2,150 (MLD). According to Dhaka Water Supply and Sewerage Authority about 87 percent of this supply comes from groundwater resources and rest 13 percent from surface water. According to Dhaka Water Supply and Sewerage Authority it has been found that the current groundwater depletion rate is 3.52 meter per year. Such a fast depletion of the water table will result in intrusion of southern saline water into the groundwater reservoir, depriving this mega city of pure drinking water. This study mainly focus on the potential of Rainwater Harvesting System(RWHS) in Kazipara area of Dhaka city, determine the perception level of local people in installation of rainwater harvesting system in their building and identify the factors regarding willingness of owner in installing rainwater harvesting system. As most of the residential area of Dhaka city is unplanned with small plots, Kazipara area has been chosen as study area which depicts similar characteristics. In this study only roof top area is considered as catchment area and potential of rainwater harvesting has been calculated. From the calculation it is found that harvested rainwater can serve the 66% of demand of water for toilet flushing and cleaning purposes for the people of Kazipara. It is also observed that if only rooftop rainwater harvesting applied to all the structures of the study area then two third of surface runoff would be reduced than present surface runoff. In determining the perception of local people only owners of the buildings were. surveyed. From the questionnaire survey it is found that around 75% people have no idea about the rainwater harvesting system. About 83% people are not willing to install rainwater harvesting system in their dwelling. The reasons behind the unwillingness are high cost of installation, inadequate space, ignorance about the system, etc. Among 16% of the willing respondents who are interested in installing RWHS system, it was found that higher income, bigger size of buildings are important factors in willingness of installing rainwater harvesting system. Majority of the respondents demanded for both technical and economical support to install the system in their buildings. Government of Bangladesh has taken some initiatives to promote rainwater harvesting in urban areas. It is very much necessary to incorporate rainwater harvesting device and artificial recharge system in every building of Dhaka city to make Dhaka city self sufficient in water supply management and to solve water crisis problem of megacity like as Dhaka city.Keywords: rainwater harvesting, water table, willingness, storm water
Procedia PDF Downloads 244229 Gastroprotective Effect of Copper Complex On Indomethacin-Induced Gastric Ulcer In Rats. Histological and Immunohistochemical Study
Authors: Heba M. Saad Eldien, Ola Abdel-Tawab Hussein, Ahmed Yassein Nassar
Abstract:
Background: Indomethacin is a non-steroidal anti inflammatory drug. Indomethacin induces an injury to gastrointestinal mucosa in experimental animals and humans and their use is associated with a significant risk of hemorrhage, erosions and perforation of both gastric and intestinal ulcers. The anti-inflammatory action of copper complexes is an important activity of their anti-ulcer effect achieved by their intermediary role as a transport form of copper that allow activation of the several copper-dependent enzymes. Therefore, several copper complexes were synthesized and investigated as promising alternative anti-ulcer therapy. Aim of the work: The purpose of this study was to evaluate a copper chelating complex consisting of egg albumin and copper as one of the copper peptides that can be used as anti-inflammatory agent and effective in ameliorates the hazards of the indomethacin on the histological structure of the fundus of the stomach that could be added to raise the efficacy of the currently used simple and cheap gastric anti-inflammatory drug mucogel. Material &methods: This study was carried out on 40 adult male albino rats,divided equally into 4 groups;Group I(control group) received distilled water,Group II(indomethacin treated group) received (25 mg/kg body weight, oral intubation) once, Group III (mucogel treated group)2 mL/rat once daily, oral incubation, Group IV(copper complex group) 1 mL /rat of 30 gm of copper albumin complex was mixed uniformly with mucogel to 100 mL. Treatment has been started six hour after Induction of Ulcers and continued till the 3rd day. The animals sacrificed and was processed for light, transmission electron microscopy(TEM) and immunostaining for inducible nitric oxide synthase(iNOS). Results: Fundic mucosa of group II, showed exfoliation of epithelial cells lining the gland, discontinuity of surface epithelial cells (ulcer formation), vacuolation and detachment of cells, eosinophilic infiltration and congestion of blood vessels in the lamina propria and submucosa. There was thickening and disarrangement of mucosa, weak positive reaction for PAS and marked increase in the collagen fibers lamina propria and the submucosa of the fundus. TEM revealed degeneration of cheif and parietal cells.Marked increase positive reactive of iNOS in all cells of the fundic gland. Group III showed reconstruction of gastric gland with cystic dilatation and vacuolation, moderate decrease of collagen fibers, reduced the intensity of iNOS while in Group IV healthy mucosa with normal surface lining epithelium and fundic glands, strong positive reaction for PAS, marked decrease of collagen fibers and positive reaction for iNOS. TEM revealed regeneration of cheif and parietal cells. Conclusion: Co treatment of copper-albumin complex seems to be useful for gastric ulcer treatment and ameliorates most of hazards of indomethacin.Keywords: copper complex, gastric ulcer, indomethacin, rat
Procedia PDF Downloads 338228 Capability of a Single Antigen to Induce Both Protective and Disease Enhancing Antibody: An Obstacle in the Creation of Vaccines and Passive Immunotherapies
Authors: Parul Kulshreshtha, Subrata Sinha, Rakesh Bhatnagar
Abstract:
This study was conducted by taking B. anthracis as a model pathogen. On infecting a host, B. anthracis secretes three proteins, namely, protective antigen (PA, 83kDa), edema factor (EF, 89 kDa) and lethal factor (LF, 90 kDa). These three proteins are the components of two anthrax toxins. PA binds to the cell surface receptors, namely, tumor endothelial marker (TEM) 8 and capillary morphogenesis protein (CMG) 2. TEM8 and CMG2 interact with LDL-receptor related protein (LRP) 6 for endocytosis of EF and LF. On entering the cell, EF acts as a calmodulin-dependent adenylate cyclase that causes a prolonged increase of cytosolic cyclic adenosine monophosphate (cAMP). LF is a metalloprotease that cleaves most isoforms of mitogen-activated protein kinase kinases (MAPKK/MEK) close to their N-terminus. By secreting these two toxins, B.anthracis ascertains death of the host. Once the systemic levels of the toxins rise, antibiotics alone cannot save the host. Therefore, toxin-specific inhibitors have to be developed. In this wake, monoclonal antibodies have been developed for the neutralization of toxic effects of anthrax toxins. We created hybridomas by using spleen of mice that were actively immunized with rLFn (recombinant N-terminal domain of lethal factor of B. anthracis) to obtain anti-toxin antibodies. Later on, separate group of mice were immunized with rLFn to obtain a polyclonal control for passive immunization studies of monoclonal antibodies. This led to the identification of one cohort of rLFn-immunized mice that harboured disease-enhancing polyclonal antibodies. At the same time, the monoclonal antibodies from all the hybridomas were being tested. Two hybridomas secreted monoclonal antibodies (H8 and H10) that were cross-reactive with EF (edema factor) and LF (lethal factor), while the other two hybridomas secreted LF-specific antibodies (H7 and H11). The protective efficacy of H7, H8, H10 and H11 was investigated. H7, H8 and H10 were found to be protective. H11 was found to have disease enhancing characteristics in-vitro and in mouse model of challenge with B. anthracis. In this study the disease enhancing character of H11 monoclonal antibody and anti-rLFn polyclonal sera was investigated. Combination of H11 with protective monoclonal antibodies (H8 and H10) reduced its disease enhancing nature both in-vitro and in-vivo. But combination of H11 with LETscFv (an scFv with VH and VL identical to H10 but lacking Fc region) could not abrogate the disease-enhancing character of H11 mAb. Therefore it was concluded that for suppression of disease enhancement, Fc portion was absolutely essential for interaction of H10 with H11. Our study indicates that the protective potential of an antibody depends equally on its idiotype/ antigen specificity and its isotype. A number of monoclonal and engineered antibodies are being explored as immunotherapeutics but it is absolutely essential to characterize each one for their individual and combined protective potential. Although new in the sphere of toxin-based diseases, it is extremely important to characterize the disease-enhancing nature of polyclonal as well as monoclonal antibodies. This is because several anti-viral therapeutics and vaccines have failed in the face of this phenomenon. The passive –immunotherapy thus needs to be well formulated to avoid any contraindications.Keywords: immunotherapy, polyclonal, monoclonal, antibody-dependent disease enhancement
Procedia PDF Downloads 386