Search results for: microbial induced calcite precipitation
350 Preparation of IPNs and Effect of Swift Heavy Ions Irradiation on their Physico-Chemical Properties
Authors: B. S Kaith, K. Sharma, V. Kumar, S. Kalia
Abstract:
Superabsorbent are three-dimensional networks of linear or branched polymeric chains which can uptake large volume of biological fluids. The ability is due to the presence of functional groups like –NH2, -COOH and –OH. Such cross-linked products based on natural materials, such as cellulose, starch, dextran, gum and chitosan, because of their easy availability, low production cost, non-toxicity and biodegradability have attracted the attention of Scientists and Technologists all over the world. Since natural polymers have better biocompatibility and are non-toxic than most synthetic one, therefore, such materials can be applied in the preparation of controlled drug delivery devices, biosensors, tissue engineering, contact lenses, soil conditioning, removal of heavy metal ions and dyes. Gums are natural potential antioxidants and are used as food additives. They have excellent properties like high solubility, pH stability, non-toxicity and gelling characteristics. Till date lot of methods have been applied for the synthesis and modifications of cross-linked materials with improved properties suitable for different applications. It is well known that ion beam irradiation can play a crucial role to synthesize, modify, crosslink or degrade polymeric materials. High energetic heavy ions irradiation on polymer film induces significant changes like chain scission, cross-linking, structural changes, amorphization and degradation in bulk. Various researchers reported the effects of low and heavy ion irradiation on the properties of polymeric materials and observed significant improvement in optical, electrical, chemical, thermal and dielectric properties. Moreover, modifications induced in the materials mainly depend on the structure, the ion beam parameters like energy, linear energy transfer, fluence, mass, charge and the nature of the target material. Ion-beam irradiation is a useful technique for improving the surface properties of biodegradable polymers without missing the bulk properties. Therefore, a considerable interest has been grown to study the effects of SHIs irradiation on the properties of synthesized semi-IPNs and IPNs. The present work deals with the preparation of semi-IPNs and IPNs and impact of SHI like O7+ and Ni9+ irradiation on optical, chemical, structural, morphological and thermal properties along with impact on different applications. The results have been discussed on the basis of Linear Energy Transfer (LET) of the ions.Keywords: adsorbent, gel, IPNs, semi-IPNs
Procedia PDF Downloads 372349 A Reduced Ablation Model for Laser Cutting and Laser Drilling
Authors: Torsten Hermanns, Thoufik Al Khawli, Wolfgang Schulz
Abstract:
In laser cutting as well as in long pulsed laser drilling of metals, it can be demonstrated that the ablation shape (the shape of cut faces respectively the hole shape) that is formed approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from the ultrashort pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in laser cutting and long pulse drilling of metals is identified, its underlying mechanism numerically implemented, tested and clearly confirmed by comparison with experimental data. In detail, there now is a model that allows the simulation of the temporal (pulse-resolved) evolution of the hole shape in laser drilling as well as the final (asymptotic) shape of the cut faces in laser cutting. This simulation especially requires much less in the way of resources, such that it can even run on common desktop PCs or laptops. Individual parameters can be adjusted using sliders – the simulation result appears in an adjacent window and changes in real time. This is made possible by an application-specific reduction of the underlying ablation model. Because this reduction dramatically decreases the complexity of calculation, it produces a result much more quickly. This means that the simulation can be carried out directly at the laser machine. Time-intensive experiments can be reduced and set-up processes can be completed much faster. The high speed of simulation also opens up a range of entirely different options, such as metamodeling. Suitable for complex applications with many parameters, metamodeling involves generating high-dimensional data sets with the parameters and several evaluation criteria for process and product quality. These sets can then be used to create individual process maps that show the dependency of individual parameter pairs. This advanced simulation makes it possible to find global and local extreme values through mathematical manipulation. Such simultaneous optimization of multiple parameters is scarcely possible by experimental means. This means that new methods in manufacturing such as self-optimization can be executed much faster. However, the software’s potential does not stop there; time-intensive calculations exist in many areas of industry. In laser welding or laser additive manufacturing, for example, the simulation of thermal induced residual stresses still uses up considerable computing capacity or is even not possible. Transferring the principle of reduced models promises substantial savings there, too.Keywords: asymptotic ablation shape, interactive process simulation, laser drilling, laser cutting, metamodeling, reduced modeling
Procedia PDF Downloads 214348 The Characterization and Optimization of Bio-Graphene Derived From Oil Palm Shell Through Slow Pyrolysis Environment and Its Electrical Conductivity and Capacitance Performance as Electrodes Materials in Fast Charging Supercapacitor Application
Authors: Nurhafizah Md. Disa, Nurhayati Binti Abdullah, Muhammad Rabie Bin Omar
Abstract:
This research intends to identify the existing knowledge gap because of the lack of substantial studies to fabricate and characterize bio-graphene created from Oil Palm Shell (OPS) through the means of pre-treatment and slow pyrolysis. By fabricating bio-graphene through OPS, a novel material can be found to procure and used for graphene-based research. The characterization of produced bio-graphene is intended to possess a unique hexagonal graphene pattern and graphene properties in comparison to other previously fabricated graphene. The OPS will be fabricated by pre-treatment of zinc chloride (ZnCl₂) and iron (III) chloride (FeCl3), which then induced the bio-graphene thermally by slow pyrolysis. The pyrolizer's final temperature and resident time will be set at 550 °C, 5/min, and 1 hour respectively. Finally, the charred product will be washed with hydrochloric acid (HCL) to remove metal residue. The obtained bio-graphene will undergo different analyses to investigate the physicochemical properties of the two-dimensional layer of carbon atoms with sp2 hybridization hexagonal lattice structure. The analysis that will be taking place is Raman Spectroscopy (RAMAN), UV-visible spectroscopy (UV-VIS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). In retrospect, RAMAN is used to analyze three key peaks found in graphene, namely D, G, and 2D peaks, which will evaluate the quality of the bio-graphene structure and the number of layers generated. To compare and strengthen graphene layer resolves, UV-VIS may be used to establish similar results of graphene layer from last layer analysis and also characterize the types of graphene procured. A clear physical image of graphene can be obtained by analyzation of TEM in order to study structural quality and layers condition and SEM in order to study the surface quality and repeating porosity pattern. Lastly, establishing the crystallinity of the produced bio-graphene, simultaneously as an oxygen contamination factor and thus pristineness of the graphene can be done by XRD. In the conclusion of this paper, this study is able to obtain bio-graphene through OPS as a novel material in pre-treatment by chloride ZnCl₂ and FeCl3 and slow pyrolization to provide a characterization analysis related to bio-graphene that will be beneficial for future graphene-related applications. The characterization should yield similar findings to previous papers as to confirm graphene quality.Keywords: oil palm shell, bio-graphene, pre-treatment, slow pyrolysis
Procedia PDF Downloads 84347 Understanding the Role of Concussions as a Risk Factor for Multiple Sclerosis
Authors: Alvin Han, Reema Shafi, Alishba Afaq, Jennifer Gommerman, Valeria Ramaglia, Shannon E. Dunn
Abstract:
Adolescents engaged in contact-sports can suffer from recurrent brain concussions with no loss of consciousness and no need for hospitalization, yet they face the possibility of long-term neurocognitive problems. Recent studies suggest that head concussive injuries during adolescence can also predispose individuals to multiple sclerosis (MS). The underlying mechanisms of how brain concussions predispose to MS is not understood. Here, we hypothesize that: (1) recurrent brain concussions prime microglial cells, the tissue resident myeloid cells of the brain, setting them up for exacerbated responses when exposed to additional challenges later in life; and (2) brain concussions lead to the sensitization of myelin-specific T cells in the peripheral lymphoid organs. Towards addressing these hypotheses, we implemented a mouse model of closed head injury that uses a weight-drop device. First, we calibrated the model in male 12 week-old mice and established that a weight drop from a 3 cm height induced mild neurological symptoms (mean neurological score of 1.6+0.4 at 1 hour post-injury) from which the mice fully recovered by 72 hours post-trauma. Then, we performed immunohistochemistry on the brain of concussed mice at 72 hours post-trauma. Despite mice having recovered from all neurological symptoms, immunostaining for leukocytes (CD45) and IBA-1 revealed no peripheral immune infiltration, but an increase in the intensity of IBA1+ staining compared to uninjured controls, suggesting that resident microglia had acquired a more active phenotype. This microglia activation was most apparent in the white matter tracts in the brain and in the olfactory bulb. Immunostaining for the microglia-specific homeostatic marker TMEM119, showed a reduction in TMEM119+ area in the brain of concussed mice compared to uninjured controls, confirming a loss of this homeostatic signal by microglia after injury. Future studies will test whether single or repetitive concussive injury can worsen or accelerate autoimmunity in male and female mice. Understanding these mechanisms will guide the development of timed and targeted therapies to prevent MS from getting started in people at risk.Keywords: concussion, microglia, microglial priming, multiple sclerosis
Procedia PDF Downloads 102346 Modelling High Strain Rate Tear Open Behavior of a Bilaminate Consisting of Foam and Plastic Skin Considering Tensile Failure and Compression
Authors: Laura Pytel, Georg Baumann, Gregor Gstrein, Corina Klug
Abstract:
Premium cars often coat the instrument panels with a bilaminate consisting of a soft foam and a plastic skin. The coating is torn open during the passenger airbag deployment under high strain rates. Characterizing and simulating the top coat layer is crucial for predicting the attenuation that delays the airbag deployment, effecting the design of the restrain system and to reduce the demand of simulation adjustments through expensive physical component testing.Up to now, bilaminates used within cars either have been modelled by using a two-dimensional shell formulation for the whole coating system as one which misses out the interaction of the two layers or by combining a three-dimensional formulation foam layer with a two-dimensional skin layer but omitting the foam in the significant parts like the expected tear line area and the hinge where high compression is expected. In both cases, the properties of the coating causing the attenuation are not considered. Further, at present, the availability of material information, as there are failure dependencies of the two layers, as well as the strain rate of up to 200 1/s, are insufficient. The velocity of the passenger airbag flap during an airbag shot has been measured with about 11.5 m/s during first ripping; the digital image correlation evaluation showed resulting strain rates of above 1500 1/s. This paper provides a high strain rate material characterization of a bilaminate consisting of a thin polypropylene foam and a thermoplasctic olefins (TPO) skin and the creation of validated material models. With the help of a Split Hopkinson tension bar, strain rates of 1500 1/s were within reach. The experimental data was used to calibrate and validate a more physical modelling approach of the forced ripping of the bilaminate. In the presented model, the three-dimensional foam layer is continuously tied to the two-dimensional skin layer, allowing failure in both layers at any possible position. The simulation results show a higher agreement in terms of the trajectory of the flaps and its velocity during ripping. The resulting attenuation of the airbag deployment measured by the contact force between airbag and flaps increases and serves usable data for dimensioning modules of an airbag system.Keywords: bilaminate ripping behavior, High strain rate material characterization and modelling, induced material failure, TPO and foam
Procedia PDF Downloads 69345 Winkler Springs for Embedded Beams Subjected to S-Waves
Authors: Franco Primo Soffietti, Diego Fernando Turello, Federico Pinto
Abstract:
Shear waves that propagate through the ground impose deformations that must be taken into account in the design and assessment of buried longitudinal structures such as tunnels, pipelines, and piles. Conventional engineering approaches for seismic evaluation often rely on a Euler-Bernoulli beam models supported by a Winkler foundation. This approach, however, falls short in capturing the distortions induced when the structure is subjected to shear waves. To overcome these limitations, in the present work an analytical solution is proposed considering a Timoshenko beam and including transverse and rotational springs. The present research proposes ground springs derived as closed-form analytical solutions of the equations of elasticity including the seismic wavelength. These proposed springs extend the applicability of previous plane-strain models. By considering variations in displacements along the longitudinal direction, the presented approach ensures the springs do not approach zero at low frequencies. This characteristic makes them suitable for assessing pseudo-static cases, which typically govern structural forces in kinematic interaction analyses. The results obtained, validated against existing literature and a 3D Finite Element model, reveal several key insights: i) the cutoff frequency significantly influences transverse and rotational springs; ii) neglecting displacement variations along the structure axis (i.e., assuming plane-strain deformation) results in unrealistically low transverse springs, particularly for wavelengths shorter than the structure length; iii) disregarding lateral displacement components in rotational springs and neglecting variations along the structure axis leads to inaccurately low spring values, misrepresenting interaction phenomena; iv) transverse springs exhibit a notable drop in resonance frequency, followed by increasing damping as frequency rises; v) rotational springs show minor frequency-dependent variations, with radiation damping occurring beyond resonance frequencies, starting from negative values. This comprehensive analysis sheds light on the complex behavior of embedded longitudinal structures when subjected to shear waves and provides valuable insights for the seismic assessment.Keywords: shear waves, Timoshenko beams, Winkler springs, sol-structure interaction
Procedia PDF Downloads 61344 Protective Role of Curcumin against Ionising Radiation of Gamma Ray
Authors: Turban Kar, Maitree Bhattacharyya
Abstract:
Curcumin, a dietary antioxidant has been identified as a wonder molecule to possess therapeutic properties protecting the cellular macromolecules from oxidative damage. In our experimental study, we have explored the effectiveness of curcumin in protecting the structural paradigm of Human Serum Albumin (HSA) when exposed to gamma irradiation. HSA, being an important transport protein of the circulatory system, is involved in binding of variety of metabolites, drugs, dyes and fatty acids due to the presence of hydrophobic pockets inside the structure. HSA is also actively involved in the transportation of drugs and metabolites to their targets, because of its long half-life and regulation of osmotic blood pressure. Gamma rays, in its increasing concentration, results in structural alteration of the protein and superoxide radical generation. Curcumin, on the other hand, mitigates the damage, which has been evidenced in the following experiments. Our study explores the possibility for protection by curcumin during the molecular and conformational changes of HSA when exposed to gamma irradiation. We used a combination of spectroscopic methods to probe the conformational ensemble of the irradiated HSA and finally evaluated the extent of restoration by curcumin. SDS - PAGE indicated the formation of cross linked aggregates as a consequence of increasing exposure of gamma radiation. CD and FTIR spectroscopy inferred significant decrease in alpha helix content of HSA from 57% to 15% with increasing radiation doses. Steady state and time resolved fluorescence studies complemented the spectroscopic measurements when lifetime decay was significantly reduced from 6.35 ns to 0.37 ns. Hydrophobic and bityrosine study showed the effectiveness of curcumin for protection against radiation induced free radical generation. Moreover, bityrosine and hydrophobic profiling of gamma irradiated HSA in presence and absence of curcumin provided light on the formation of ROS species generation and the protective (magical) role of curcumin. The molecular mechanism of curcumin protection to HSA from gamma irradiation is yet unknown, though a possible explanation has been proposed in this work using Thioflavin T assay. It was elucidated, that when HSA is irradiated at low dose of gamma radiation in presence of curcumin, it is capable of retaining the native characteristic properties to a greater extent indicating stabilization of molecular structure. Thus, curcumin may be utilized as a therapeutic strategy to protect cellular proteins.Keywords: Bityrosine content, conformational change, curcumin, gamma radiation, human serum albumin
Procedia PDF Downloads 156343 Human Insecurity and Migration in the Horn of Africa: Causes and Decision Processes
Authors: Belachew Gebrewold
Abstract:
The Horn of Africa is marred by complex and systematic internal and external political, economic and social-cultural causes of conflict that result in internal displacement and migration. This paper engages with them and shows how such a study can help us to understand migration, both in this region and more generally. The conflict has occurred within states, between states, among proxies, between armies. Human insecurities as a result of the state collapse of Somalia, the rise of Islamic fundamentalism in the whole region, recurrent drought affecting the livelihoods of subsistence farmers as well as nomads, exposure to hunger, environmental degradation, youth unemployment, rapid growth of slums around big cities, and political repression (especially in Eritrea) have been driving various segments of the regional population into regional and international migration. Eritrea has been going through a brutal dictatorship which pushes many Eritreans to flee their country and be exposed to human trafficking, torture, detention, and agony on their way to Europe mainly through Egypt, Libya and Israel. Similarly, Somalia has been devastated since 1991 by unending civil war, state collapse, and radical Islamists. There are some important aspects to highlight in the conflict-migration nexus in the Horn of Africa: first, the main push factor for the Somalis and Eritreans to leave their countries and risk their lives is the physical insecurity they have been facing in their countries. Secondly, as a result of the conflict the economic infrastructure is massively destroyed. Investment is rare; job opportunities are out of sight. Thirdly, in such a grim situation the politically and economically induced decision to migrate is a household decision, not only an individual decision. Based on this third point this research study took place in the Horn of Africa between 2014 and 2016 during different occasions. The main objective of the research was to understanding how the increasing migration is affecting the socio-economic and socio-political environment, and conversely how the socio-economic and socio-political environments are increasing migration decisions; and whether and how these decisions are individual or family decisions. The main finding is the higher the human insecurity, the higher the family decision; the lower the human insecurity, the higher the individual decision. These findings apply not only to the Eritrean, Somali migrants but also to Ethiopian migrants. But the general impacts of migration on sending countries’ human security is quite mixed and complex.Keywords: Eritrea, Ethiopia, Horn of Africa, insecurity, migration, Somalia
Procedia PDF Downloads 277342 Psoriasis Diagnostic Test Development: Exploratory Study
Authors: Salam N. Abdo, Orien L. Tulp, George P. Einstein
Abstract:
The purpose of this exploratory study was to gather the insights into psoriasis etiology, treatment, and patient experience, for developing psoriasis and psoriatic arthritis diagnostic test. Data collection methods consisted of a comprehensive meta-analysis of relevant studies and psoriasis patient survey. Established meta-analysis guidelines were used for the selection and qualitative comparative analysis of psoriasis and psoriatic arthritis research studies. Only studies that clearly discussed psoriasis etiology, treatment, and patient experience were reviewed and analyzed, to establish a qualitative data base for the study. Using the insights gained from meta-analysis, an existing psoriasis patient survey was modified and administered to collect additional data as well as triangulate the results. The hypothesis is that specific types of psoriatic disease have specific etiology and pathophysiologic pattern. The following etiology categories were identified: bacterial, environmental/microbial, genetic, immune, infectious, trauma/stress, and viral. Additional results, obtained from meta-analysis and confirmed by patient survey, were the common age of onset (early to mid-20s) and type of psoriasis (plaque; mild; symmetrical; scalp, chest, and extremities, specifically elbows and knees). Almost 70% of patients reported no prescription drug use due to severe side effects and prohibitive cost. These results will guide the development of psoriasis and psoriatic arthritis diagnostic test. The significant number of medical publications classified psoriatic arthritis disease as inflammatory of an unknown etiology. Thus numerous meta-analyses struggle to report any meaningful conclusions since no definitive results have been reported to date. Therefore, return to the basics is an essential step to any future meaningful results. To date, medical literature supports the fact that psoriatic disease in its current classification could be misidentifying subcategories, which in turn hinders the success of studies conducted to date. Moreover, there has been an enormous commercial support to pursue various immune-modulation therapies, thus following a narrow hypothesis/mechanism of action that is yet to yield resolution of disease state. Recurrence and complications may be considered unacceptable in a significant number of these studies. The aim of the ongoing study is to focus on a narrow subgroup of patient population, as identified by this exploratory study via meta-analysis and patient survey, and conduct an exhaustive work up, aiming at mechanism of action and causality before proposing a cure or therapeutic modality. Remission in psoriasis has been achieved and documented in medical literature, such as immune-modulation, phototherapy, various over-the-counter agents, including salts and tar. However, there is no psoriasis and psoriatic arthritis diagnostic test to date, to guide the diagnosis and treatment of this debilitating and, thus far, incurable disease. Because psoriasis affects approximately 2% of population, the results of this study may affect the treatment and improve the quality of life of a significant number of psoriasis patients, potentially millions of patients in the United States alone and many more millions worldwide.Keywords: biologics, early diagnosis, etiology, immune disease, immune modulation therapy, inflammation skin disorder, phototherapy, plaque psoriasis, psoriasis, psoriasis classification, psoriasis disease marker, psoriasis diagnostic test, psoriasis marker, psoriasis mechanism of action, psoriasis treatment, psoriatic arthritis, psoriatic disease, psoriatic disease marker, psoriatic patient experience, psoriatic patient quality of life, remission, salt therapy, targeted immune therapy
Procedia PDF Downloads 118341 Organic Tuber Production Fosters Food Security and Soil Health: A Decade of Evidence from India
Authors: G. Suja, J. Sreekumar, A. N. Jyothi, V. S. Santhosh Mithra
Abstract:
Worldwide concerns regarding food safety, environmental degradation and threats to human health have generated interest in alternative systems like organic farming. Tropical tuber crops, cassava, sweet potato, yams, and aroids are food-cum-nutritional security-cum climate resilient crops. These form stable or subsidiary food for about 500 million global population. Cassava, yams (white yam, greater yam, and lesser yam) and edible aroids (elephant foot yam, taro, and tannia) are high energy tuberous vegetables with good taste and nutritive value. Seven on-station field experiments at ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India and seventeen on-farm trials in three districts of Kerala, were conducted over a decade (2004-2015) to compare the varietal response, yield, quality and soil properties under organic vs conventional system in these crops and to develop a learning system based on the data generated. The industrial, as well as domestic varieties of cassava, the elite and local varieties of elephant foot yam and taro and the three species of Dioscorea (yams), were on a par under both systems. Organic management promoted yield by 8%, 20%, 9%, 11% and 7% over conventional practice in cassava, elephant foot yam, white yam, greater yam and lesser yam respectively. Elephant foot yam was the most responsive to organic management followed by yams and cassava. In taro, slight yield reduction (5%) was noticed under organic farming with almost similar tuber quality. The tuber quality was improved with higher dry matter, starch, crude protein, K, Ca and Mg contents. The anti-nutritional factors, oxalate content in elephant foot yam and cyanogenic glucoside content in cassava were lowered by 21 and 12.4% respectively. Organic plots had significantly higher water holding capacity, pH, available K, Fe, Mn and Cu, higher soil organic matter, available N, P, exchangeable Ca and Mg, dehydrogenase enzyme activity and microbial count. Organic farming scored significantly higher soil quality index (1.93) than conventional practice (1.46). The soil quality index was driven by water holding capacity, pH and available Zn followed by soil organic matter. Organic management enhanced net profit by 20-40% over chemical farming. A case in point is the cost-benefit analysis in elephant foot yam which indicated that the net profit was 28% higher and additional income of Rs. 47,716 ha-1 was obtained due to organic farming. Cost-effective technologies were field validated. The on-station technologies developed were validated and popularized through on-farm trials in 10 sites (5 ha) under National Horticulture Mission funded programme in elephant foot yam and seven sites in yams and taro. The technologies are included in the Package of Practices Recommendations for crops of Kerala Agricultural University. A learning system developed using artificial neural networks (ANN) predicted the performance of elephant foot yam organic system. Use of organically produced seed materials, seed treatment in cow-dung, neem cake, bio-inoculant slurry, farmyard manure incubated with bio-inoculants, green manuring, use of neem cake, bio-fertilizers and ash formed the strategies for organic production. Organic farming is an eco-friendly management strategy that enables 10-20% higher yield, quality tubers and maintenance of soil health in tuber crops.Keywords: eco-agriculture, quality, root crops, healthy soil, yield
Procedia PDF Downloads 335340 Refractory Cardiac Arrest: Do We Go beyond, Do We Increase the Organ Donation Pool or Both?
Authors: Ortega Ivan, De La Plaza Edurne
Abstract:
Background: Spain and other European countries have implemented Uncontrolled Donation after Cardiac Death (uDCD) programs. After 15 years of experience in Spain, many things have changed. Recent evidence and technical breakthroughs achieved in resuscitation are relevant for uDCD programs and raise some ethical concerns related to these protocols. Aim: To rethink current uDCD programs in the light of recent evidence on available therapeutic procedures applicable to victims of out-of-hospital cardiac arrest (OHCA). To address the following question: What is the current standard of treatment owed to victims of OHCA before including them in an uDCD protocol? Materials and Methods: Review of the scientific and ethical literature related to both uDCD programs and innovative resuscitation techniques. Results: 1) The standard of treatment received and the chances of survival of victims of OHCA depend on whether they are classified as Non-Heart Beating Patients (NHBP) or Non-Heart-Beating-Donors (NHBD). 2) Recent studies suggest that NHBPs are likely to survive, with good quality of life, if one or more of the following interventions are performed while ongoing CPR -guided by suspected or known cause of OHCA- is maintained: a) direct access to a Cath Lab-H24 or/and to extra-corporeal life support (ECLS); b) transfer in induced hypothermia from the Emergency Medical Service (EMS) to the ICU; c) thrombolysis treatment; d) mobile extra-corporeal membrane oxygenation (mini ECMO) instituted as a bridge to ICU ECLS devices. 3) Victims of OHCA who cannot benefit from any of these therapies should be considered as NHBDs. Conclusion: Current uDCD protocols do not take into account recent improvements in resuscitation and need to be adapted. Operational criteria to distinguish NHBDs from NHBP should seek a balance between the technical imperative (to do whatever is possible), considerations about expected survival with quality of life, and distributive justice (costs/benefits). Uncontrolled DCD protocols can be performed in a way that does not hamper the legitimate interests of patients, potential organ donors, their families, the organ recipients, and the health professionals involved in these processes. Families of NHBDs’ should receive information which conforms to the ethical principles of respect of autonomy and transparency.Keywords: uncontrolled donation after cardiac death resuscitation, refractory cardiac arrest, out of hospital cardiac, arrest ethics
Procedia PDF Downloads 237339 A Comparison between TM: TM Co Doped and TM: RE Co Doped ZnO Based Advanced Materials for Spintronics Applications; Structural, Optical and Magnetic Property Analysis
Authors: V. V. Srinivasu, Jayashree Das
Abstract:
Owing to the industrial and technological importance, transition metal (TM) doped ZnO has been widely chosen for many practical applications in electronics and optoelectronics. Besides, though still a controversial issue, the reported room temperature ferromagnetism in transition metal doped ZnO has added a feather to its excellence and importance in current semiconductor research for prospective application in Spintronics. Anticipating non controversial and improved optical and magnetic properties, we adopted co doping method to synthesise polycrystalline Mn:TM (Fe,Ni) and Mn:RE(Gd,Sm) co doped ZnO samples by solid state sintering route with compositions Zn1-x (Mn:Fe/Ni)xO and Zn1-x(Mn:Gd/Sm)xO and sintered at two different temperatures. The structure, composition and optical changes induced in ZnO due to co doping and sintering were investigated by XRD, FTIR, UV, PL and ESR studies. X-ray peak profile analysis (XPPA) and Williamson-Hall analysis carried out shows changes in the values of stress, strain, FWHM and the crystallite size in both the co doped systems. FTIR spectra also show the effect of both type of co doping on the stretching and bending bonds of ZnO compound. UV-Vis study demonstrates changes in the absorption band edge as well as the significant change in the optical band gap due to exchange interactions inside the system after co doping. PL studies reveal effect of co doping on UV and visible emission bands in the co doped systems at two different sintering temperatures, indicating the existence of defects in the form of oxygen vacancies. While the TM: TM co doped samples of ZnO exhibit ferromagnetism at room temperature, the TM: RE co doped samples show paramagnetic behaviour. The magnetic behaviours observed are supported by results from Electron Spin resonance (ESR) study; which shows sharp resonance peaks with considerable line width (∆H) and g values more than 2. Such values are usually found due to the presence of an internal field inside the system giving rise to the shift of resonance field towards the lower field. The g values in this range are assigned to the unpaired electrons trapped in oxygen vacancies. TM: TM co doped ZnO samples exhibit low field absorption peaks in their ESR spectra, which is a new interesting observation. We emphasize that the interesting observations reported in this paper may be considered for the improved futuristic applications of ZnO based materials.Keywords: co-doping, electro spin resonance, microwave absorption, spintronics
Procedia PDF Downloads 339338 Photocatalytic Disintegration of Naphthalene and Naphthalene Similar Compounds in Indoors Air
Authors: Tobias Schnabel
Abstract:
Naphthalene and naphthalene similar compounds are a common problem in the indoor air of buildings from the 1960s and 1970s in Germany. Often tar containing roof felt was used under the concrete floor to prevent humidity to come through the floor. This tar containing roof felt has high concentrations of PAH (Polycyclic aromatic hydrocarbon) and naphthalene. Naphthalene easily evaporates and contaminates the indoor air. Especially after renovations and energetically modernization of the buildings, the naphthalene concentration rises because no forced air exchange can happen. Because of this problem, it is often necessary to change the floors after renovation of the buildings. The MFPA Weimar (Material research and testing facility) developed in cooperation a project with LEJ GmbH and Reichmann Gebäudetechnik GmbH. It is a technical solution for the disintegration of naphthalene in naphthalene, similar compounds in indoor air with photocatalytic reforming. Photocatalytic systems produce active oxygen species (hydroxyl radicals) through trading semiconductors on a wavelength of their bandgap. The light energy separates the charges in the semiconductor and produces free electrons in the line tape and defect electrons. The defect electrons can react with hydroxide ions to hydroxyl radicals. The produced hydroxyl radicals are a strong oxidation agent, and can oxidate organic matter to carbon dioxide and water. During the research, new titanium oxide catalysator surface coatings were developed. This coating technology allows the production of very porous titan oxide layer on temperature stable carrier materials. The porosity allows the naphthalene to get easily absorbed by the surface coating, what accelerates the reaction of the heterogeneous photocatalysis. The photocatalytic reaction is induced by high power and high efficient UV-A (ultra violet light) Leds with a wavelength of 365nm. Various tests in emission chambers and on the reformer itself show that a reduction of naphthalene in important concentrations between 2 and 250 µg/m³ is possible. The disintegration rate was at least 80%. To reduce the concentration of naphthalene from 30 µg/m³ to a level below 5 µg/m³ in a usual 50 ² classroom, an energy of 6 kWh is needed. The benefits of the photocatalytic indoor air treatment are that every organic compound in the air can be disintegrated and reduced. The use of new photocatalytic materials in combination with highly efficient UV leds make a safe and energy efficient reduction of organic compounds in indoor air possible. At the moment the air cleaning systems take the step from prototype stage into the usage in real buildings.Keywords: naphthalene, titandioxide, indoor air, photocatalysis
Procedia PDF Downloads 143337 Preparation and Evaluation of Poly(Ethylene Glycol)-B-Poly(Caprolactone) Diblock Copolymers with Zwitterionic End Group for Thermo-Responsive Properties
Authors: Bo Keun Lee, Doo Yeon Kwon, Ji Hoon Park, Gun Hee Lee, Ji Hye Baek, Heung Jae Chun, Young Joo Koh, Moon Suk Kim
Abstract:
Thermo-responsive materials are viscoelastic materials that undergo a sol-to-gel phase transition at a specific temperature and many materials have been developed. MPEG-b-PCL (MPC) as a thermo-responsive material contained hydrophilic and hydrophobic segments and it formed an ordered crystalline structure of hydrophobic PCL segments in aqueous solutions. The ordered crystalline structure packed tightly or aggregated and finally induced an aggregated gel through intra- and inter-molecular interactions as a function of temperature. Thus, we introduced anionic and cationic groups into the end positions of the PCL chain to alter the hydrophobicity of the PCL segment. Introducing anionic and cationic groups into the PCL end position altered their solubility by changing the crystallinity and hydrophobicity of the PCL block domains. These results indicated that the properties of the end group in the hydrophobic PCL blockand the balance between hydrophobicity and hydrophilicity affect thermo-responsivebehavior of the copolymers in aqueous solutions. Thus, we concluded that determinant of the temperature-dependent thermo-responsive behavior of MPC depend on the ionic end group in the PCL block. So, we introduced zwitterionic end groups to investigate the thermo-responsive behavior of MPC. Methoxypoly(ethylene oxide) and ε-caprolactone (CL) were randomly copolymerized that introduced varying hydrophobic PCL lengths and an MPC featuring a zwitterionic sulfobetaine (MPC-ZW) at the chain end of the PCL segment. The MPC and MPC-ZW copolymers were obtained formed sol-state at room temperature when prepared as 20-wt% aqueous solutions. The solubility of MPC decreased when the PCL block was increased from molecular weight. The solubilization time of MPC-2.4k was around 20 min and MPC-2.8k, MPC-3.0k increased to 30 min and 1 h, respectively. MPC-3.6k was not solubilized. In case of MPC-ZW 3.6k, However, the zwitterion-modified MPC copolymers were solubilized in 3–5 min. This result indicates that the zwitterionic end group of the MPC-ZW diblock copolymer increased the aqueous solubility of the diblock copolymer even when the length of the hydrophobic PCL segment was increased. MPC and MPC-ZW diblock copolymers that featuring zwitterionic end groups were synthesized successfully. The sol-to-gel phase-transition was formed that specific temperature depend on the length of the PCL hydrophobic segments introduced and on the zwitterion groups attached to the MPC chain end. This result indicated that the zwitterionic end groups reduced the hydrophobicity in the PCL block and changed the solubilization. The MPC-ZW diblock copolymer can be utilized as a potential injectable drug and cell carrier.Keywords: thermo-responsive material, zwitterionic, hydrophobic, crystallization, phase transition
Procedia PDF Downloads 507336 iPSCs More Effectively Differentiate into Neurons on PLA Scaffolds with High Adhesive Properties for Primary Neuronal Cells
Authors: Azieva A. M., Yastremsky E. V., Kirillova D. A., Patsaev T. D., Sharikov R. V., Kamyshinsky R. A., Lukanina K. I., Sharikova N. A., Grigoriev T. E., Vasiliev A. L.
Abstract:
Adhesive properties of scaffolds, which predominantly depend on the chemical and structural features of their surface, play the most important role in tissue engineering. The basic requirements for such scaffolds are biocompatibility, biodegradation, high cell adhesion, which promotes cell proliferation and differentiation. In many cases, synthetic polymers scaffolds have proven advantageous because they are easy to shape, they are tough, and they have high tensile properties. The regeneration of nerve tissue still remains a big challenge for medicine, and neural stem cells provide promising therapeutic potential for cell replacement therapy. However, experiments with stem cells have their limitations, such as low level of cell viability and poor control of cell differentiation. Whereas the study of already differentiated neuronal cell culture obtained from newborn mouse brain is limited only to cell adhesion. The growth and implantation of neuronal culture requires proper scaffolds. Moreover, the polymer scaffolds implants with neuronal cells could demand specific morphology. To date, it has been proposed to use numerous synthetic polymers for these purposes, including polystyrene, polylactic acid (PLA), polyglycolic acid, and polylactide-glycolic acid. Tissue regeneration experiments demonstrated good biocompatibility of PLA scaffolds, despite the hydrophobic nature of the compound. Problem with poor wettability of the PLA scaffold surface could be overcome in several ways: the surface can be pre-treated by poly-D-lysine or polyethyleneimine peptides; roughness and hydrophilicity of PLA surface could be increased by plasma treatment, or PLA could be combined with natural fibers, such as collagen or chitosan. This work presents a study of adhesion of both induced pluripotent stem cells (iPSCs) and mouse primary neuronal cell culture on the polylactide scaffolds of various types: oriented and non-oriented fibrous nonwoven materials and sponges – with and without the effect of plasma treatment and composites with collagen and chitosan. To evaluate the effect of different types of PLA scaffolds on the neuronal differentiation of iPSCs, we assess the expression of NeuN in differentiated cells through immunostaining. iPSCs more effectively differentiate into neurons on PLA scaffolds with high adhesive properties for primary neuronal cells.Keywords: PLA scaffold, neurons, neuronal differentiation, stem cells, polylactid
Procedia PDF Downloads 84335 Phytochemical Screening, Proximate Analysis, Lethality Studies and Anti-Tumor Potential of Annona muricata L. (Soursop) Fruit Extract in Rattus novergicus
Authors: O. C. Abbah, O. Obidoa, J. Omale
Abstract:
Prostate tumor is fast becoming a leading cause of morbidity and mortality in human male adults, with 50 percent of men aged 50 years and above having histological evidence of the benign tumor. The study was set out to undertake phytochemical screening and proximate analysis of the pulp of A. muricata fruit - soursop; to determine the acute toxicity of the fruit pulp extract and its effect on male albino Wistar rats with concurrent induction of experimental benign prostate hyperplasia (BPH). Eighteen rats (average weight of 100g) were used for the lethality studies and were orally administered graded doses of aqueous extracts of the fruit pulp up to 5000 mg/kg body weight. Twenty five rats weighing 150-200g were divided into five groups of five rats each for the tumor studies. The groups included four controls – Hormone control, HC, which took Testosterone, T; and Estradiol, E2 – only, in olive oil as vehicle; Vehicle control, VC; Soursop control, SC, which received the extract only; VS, Vehicle and Soursop – and the Test group, TG (500mg/kg b.w.). All rats were dosed orally. Tumor was induced with exogenous Testosterone propionate: Estradiol valerate at 300µg: 80µg/kg b.w. (respectively) in olive oil, administered subcutaneously in the inguinal region of the rats on alternate days for 21 days. Administration of the fruit pulp at graded doses up to 5000mg/kg resulted in no lethality even after 72 hours. Results from tumor studies revealed that the administration of the fruit extracts significantly (p < 0.05) reduced the relative prostate weight of the TG compared with the HC, with values of 006±0.001 and 0.010±0.003 respectively. Treatment with vehicle, soursop and vehicle with soursop caused no significant (p>0.05) change in prostate size, with their respective relative prostate weights being 0.002±0.001, 0.004±0.002 and 0.002±0.001 compared with TG. Also, treatment with A. muricata fruit extract significantly decreased (p < 0.05) serum prostate specific antigen, PSA, in TG compared with HC, with values 0.055±0.017 and 0.194±0.068 ng/ml respectively. Furthermore, A. muricata administration displayed Testosterone boosting, Estradiol lowering and consequently testosterone-estradiol ratio increasing potential at the end of the 21 days. The preventive property of soursop against experimental BPH was corroborated by histological evidence in this study. The study concludes that A. muricata fruit holds a great potential for benign prostate tumor prevention and, possibly, management.Keywords: annona muricata, benign prostate tumor, hormone, preventive potential, soursop
Procedia PDF Downloads 311334 Utilization of Functionalized Biochar from Water Hyacinth (Eichhornia crassipes) as Green Nano-Fertilizers
Authors: Adewale Tolulope Irewale, Elias Emeka Elemike, Christian O. Dimkpa, Emeka Emmanuel Oguzie
Abstract:
As the global population steadily approaches the 10billion mark, the world is currently faced with two major challenges among others – accessing sustainable and clean energy, and food security. Accessing cleaner and sustainable energy sources to drive global economy and technological advancement, and feeding the teeming human population require sustainable, innovative, and smart solutions. To solve the food production problem, producers have relied on fertilizers as a way of improving crop productivity. Commercial inorganic fertilizers, which is employed to boost agricultural food production, however, pose significant ecological sustainability and economic problems including soil and water pollution, reduced input efficiency, development of highly resistant weeds, micronutrient deficiency, soil degradation, and increased soil toxicity. These ecological and sustainability concerns have raised uncertainties about the continued effectiveness of conventional fertilizers. With the application of nanotechnology, plant biomass upcycling offers several advantages in greener energy production and sustainable agriculture through reduction of environmental pollution, increasing soil microbial activity, recycling carbon thereby reducing GHG emission, and so forth. This innovative technology has the potential for a circular economy and creating a sustainable agricultural practice. Nanomaterials have the potential to greatly enhance the quality and nutrient composition of organic biomass which in turn, allows for the conversion of biomass into nanofertilizers that are potentially more efficient. Water hyacinth plant harvested from an inland water at Warri, Delta State Nigeria were air-dried and milled into powder form. The dry biomass were used to prepare biochar at a pre-determined temperature in an oxygen deficient atmosphere. Physicochemical analysis of the resulting biochar was carried out to determine its porosity and general morphology using the Scanning Transmission Electron Microscopy (STEM). The functional groups (-COOH, -OH, -NH2, -CN, -C=O) were assessed using the Fourier Transform InfraRed Spectroscopy (FTIR) while the heavy metals (Cr, Cu, Fe, Pb, Mg, Mn) were analyzed using Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES). Impregnation of the biochar with nanonutrients were achieved under varied conditions of pH, temperature, nanonutrient concentrations and resident time to achieve optimum adsorption. Adsorption and desorption studies were carried out on the resulting nanofertilizer to determine kinetics for the potential nutrients’ bio-availability to plants when used as green fertilizers. Water hyacinth (Eichhornia crassipes) which is an aggressively invasive aquatic plant known for its rapid growth and profusion is being examined in this research to harness its biomass as a sustainable feedstock to formulate functionalized nano-biochar fertilizers, offering various benefits including water hyacinth biomass upcycling, improved nutrient delivery to crops and aquatic ecosystem remediation. Altogether, this work aims to create output values in the three dimensions of environmental, economic, and social benefits.Keywords: biochar-based nanofertilizers, eichhornia crassipes, greener agriculture, sustainable ecosystem, water hyacinth
Procedia PDF Downloads 65333 Characterizing and Developing the Clinical Grade Microbiome Assay with a Robust Bioinformatics Pipeline for Supporting Precision Medicine Driven Clinical Development
Authors: Danyi Wang, Andrew Schriefer, Dennis O'Rourke, Brajendra Kumar, Yang Liu, Fei Zhong, Juergen Scheuenpflug, Zheng Feng
Abstract:
Purpose: It has been recognized that the microbiome plays critical roles in disease pathogenesis, including cancer, autoimmune disease, and multiple sclerosis. To develop a clinical-grade assay for exploring microbiome-derived clinical biomarkers across disease areas, a two-phase approach is implemented. 1) Identification of the optimal sample preparation reagents using pre-mixed bacteria and healthy donor stool samples coupled with proprietary Sigma-Aldrich® bioinformatics solution. 2) Exploratory analysis of patient samples for enabling precision medicine. Study Procedure: In phase 1 study, we first compared the 16S sequencing results of two ATCC® microbiome standards (MSA 2002 and MSA 2003) across five different extraction kits (Kit A, B, C, D & E). Both microbiome standards samples were extracted in triplicate across all extraction kits. Following isolation, DNA quantity was determined by Qubit assay. DNA quality was assessed to determine purity and to confirm extracted DNA is of high molecular weight. Bacterial 16S ribosomal ribonucleic acid (rRNA) amplicons were generated via amplification of the V3/V4 hypervariable region of the 16S rRNA. Sequencing was performed using a 2x300 bp paired-end configuration on the Illumina MiSeq. Fastq files were analyzed using the Sigma-Aldrich® Microbiome Platform. The Microbiome Platform is a cloud-based service that offers best-in-class 16S-seq and WGS analysis pipelines and databases. The Platform and its methods have been extensively benchmarked using microbiome standards generated internally by MilliporeSigma and other external providers. Data Summary: The DNA yield using the extraction kit D and E is below the limit of detection (100 pg/µl) of Qubit assay as both extraction kits are intended for samples with low bacterial counts. The pre-mixed bacterial pellets at high concentrations with an input of 2 x106 cells for MSA-2002 and 1 x106 cells from MSA-2003 were not compatible with the kits. Among the remaining 3 extraction kits, kit A produced the greatest yield whereas kit B provided the least yield (Kit-A/MSA-2002: 174.25 ± 34.98; Kit-A/MSA-2003: 179.89 ± 30.18; Kit-B/MSA-2002: 27.86 ± 9.35; Kit-B/MSA-2003: 23.14 ± 6.39; Kit-C/MSA-2002: 55.19 ± 10.18; Kit-C/MSA-2003: 35.80 ± 11.41 (Mean ± SD)). Also, kit A produced the greatest yield, whereas kit B provided the least yield. The PCoA 3D visualization of the Weighted Unifrac beta diversity shows that kits A and C cluster closely together while kit B appears as an outlier. The kit A sequencing samples cluster more closely together than both the other kits. The taxonomic profiles of kit B have lower recall when compared to the known mixture profiles indicating that kit B was inefficient at detecting some of the bacteria. Conclusion: Our data demonstrated that the DNA extraction method impacts DNA concentration, purity, and microbial communities detected by next-generation sequencing analysis. Further microbiome analysis performance comparison of using healthy stool samples is underway; also, colorectal cancer patients' samples will be acquired for further explore the clinical utilities. Collectively, our comprehensive qualification approach, including the evaluation of optimal DNA extraction conditions, the inclusion of positive controls, and the implementation of a robust qualified bioinformatics pipeline, assures accurate characterization of the microbiota in a complex matrix for deciphering the deep biology and enabling precision medicine.Keywords: 16S rRNA sequencing, analytical validation, bioinformatics pipeline, metagenomics
Procedia PDF Downloads 170332 Comparative Analysis of the Antioxidant Capacities of Pre-Germinated and Germinated Pigmented Rice (Oryza sativa L. Cv. Superjami and Superhongmi)
Authors: Soo Im Chung, Lara Marie Pangan Lo, Yao Cheng Zhang, Su Jin Nam, Xingyue Jin, Mi Young Kang
Abstract:
Rice (Oryza sativa L.) is one of the most widely consumed grains. Due to the growing number of demand as a potential functional food and nutraceutical source and the increasing awareness of people towards healthy diet and good quality of living, more researches dwell upon the development of new rice cultivars for population consumption. However, studies on the antioxidant capacities of newly developed rice were limited as well as the effects of germination in these rice cultivars. Therefore, this study aimed to focus on analysis of the antioxidant potential of pre-germinated and germinated pigmented rice cultivars in South Korea such as purple cultivar Superjami (SJ) and red cultivar Super hongmi (SH) in comparison with the non-pigmented Normal Brown (NB) Rice. The powdered rice grain samples were extracted with 80% methanol and their antioxidant activities were determined. The Results showed that pre-germinated pigmented rice cultivars have higher Fe2+ Chelating Ability (Fe2+), Reducing Power (RP), 2,2´-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) radical scavenging and Superoxide Dismutase activity than the control NB rice. Moreover, it is revealed that germination process induced a significant increased in the antioxidant activities of all the rice samples regardless of their strains. Purple rice SJ showed greater Fe2+ (88.82 + 0.53%), RP (0.82 + 0.01) , ABTS (143.63 + 2.38 mg VCEAC/100 g) and SOD (59.31 + 0.48%) activities than the red grain SH and the control NB having the lowest antioxidant potential among the three (3) rice samples examined. The Effective concentration at 50% (EC50) of 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) and Hydroxyradical (-OH) Scavenging activity for the rice samples were also obtained. SJ showed lower EC50 in terms of its DPPH (3.81 + 0.15 mg/mL) and –OH (5.19 + 0.08 mg/mL) radical scavenging activities than the red grain SH and control NB rice indicating that at lower concentrations, it can readily exhibit antioxidant effects against reactive oxygen species (ROS). These results clearly suggest the higher antioxidant potential of pigmented rice varieties as compared with the widely consumed NB rice. Also, it is revealed in the study that even at lower concentrations, pigmented rice varieties can exhibit their antioxidant activities. Germination process further enhanced the antioxidant capacities of the rice samples regardless of their types. With these results at hand, these new rice varieties can be further developed as a good source of bio functional elements that can help alleviate the growing number of cases of metabolic disorders.Keywords: antioxidant capacity, germinated rice, pigmented rice, super hongmi, superjami
Procedia PDF Downloads 444331 Building Exoskeletons for Seismic Retrofitting
Authors: Giuliana Scuderi, Patrick Teuffel
Abstract:
The proven vulnerability of the existing social housing building heritage to natural or induced earthquakes requires the development of new design concepts and conceptual method to preserve materials and object, at the same time providing new performances. An integrate intervention between civil engineering, building physics and architecture can convert the social housing districts from a critical part of the city to a strategic resource of revitalization. Referring to bio-mimicry principles the present research proposes a taxonomy with the exoskeleton of the insect, an external, light and resistant armour whose role is to protect the internal organs from external potentially dangerous inputs. In the same way, a “building exoskeleton”, acting from the outside of the building as an enclosing cage, can restore, protect and support the existing building, assuming a complex set of roles, from the structural to the thermal, from the aesthetical to the functional. This study evaluates the structural efficiency of shape memory alloys devices (SMADs) connecting the “building exoskeleton” with the existing structure to rehabilitate, in order to prevent the out-of-plane collapse of walls and for the passive dissipation of the seismic energy, with a calibrated operability in relation to the intensity of the horizontal loads. The two case studies of a masonry structure and of a masonry structure with concrete frame are considered, and for each case, a theoretical social housing building is exposed to earthquake forces, to evaluate its structural response with or without SMADs. The two typologies are modelled with the finite element program SAP2000, and they are respectively defined through a “frame model” and a “diagonal strut model”. In the same software two types of SMADs, called the 00-10 SMAD and the 05-10 SMAD are defined, and non-linear static and dynamic analyses, namely push over analysis and time history analysis, are performed to evaluate the seismic response of the building. The effectiveness of the devices in limiting the control joint displacements resulted higher in one direction, leading to the consideration of a possible calibrated use of the devices in the different walls of the building. The results show also a higher efficiency of the 00-10 SMADs in controlling the interstory drift, but at the same time the necessity to improve the hysteretic behaviour, to maximise the passive dissipation of the seismic energy.Keywords: adaptive structure, biomimetic design, building exoskeleton, social housing, structural envelope, structural retrofitting
Procedia PDF Downloads 420330 Suture Biomaterials Development from Natural Fibers: Muga Silk (Antheraea assama) and Ramie (Boehmeria nivea)
Authors: Raghuram Kandimalla, Sanjeeb Kalita, Bhaswati Choudhury, Jibon Kotoky
Abstract:
The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characteristics to market available ones. We developed novel suture biomaterial from muga silk (Antheraea assama) and ramie (Boehmeria nivea) plant fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of the fibers which supports the suitability of fibers for suture fabrication. Tensile properties of the prepared sutures were comparable with market available sutures and it found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The prepared sutures completely healed the superficial deep wound incisions within seven days in adult male wister rats leaving no rash and scar. Histopathology studies supports the wound healing ability of sutures, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Further muga suture surface modified by exposing the suture to oxygen plasma which resulted in formation of nanotopography on suture surface. Broad spectrum antibiotic amoxicillin was functionalized on the suture surface to prepare an advanced antimicrobial muga suture. Surface hydrophilicity induced by oxygen plasma results in an increase in drug-impregnation efficiency of modified muga suture by 16.7%. In vitro drug release profiles showed continuous and prolonged release of amoxicillin from suture up to 336 hours. The advanced muga suture proves to be effective against growth inhibition of Staphylococcus aureus and Escherichia coli, whereas normal muga suture offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of advanced suture over normal one through rapid synthesis and proliferation of collagen, hair follicle and connective tissues.Keywords: sutures, biomaterials, silk, Ramie
Procedia PDF Downloads 317329 Nanoimprinted-Block Copolymer-Based Porous Nanocone Substrate for SERS Enhancement
Authors: Yunha Ryu, Kyoungsik Kim
Abstract:
Raman spectroscopy is one of the most powerful techniques for chemical detection, but the low sensitivity originated from the extremely small cross-section of the Raman scattering limits the practical use of Raman spectroscopy. To overcome this problem, Surface Enhanced Raman Scattering (SERS) has been intensively studied for several decades. Because the SERS effect is mainly induced from strong electromagnetic near-field enhancement as a result of localized surface plasmon resonance of metallic nanostructures, it is important to design the plasmonic structures with high density of electromagnetic hot spots for SERS substrate. One of the useful fabrication methods is using porous nanomaterial as a template for metallic structure. Internal pores on a scale of tens of nanometers can be strong EM hotspots by confining the incident light. Also, porous structures can capture more target molecules than non-porous structures in a same detection spot thanks to the large surface area. Herein we report the facile fabrication method of porous SERS substrate by integrating solvent-assisted nanoimprint lithography and selective etching of block copolymer. We obtained nanostructures with high porosity via simple selective etching of the one microdomain of the diblock copolymer. Furthermore, we imprinted of the nanocone patterns into the spin-coated flat block copolymer film to make three-dimensional SERS substrate for the high density of SERS hot spots as well as large surface area. We used solvent-assisted nanoimprint lithography (SAIL) to reduce the fabrication time and cost for patterning BCP film by taking advantage of a solvent which dissolves both polystyrenre and poly(methyl methacrylate) domain of the block copolymer, and thus block copolymer film was molded under the low temperature and atmospheric pressure in a short time. After Ag deposition, we measured Raman intensity of dye molecules adsorbed on the fabricated structure. Compared to the Raman signals of Ag coated solid nanocone, porous nanocone showed 10 times higher Raman intensity at 1510 cm(-1) band. In conclusion, we fabricated porous metallic nanocone arrays with high density electromagnetic hotspots by templating nanoimprinted diblock copolymer with selective etching and demonstrated its capability as an effective SERS substrate.Keywords: block copolymer, porous nanostructure, solvent-assisted nanoimprint, surface-enhanced Raman spectroscopy
Procedia PDF Downloads 625328 Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities
Authors: Sayantan Saha, Sambit Supriya Dash, Vinayak Malhotra
Abstract:
Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application.Keywords: combustion instability, fire safety, improved performance, liquid rocket engines, thermoacoustics
Procedia PDF Downloads 143327 Anti-Inflammatory Studies on Chungpye-Tang in Asthmatic Human Lung Tissue
Authors: J. H. Bang, H. J. Baek, K. I. Kim, B. J. Lee, H. J. Jung, H. J. Jang, S. K. Jung
Abstract:
Asthma is a chronic inflammatory lung disease characterized by airway hyper responsiveness (AHR), airway obstruction and airway wall remodeling responsible for significant morbidity and mortality worldwide. Genetic and environment factors may result in asthma, but there are no the exact causes of asthma. Chungpye-tang (CPT) has been prescribed as a representative aerosol agent for patients with dyspnea, cough and phlegm in the respiratory clinic at Kyung Hee Korean Medicine Hospital. This Korean herbal medicines have the effect of dispelling external pathogen and dampness pattern. CPT is composed of 4 species of herbal medicines. The 4 species of herbal medicines are Ephedrae herba, Pogostemonis(Agatachis) herba, Caryophylli flos and Zingiberis rhizoma crudus. CPT suppresses neutrophil infiltration and the production of pro-inflammatory cytokines in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. Moreover, the anti-inflammatory effects of CPT on a mouse model of Chronic Obstructive Pulmonary Disease (COPD) was proved. Activation of the NF-κB has been proven that it plays an important role in inflammation via inducing transcription of pro-inflammatory genes. Over-expression of NF-κB has been believed be related to many inflammatory diseases such as arthritis, gastritis, asthma and COPD. So we firstly hypothesize whether CPT has an anti-inflammatory effect on asthmatic human airway epithelial tissue via inhibiting NF-κB pathway. In this study, CPT was extracted with distilled water for 3 hours at 100°C. After process of filtration and evaporation, it was freeze dried. And asthmatic human lung tissues were provided by MatTek Corp. We investigated the precise mechanism of the anti-inflammatory effect of CPT by western blotting analysis. We observed whether the decoction extracts could reduce NF-κB activation, COX-2 protein expression and NF-κB-mediated pro-inflammatory cytokines such as TNF-α, eotaxin, IL-4, IL-9 and IL-13 in asthmatic human lung tissue. As results of this study, there was a trend toward decreased NF-κB expression in asthmatic human airway epithelial tissue. We found that the inhibition effects of CPT on COX-2 expression was not determined. IL-9 and IL-13 secretion was significantly reduced in the asthmatic human lung tissue treated with CPT. Overall, our results indicate that CPT has an anti-inflammatory effect through blocking the signaling pathway of NF-κB, thereby CPT may be a potential remedial agent for allergic asthma.Keywords: Chungpye-tang, allergic asthma, asthmatic human airway epithelial tissue, nuclear factor kappa B (NF-κB) pathway, COX-2
Procedia PDF Downloads 334326 Biodegradation of Chlorophenol Derivatives Using Macroporous Material
Authors: Dmitriy Berillo, Areej K. A. Al-Jwaid, Jonathan L. Caplin, Andrew Cundy, Irina Savina
Abstract:
Chlorophenols (CPs) are used as a precursor in the production of higher CPs and dyestuffs, and as a preservative. Contamination by CPs of the ground water is located in the range from 0.15-100mg/L. The EU has set maximum concentration limits for pesticides and their degradation products of 0.1μg/L and 0.5μg/L, respectively. People working in industries which produce textiles, leather products, domestic preservatives, and petrochemicals are most heavily exposed to CPs. The International Agency for Research on Cancers categorized CPs as potential human carcinogens. Existing multistep water purification processes for CPs such as hydrogenation, ion exchange, liquid-liquid extraction, adsorption by activated carbon, forward and inverse osmosis, electrolysis, sonochemistry, UV irradiation, and chemical oxidation are not always cost effective and can cause the formation of even more toxic or mutagenic derivatives. Bioremediation of CPs derivatives utilizing microorganisms results in 60 to 100% decontamination efficiency and the process is more environmentally-friendly compared with existing physico-chemical methods. Microorganisms immobilized onto a substrate show many advantages over free bacteria systems, such as higher biomass density, higher metabolic activity, and resistance to toxic chemicals. They also enable continuous operation, avoiding the requirement for biomass-liquid separation. The immobilized bacteria can be reused several times, which opens the opportunity for developing cost-effective processes for wastewater treatment. In this study, we develop a bioremediation system for CPs based on macroporous materials, which can be efficiently used for wastewater treatment. Conditions for the preparation of the macroporous material from specific bacterial strains (Pseudomonas mendocina and Rhodococus koreensis) were optimized. The concentration of bacterial cells was kept constant; the difference was only the type of cross-linking agents used e.g. glutaraldehyde, novel polymers, which were utilized at concentrations of 0.5 to 1.5%. SEM images and rheology analysis of the material indicated a monolithic macroporous structure. Phenol was chosen as a model system to optimize the function of the cryogel material and to estimate its enzymatic activity, since it is relatively less toxic and harmful compared to CPs. Several types of macroporous systems comprising live bacteria were prepared. The viability of the cross-linked bacteria was checked using Live/Dead BacLight kit and Laser Scanning Confocal Microscopy, which revealed the presence of viable bacteria with the novel cross-linkers, whereas the control material cross-linked with glutaraldehyde(GA), contained mostly dead cells. The bioreactors based on bacteria were used for phenol degradation in batch mode at an initial concentration of 50mg/L, pH 7.5 and a temperature of 30°C. Bacterial strains cross-linked with GA showed insignificant ability to degrade phenol and for one week only, but a combination of cross-linking agents illustrated higher stability, viability and the possibility to be reused for at least five weeks. Furthermore, conditions for CPs degradation will be optimized, and the chlorophenol degradation rates will be compared to those for phenol. This is a cutting-edge bioremediation approach, which allows the purification of waste water from sustainable compounds without a separation step to remove free planktonic bacteria. Acknowledgments: Dr. Berillo D. A. is very grateful to Individual Fellowship Marie Curie Program for funding of the research.Keywords: bioremediation, cross-linking agents, cross-linked microbial cell, chlorophenol degradation
Procedia PDF Downloads 213325 Evaluation of the Photo Neutron Contamination inside and outside of Treatment Room for High Energy Elekta Synergy® Linear Accelerator
Authors: Sharib Ahmed, Mansoor Rafi, Kamran Ali Awan, Faraz Khaskhali, Amir Maqbool, Altaf Hashmi
Abstract:
Medical linear accelerators (LINAC’s) used in radiotherapy treatments produce undesired neutrons when they are operated at energies above 8 MeV, both in electron and photon configuration. Neutrons are produced by high-energy photons and electrons through electronuclear (e, n) a photonuclear giant dipole resonance (GDR) reactions. These reactions occurs when incoming photon or electron incident through the various materials of target, flattening filter, collimators, and other shielding components in LINAC’s structure. These neutrons may reach directly to the patient, or they may interact with the surrounding materials until they become thermalized. A work has been set up to study the effect of different parameter on the production of neutron around the room by photonuclear reactions induced by photons above ~8 MeV. One of the commercial available neutron detector (Ludlum Model 42-31H Neutron Detector) is used for the detection of thermal and fast neutrons (0.025 eV to approximately 12 MeV) inside and outside of the treatment room. Measurements were performed for different field sizes at 100 cm source to surface distance (SSD) of detector, at different distances from the isocenter and at the place of primary and secondary walls. Other measurements were performed at door and treatment console for the potential radiation safety concerns of the therapists who must walk in and out of the room for the treatments. Exposures have taken place from Elekta Synergy® linear accelerators for two different energies (10 MV and 18 MV) for a given 200 MU’s and dose rate of 600 MU per minute. Results indicates that neutron doses at 100 cm SSD depend on accelerator characteristics means jaw settings as jaws are made of high atomic number material so provides significant interaction of photons to produce neutrons, while doses at the place of larger distance from isocenter are strongly influenced by the treatment room geometry and backscattering from the walls cause a greater doses as compare to dose at 100 cm distance from isocenter. In the treatment room the ambient dose equivalent due to photons produced during decay of activation nuclei varies from 4.22 mSv.h−1 to 13.2 mSv.h−1 (at isocenter),6.21 mSv.h−1 to 29.2 mSv.h−1 (primary wall) and 8.73 mSv.h−1 to 37.2 mSv.h−1 (secondary wall) for 10 and 18 MV respectively. The ambient dose equivalent for neutrons at door is 5 μSv.h−1 to 2 μSv.h−1 while at treatment console room it is 2 μSv.h−1 to 0 μSv.h−1 for 10 and 18 MV respectively which shows that a 2 m thick and 5m longer concrete maze provides sufficient shielding for neutron at door as well as at treatment console for 10 and 18 MV photons.Keywords: equivalent doses, neutron contamination, neutron detector, photon energy
Procedia PDF Downloads 449324 Aspergillus micromycetes as Producers of Hemostatically Active Proteases
Authors: Alexander A. Osmolovskiy, Anastasia V. Orekhova, Daria M. Bednenko, Yelyzaveta Boiko
Abstract:
Micromycetes from Aspergillus genus can produce proteases capable of promoting proteolysis of hemostasis proteins or, along with hydrolytic activity, to show the ability to convert proenzymes of this system activating them into an active form. At the same time, practical medicine needs specific activators for quantitation of the level of some plasma enzymes, especially protein C and factor X, the lack of which leads to the development of thromboembolic diseases. Thus, some micromycetes of the genus Aspergillus were screened for the ability to synthesize extracellular proteases with promising activity for designing anti-thrombotic and diagnostic preparations. Such standard methods like salting out, electrophoresis, isoelectrofocusing were used for isolation, purification and study of physicochemical properties of proteases. Enzyme activity was measured spectrophotometrically fibrin as a substrate of the reaction and chromogenic peptide substrates of different proteases of the human hemostasis system. As a result of the screening, four active producers were selected: Aspergillus janus 301, A. flavus 1, A. terreus 2, and A. ochraceus L-1. The enzyme of A. janus 301 showed the greatest fibrinolytic activity (around 329.2 μmol Tyr/(ml × min)). The protease produced by A. terreus 2 had the highest plasmin-like activity (54.1 nmol pNA/(ml × min)), but fibrinolytic activity was lower than A. janus 301 demonstrated (25.2 μmol Tyr/(ml × min)). For extracellular protease of micromycete A. flavus a high plasmin-like activity was also shown (39.8 nmol pNA / (ml × min)). Moreover, according to our results proteases one of the fungi - A. terreus 2 were able to activate protein C of human plasma - the key factor of the human anticoagulant hemostasis system. This type of activity was 39.8 nmol pNA/(ml × min)). It was also shown that A. ochraceus L-1 could produce extracellular proteases with protein C and factor X activator activities (65.9 nmol pNA/(ml × min) and 34.6 nmol pNA/(ml × min) respectively). The maximum accumulation of the proteases falls on the 4th day of cultivation. Using isoelectrofocusing was demonstrated that the activation of both proenzymes might proceed via limited proteolysis induced by proteases of A. ochraceus L-1. The activatory activity of A. ochraceus L-1 proteases toward essential hemostatic proenzymes, protein C and X factor may be useful for practical needs. It is well known that similar enzymes, activators of protein C and X factor isolated from snake venom, South American copperhead Agkistrodon contortrix contortrix and Russell’s viper Daboia russelli russeli, respectively, are used for the in vitro diagnostics of the functional state of these proteins in blood plasma. Thus, the proteases of Aspergillus genus can be used as cheap components for enzyme thrombolytic preparations.Keywords: anti-trombotic drugs, fibrinolysis, diagnostics, proteases, micromycetes
Procedia PDF Downloads 134323 Seismic Impact and Design on Buried Pipelines
Authors: T. Schmitt, J. Rosin, C. Butenweg
Abstract:
Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety, but in particular for the maintenance of supply infrastructure after an earthquake. Past earthquakes have shown the vulnerability of pipeline systems. After the Kobe earthquake in Japan in 1995 for instance, in some regions the water supply was interrupted for almost two months. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. Buried pipelines are exposed to different effects of seismic impacts. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. Other effects are permanent displacements due to fault rupture displacements at the surface, soil liquefaction, landslides and seismic soil compaction. The presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, soil depth and selected displacement time histories. In the computer model, the interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs. A propagating wave is simulated affecting the pipeline punctually independently in time and space. The resulting stresses mainly are caused by displacement differences of neighboring pipeline segments and by soil-structure interaction. The calculation examples focus on pipeline bends as the most critical parts. Special attention is given to the calculation of long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which in the event of an earthquake lead to high bending stresses at the cross-section of the pipeline. Therefore, Karman's elasticity factors, as well as the stress intensity factors for curved pipe sections, must be taken into account. The seismic verification of the pipeline for wave propagation in the soil can be achieved by observing normative strain criteria. Finally, an interpretation of the results and recommendations are given taking into account the most critical parameters.Keywords: buried pipeline, earthquake, seismic impact, transient displacement
Procedia PDF Downloads 187322 Analysis and Modeling of Graphene-Based Percolative Strain Sensor
Authors: Heming Yao
Abstract:
Graphene-based percolative strain gauges could find applications in many places such as touch panels, artificial skins or human motion detection because of its advantages over conventional strain gauges such as flexibility and transparency. These strain gauges rely on a novel sensing mechanism that depends on strain-induced morphology changes. Once a compression or tension strain is applied to Graphene-based percolative strain gauges, the overlap area between neighboring flakes becomes smaller or larger, which is reflected by the considerable change of resistance. Tiny strain change on graphene-based percolative strain sensor can act as an important leverage to tremendously increase resistance of strain sensor, which equipped graphene-based percolative strain gauges with higher gauge factor. Despite ongoing research in the underlying sensing mechanism and the limits of sensitivity, neither suitable understanding has been obtained of what intrinsic factors play the key role in adjust gauge factor, nor explanation on how the strain gauge sensitivity can be enhanced, which is undoubtedly considerably meaningful and provides guideline to design novel and easy-produced strain sensor with high gauge factor. We here simulated the strain process by modeling graphene flakes and its percolative networks. We constructed the 3D resistance network by simulating overlapping process of graphene flakes and interconnecting tremendous number of resistance elements which were obtained by fractionizing each piece of graphene. With strain increasing, the overlapping graphenes was dislocated on new stretched simulation graphene flake simulation film and a new simulation resistance network was formed with smaller flake number density. By solving the resistance network, we can get the resistance of simulation film under different strain. Furthermore, by simulation on possible variable parameters, such as out-of-plane resistance, in-plane resistance, flake size, we obtained the changing tendency of gauge factor with all these variable parameters. Compared with the experimental data, we verified the feasibility of our model and analysis. The increase of out-of-plane resistance of graphene flake and the initial resistance of sensor, based on flake network, both improved gauge factor of sensor, while the smaller graphene flake size gave greater gauge factor. This work can not only serve as a guideline to improve the sensitivity and applicability of graphene-based strain sensors in the future, but also provides method to find the limitation of gauge factor for strain sensor based on graphene flake. Besides, our method can be easily transferred to predict gauge factor of strain sensor based on other nano-structured transparent optical conductors, such as nanowire and carbon nanotube, or of their hybrid with graphene flakes.Keywords: graphene, gauge factor, percolative transport, strain sensor
Procedia PDF Downloads 416321 Control of Helminthosporiosis in Oryza sativa Varieties Treated with 24-Epibrassinolide
Authors: Kuate Tueguem William Norbert, Ngoh Dooh Jules Patrice, Kone Sangou Abdou Nourou, Mboussi Serge Bertrand, Chewachang Godwill Mih, Essome Sale Charles, Djuissi Tohoto Doriane, Ambang Zachee
Abstract:
The objectives of this study were to evaluate the effects of foliar application of 24-epibrassinolide (EBR) on the development of rice helminthosporiosis caused by Bipolaris oryzae and its influence on the improvement of growth parameters and induction of the synthesis of defense substances in the rice plants. The experimental asset up involved a multifactorial split-plot with two varieties (NERICA 3 and local variety KAMKOU) and five treatments (T0: control, T1: EBR, T2: BANKO PLUS (fungicide), T3: NPK (chemical fertilizer), T4: mixture: NPK + BANKO PLUS + EBR) with three repetitions. Agro-morphological and epidemiological parameters, as well as substances for plant resistance, were evaluated over two growing seasons. The application of the EBR induced significant growth of the rice plants for the 2015 and 2016 growing seasons on the two varieties tested compared to the T0 treatment. At 74 days after sowing (DAS), NERICA 3 showed plant heights of 58.9 ± 5.4; 83.1 ± 10.4; 86.01 ± 9.4; 69.4 ± 11.1 and 87.12 ± 7.4 cm at T0; T1; T2; T3, and T4, respectively. Plant height for the variety KAMKOU varied from 87,12 ± 8,1; 88.1 ± 8.1 and 92.02 ± 6.3 cm in T1, T2, and T3 to 74.1 ± 8.6 and 74.21 ± 11.4 cm in T0 and T3. In accordance with the low rate of expansion of helminthosporiosis in experimental plots, EBR (T1) significantly reduced the development of the disease with severities of 0.0; 1.29, and 2.04%, respectively at 78; 92, and 111 DAS on the variety NERICA 3 compared with1; 3.15 and 3.79% in the control T0. The reduction of disease development/severity as a result of the application of EBR is due to the induction of acquired resistance of rice varieties through increased phenol (13.73 eqAG/mg/PMF) and total protein (117.89 eqBSA/mg/PMF) in the T1 treatment against 5.37 eqAG/mg/PMF and 104.97 eqBSA/mg/PMF in T0 for the NERICA 3 variety. Similarly, on the KAMKOU variety, 148.53 eqBSA/mg/PMF were protein and 6.10 eqAG/mg/PMF of phenol in T1. In summary, the results show the significant effect of EBR on plant growth, yield, synthesis of secondary metabolites and defense proteins, and disease resistance. The EBR significantly reduced losses of rice grains by causing an average gain of about 1.55 t/ha compared to the control and 1.00 t/ha compared to the NPK-based treatment for the two varieties studied. Further, the enzymatic activities of PPOs, POXs, and PR2s were higher in leaves from treated EBR-based plants. These results show that 24-epibrassinolide can be used in the control of helminthosporiosis of rice to reduce disease and increase yields.Keywords: Oryza sativa, 24-epibrassinolide, helminthosporiosis, secondary metabolites, PR proteins, acquired resistance
Procedia PDF Downloads 188