Search results for: comprehensive CFD model
15139 Relations between the Internal Employment Conditions of International Organizations and the Characteristics of the National Civil Service
Authors: Renata Hrecska
Abstract:
This research seeks to fully examine the internal employment law of international organizations by comparing it with the characteristics of the national civil service. The aim of the research is to compare the legal system that has developed over many centuries and the relatively new internal staffing regulations to find out what solution schemes can help each other through mutual legal development in order to respond effectively to the social challenges of everyday life. Generally, the rules of civil service of any country or international entity have in common that they have, in their pragmatics inherently, the characteristic that makes them serving public interests. Though behind the common base there are many differences: there is the clear fragmentation of state regulation and the unity of organizational regulation. On the other hand, however, this difference disappears to some extent: the public service regulation of international organizations can be considered uniform until we examine it within, but not outside an organization. As soon as we compare the different organizations we may find many different solutions for staffing regulations. It is clear that the national civil service is a strong model for international organizations, but the question may be whether the staffing policy of international organizations can serve the national civil service as an example, too. In this respect, the easiest way to imagine a legislative environment would be to have a single comprehensive code, the general part of which is the Civil Service Act itself, and the specific part containing specific, necessarily differentiating rules for each layer of the civil service. Would it be advantageous to follow the footsteps of the leading international organizations, or is there any speciality in national level civil service that we cannot avoid during regulating processes? In addition to the above, the personal competencies of officials working in international organizations and public administrations also show a high degree of similarity, regardless of the type of employment. Thus, the whole public service system is characterized by the fundamental and special values that a person capable of holding a public office must be able to demonstrate, in some cases, even without special qualifications. It is also interesting how we can compare the two spheres of employment in light of the theory of Lawyer Louis Brandeis, a judge at the US Supreme Court, who formulated a complex theory of profession as distinguished from other occupations. From this point of view we can examine the continuous development of research and specialized knowledge at work; the community recognition and social status; that to what extent we can see a close-knit professional organization of altruistic philosophy; that how stability grows in the working conditions due to the stability of the profession; and that how the autonomy of the profession can prevail.Keywords: civil service, comparative law, international organizations, regulatory systems
Procedia PDF Downloads 13515138 A Modular and Reusable Bond Graph Model of Epithelial Transport in the Proximal Convoluted Tubule
Authors: Leyla Noroozbabaee, David Nickerson
Abstract:
We introduce a modular, consistent, reusable bond graph model of the renal nephron’s proximal convoluted tubule (PCT), which can reproduce biological behaviour. In this work, we focus on ion and volume transport in the proximal convoluted tubule of the renal nephron. Modelling complex systems requires complex modelling problems to be broken down into manageable pieces. This can be enabled by developing models of subsystems that are subsequently coupled hierarchically. Because they are based on a graph structure. In the current work, we define two modular subsystems: the resistive module representing the membrane and the capacitive module representing solution compartments. Each module is analyzed based on thermodynamic processes, and all the subsystems are reintegrated into circuit theory in network thermodynamics. The epithelial transport system we introduce in the current study consists of five transport membranes and four solution compartments. Coupled dissipations in the system occur in the membrane subsystems and coupled free-energy increasing, or decreasing processes appear in solution compartment subsystems. These structural subsystems also consist of elementary thermodynamic processes: dissipations, free-energy change, and power conversions. We provide free and open access to the Python implementation to ensure our model is accessible, enabling the reader to explore the model through setting their simulations and reproducibility tests.Keywords: Bond Graph, Epithelial Transport, Water Transport, Mathematical Modeling
Procedia PDF Downloads 8915137 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques
Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel
Abstract:
Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis
Procedia PDF Downloads 71715136 Quantitative Assessment of Road Infrastructure Health Using High-Resolution Remote Sensing Data
Authors: Wang Zhaoming, Shao Shegang, Chen Xiaorong, Qi Yanan, Tian Lei, Wang Jian
Abstract:
This study conducts a comparative analysis of the spectral curves of asphalt pavements at various aging stages to improve road information extraction from high-resolution remote sensing imagery. By examining the distinguishing capabilities and spectral characteristics, the research aims to establish a pavement information extraction methodology based on China's high-resolution satellite images. The process begins by analyzing the spectral features of asphalt pavements to construct a spectral assessment model suitable for evaluating pavement health. This model is then tested at a national highway traffic testing site in China, validating its effectiveness in distinguishing different pavement aging levels. The study's findings demonstrate that the proposed model can accurately assess road health, offering a valuable tool for road maintenance planning and infrastructure management.Keywords: spectral analysis, asphalt pavement aging, high-resolution remote sensing, pavement health assessment
Procedia PDF Downloads 2415135 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases
Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal
Abstract:
Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN
Procedia PDF Downloads 6615134 Designing an Agent-Based Model of SMEs to Assess Flood Response Strategies and Resilience
Authors: C. Li, G. Coates, N. Johnson, M. Mc Guinness
Abstract:
In the UK, flooding is responsible for significant losses to the economy due to the impact on businesses, the vast majority of which are Small and Medium Enterprises (SMEs). Businesses of this nature tend to lack formal plans to aid their response to and recovery from disruptive events such as flooding. This paper reports on work on how an agent-based model (ABM) is being developed based on interview data gathered from SMEs at-risk of flooding and/or have direct experience of flooding. The ABM will enable simulations to be performed allowing investigations of different response strategies which SMEs may employ to lessen the impact of flooding, thus strengthening their resilience.Keywords: ABM, flood response, SMEs, business continuity
Procedia PDF Downloads 31515133 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering
Abstract:
Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.Keywords: carbon composite, fault detection, fault identification, particle filter
Procedia PDF Downloads 19615132 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor
Authors: Barenten Suciu
Abstract:
In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor
Procedia PDF Downloads 27815131 Modeling Usage Patterns of Mobile App Service in App Market Using Hidden Markov Model
Authors: Yangrae Cho, Jinseok Kim, Yongtae Park
Abstract:
Mobile app service ecosystem has been abruptly emerged, explosively grown, and dynamically transformed. In contrast with product markets in which product sales directly cause increment in firm’s income, customer’s usage is less visible but more valuable in service market. Especially, the market situation with cutthroat competition in mobile app store makes securing and keeping of users as vital. Although a few service firms try to manage their apps’ usage patterns by fitting on S-curve or applying other forecasting techniques, the time series approaches based on past sequential data are subject to fundamental limitation in the market where customer’s attention is being moved unpredictably and dynamically. We therefore propose a new conceptual approach for detecting usage pattern of mobile app service with Hidden Markov Model (HMM) which is based on the dual stochastic structure and mainly used to clarify unpredictable and dynamic sequential patterns in voice recognition or stock forecasting. Our approach could be practically utilized for app service firms to manage their services’ lifecycles and academically expanded to other markets.Keywords: mobile app service, usage pattern, Hidden Markov Model, pattern detection
Procedia PDF Downloads 33915130 Modeling and Optimization of Nanogenerator for Energy Harvesting
Authors: Fawzi Srairi, Abderrahmane Dib
Abstract:
Recently, the desire for a self-powered micro and nanodevices has attracted a great interest of using sustainable energy sources. Further, the ultimate goal of nanogenerator is to harvest energy from the ambient environment in which a self-powered device based on these generators is needed. With the development of nanogenerator-based circuits design and optimization, the building of new device simulator is necessary for the study and the synthesis of electromechanical parameters of this type of models. In the present article, both numerical modeling and optimization of piezoelectric nanogenerator based on zinc oxide have been carried out. They aim to improve the electromechanical performances, robustness, and synthesis process for nanogenerator. The proposed model has been developed for a systematic study of the nanowire morphology parameters in stretching mode. In addition, heuristic optimization technique, namely, particle swarm optimization has been implemented for an analytic modeling and an optimization of nanogenerator-based process in stretching mode. Moreover, the obtained results have been tested and compared with conventional model where a good agreement has been obtained for excitation mode. The developed nanogenerator model can be generalized, extended and integrated into simulators devices to study nanogenerator-based circuits.Keywords: electrical potential, heuristic algorithms, numerical modeling, nanogenerator
Procedia PDF Downloads 31215129 Assessing Functional Structure in European Marine Ecosystems Using a Vector-Autoregressive Spatio-Temporal Model
Authors: Katyana A. Vert-Pre, James T. Thorson, Thomas Trancart, Eric Feunteun
Abstract:
In marine ecosystems, spatial and temporal species structure is an important component of ecosystems’ response to anthropological and environmental factors. Although spatial distribution patterns and fish temporal series of abundance have been studied in the past, little research has been allocated to the joint dynamic spatio-temporal functional patterns in marine ecosystems and their use in multispecies management and conservation. Each species represents a function to the ecosystem, and the distribution of these species might not be random. A heterogeneous functional distribution will lead to a more resilient ecosystem to external factors. Applying a Vector-Autoregressive Spatio-Temporal (VAST) model for count data, we estimate the spatio-temporal distribution, shift in time, and abundance of 140 species of the Eastern English Chanel, Bay of Biscay and Mediterranean Sea. From the model outputs, we determined spatio-temporal clusters, calculating p-values for hierarchical clustering via multiscale bootstrap resampling. Then, we designed a functional map given the defined cluster. We found that the species distribution within the ecosystem was not random. Indeed, species evolved in space and time in clusters. Moreover, these clusters remained similar over time deriving from the fact that species of a same cluster often shifted in sync, keeping the overall structure of the ecosystem similar overtime. Knowing the co-existing species within these clusters could help with predicting data-poor species distribution and abundance. Further analysis is being performed to assess the ecological functions represented in each cluster.Keywords: cluster distribution shift, European marine ecosystems, functional distribution, spatio-temporal model
Procedia PDF Downloads 19815128 An Optimization Model for the Arrangement of Assembly Areas Considering Time Dynamic Area Requirements
Authors: Michael Zenker, Henrik Prinzhorn, Christian Böning, Tom Strating
Abstract:
Large-scale products are often assembled according to the job-site principle, meaning that during the assembly the product is located at a fixed position, while the area requirements are constantly changing. On one hand, the product itself is growing with each assembly step, whereas varying areas for storage, machines or working areas are temporarily required. This is an important factor when arranging products to be assembled within the factory. Currently, it is common to reserve a fixed area for each product to avoid overlaps or collisions with the other assemblies. Intending to be large enough to include the product and all adjacent areas, this reserved area corresponds to the superposition of the maximum extents of all required areas of the product. In this procedure, the reserved area is usually poorly utilized over the course of the entire assembly process; instead a large part of it remains unused. If the available area is a limited resource, a systematic arrangement of the products, which complies with the dynamic area requirements, will lead to an increased area utilization and productivity. This paper presents the results of a study on the arrangement of assembly objects assuming dynamic, competing area requirements. First, the problem situation is extensively explained, and existing research on associated topics is described and evaluated on the possibility of an adaptation. Then, a newly developed mathematical optimization model is introduced. This model allows an optimal arrangement of dynamic areas, considering logical and practical constraints. Finally, in order to quantify the potential of the developed method, some test series results are presented, showing the possible increase in area utilization.Keywords: dynamic area requirements, facility layout problem, optimization model, product assembly
Procedia PDF Downloads 23515127 Dynamic Simulation for Surface Wear Prognosis of the Main Bearings in the Internal Combustion Engine
Authors: Yanyan Zhang, Ziyu Diao, Zhentao Liu, Ruidong Yan
Abstract:
The wear character of the main bearing is one of the critical indicators for the overhaul of an internal combustion engine, and the aim of this paper is to reveal the dynamic wear mechanism of the main bearings. A numerical simulation model combined multi-body dynamic equations of the engine, the average Reynolds equations of the bearing lubricant, asperity contact and wear model of the joint surfaces were established under typical operating conditions. The wear results were verified by experimental data, and then the influence of operating conditions, bearing clearance and cylinder pressure on the wear character of selected main bearings were analyzed. The results show that the contribution degree of different working conditions on the wear profile and depth of each bearing is obviously different, and the increase of joint clearance or cylinder pressure will accelerate the wear. The numerical model presented can be used to wear prognosis for joints and provide guidance for optimization design of sliding bearings.Keywords: dynamic simulation, multi-body dynamics, sliding bearing, surface wear
Procedia PDF Downloads 15115126 Harmonization of State Law and Local Laws in Coastal and Marine Areas Management
Authors: N. S. B. Ambarini, Tito Sofyan, Edra Satmaidi
Abstract:
Coastal and marine are two potential natural resource one of the pillars of the national economy. The Indonesian archipelago has marine and coastal which is quite spacious. Various important natural resources such as fisheries, mining and so on are in coastal areas and the sea, so that this region is a unique area with a variety of interests to exploit it. Therefore, to preserve a sustainable manner need good management and comprehensive. To the national and local level legal regulations have been published relating to the management of coastal and marine areas. However, in practice it has not been able to function optimally. Substantially has not touched the problems of the region, especially concerning the interests of local communities (local). This study is a legal non-doctrinal approach to socio-legal studies. Based on the results of research in some coastal and marine areas in Bengkulu province - Indonesia, there is a fact that the system of customary law and local wisdom began to weaken implementation. Therefore harmonization needs to be done in implementing laws and regulations that apply to the values of indigenous and local knowledge that exists in the community.Keywords: coastal and marine, harmonization, law, local
Procedia PDF Downloads 34915125 A Fuzzy Hybrıd Decısıon Support System for Naval Base Place Selectıon in a Foreıgn Country
Authors: Latif Yanar, Muharrem Kaçan
Abstract:
In this study, an Analytic Hierarchy Process and Analytic Network Process Decision Support System (DSS) model for determination of a navy base place in another country is proposed together with a decision support software (DESTEC 1.0) developed using C Sharp programming language. The proposed software also has the ability of performing the fuzzy models (Fuzzy AHP and Fuzzy ANP) of the proposed DSS to cope with the ambiguous and linguistic nature of the model. The AHP and ANP model, for a decision support for selecting the best place among the alternatives, including the criteria and alternatives, is developed and solved by the experts from Turkish Navy and Turkish academicians related to international relations branches of the universities in Turkey. Also, the questionnaires used for weighting of the criteria and the alternatives are filled by these experts.Some of our alternatives are: economic and political stability of the third country, the effect of another super power in that country, historical relations, security in that country, social facilities in the city in which the base will be built, the transportation security and difficulty from a main city that have an airport to the city will have the base etc. Over 20 criteria like these are determined which are categorized in social, political, economic and military aspects. As a result all the criteria and three alternatives are evaluated by different people who have background and experience to weight the criteria and alternatives as it must be in AHP and ANP evaluation system. The alternatives got their degrees all between 0 – 1 and the total is 1. At the end the DSS advices one of the alternatives as the best one to the decision maker according to the developed model and the evaluations of the experts.Keywords: analytic hierarchical process, analytic network process, fuzzy logic, naval base place selection, multiple criteria decision making
Procedia PDF Downloads 39315124 Dry Friction Fluctuations in Plain Journal Bearings
Authors: James Moran, Anusarn Permsuwan
Abstract:
This paper compares oscillations in the dry friction coefficient in different journal bearings. Measurements are made of the average and standard deviation in the coefficient of friction as a function of sliding velocity. The standard deviation of the friction coefficient changed dramatically with sliding velocity. The magnitude and frequency of the oscillations were a function of the velocity. A numerical model was developed for the frictional oscillations. There was good agreement between the model and results. Five different materials were used as the sliding surfaces in the experiments, Aluminum, Bronze, Mild Steel, Stainless Steel, and Nylon.Keywords: Coulomb friction, dynamic friction, non-lubricated bearings, frictional oscillations
Procedia PDF Downloads 37015123 Remote Criminal Proceedings as Implication to Rethink the Principles of Criminal Procedure
Authors: Inga Žukovaitė
Abstract:
This paper aims to present postdoc research on remote criminal proceedings in court. In this period, when most countries have introduced the possibility of remote criminal proceedings in their procedural laws, it is not only possible to identify the weaknesses and strengths of the legal regulation but also assess the effectiveness of the instrument used and to develop an approach to the process. The example of some countries (for example, Italy) shows, on the one hand, that criminal procedure, based on orality and immediacy, does not lend itself to easy modifications that pose even a slight threat of devaluation of these principles in a society with well-established traditions of this procedure. On the other hand, such strong opposition and criticism make us ask whether we are facing the possibility of rethinking the traditional ways to understand the safeguards in order to preserve their essence without devaluing their traditional package but looking for new components to replace or compensate for the so-called “loss” of safeguards. The reflection on technological progress in the field of criminal procedural law indicates the need to rethink, on the basis of fundamental procedural principles, the safeguards that can replace or compensate for those that are in crisis as a result of the intervention of technological progress. Discussions in academic doctrine on the impact of technological interventions on the proceedings as such or on the limits of such interventions refer to the principles of criminal procedure as to a point of reference. In the context of the inferiority of technology, scholarly debate still addresses the issue of whether the court will not gradually become a mere site for the exercise of penal power with the resultant consequences – the deformation of the procedure itself as a physical ritual. In this context, this work seeks to illustrate the relationship between remote criminal proceedings in court and the principle of immediacy, the concept of which is based on the application of different models of criminal procedure (inquisitorial and adversarial), the aim is to assess the challenges posed for legal regulation by the interaction of technological progress with the principles of criminal procedure. The main hypothesis to be tested is that the adoption of remote proceedings is directly linked to the prevailing model of criminal procedure, arguing that the more principles of the inquisitorial model are applied to the criminal process, the more remote criminal trial is acceptable, and conversely, the more the criminal process is based on an adversarial model, more the remote criminal process is seen as incompatible with the principle of immediacy. In order to achieve this goal, the following tasks are set: to identify whether there is a difference in assessing remote proceedings with the immediacy principle between the adversarial model and the inquisitorial model, to analyse the main aspects of the regulation of remote criminal proceedings based on the examples of different countries (for example Lithuania, Italy, etc.).Keywords: remote criminal proceedings, principle of orality, principle of immediacy, adversarial model inquisitorial model
Procedia PDF Downloads 7015122 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache
Abstract:
This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting
Procedia PDF Downloads 5715121 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups
Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski
Abstract:
In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection
Procedia PDF Downloads 14715120 Bathymetric Change of Brahmaputra River and Its Influence on Flooding Scenario
Authors: Arup Kumar Sarma, Rohan Kar
Abstract:
The development of physical model of River like Brahmaputra, which finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh, is always expensive and very much time consuming. With the advancement of computational technique, mathematical modeling has found wide application. MIKE 21C is one such commercial software, developed by Danish Hydraulic Institute (DHI), with the depth-averaged approach and a two-dimensional curvilinear finite-difference model, which is capable of modeling hydrodynamic and morphological processes with some limitations. The main purpose of this study are to generate bathymetry of the River Brahmaputra starting from “Sadia” at upstream to “Dhubri,” at downstream stretching a distance of approximately 695 km, for four different years: 1957, 1971, 1977, and 1981 over the grid generated in the MIKE 21C and to carry out the hydrodynamic simulation for these years to analyze the effect of bathymetry change on the surface water elevation. The study has established that bathymetric change can influence the flood level significantly in some of the river reaches and therefore the modification or updating of regular bathymetry is very much essential for the reliable flood routing in alluvial rivers.Keywords: bathymetry, brahmaputra river, hydrodynamic model, surface water elevation
Procedia PDF Downloads 45815119 Supersymmetry versus Compositeness: 2-Higgs Doublet Models Tell the Story
Authors: S. De Curtis, L. Delle Rose, S. Moretti, K. Yagyu
Abstract:
Supersymmetry and compositeness are the two prevalent paradigms providing both a solution to the hierarchy problem and motivation for a light Higgs boson state. An open door towards the solution is found in the context of 2-Higgs Doublet Models (2HDMs), which are necessary to supersymmetry and natural within compositeness in order to enable Electro-Weak Symmetry Breaking. In scenarios of compositeness, the two isospin doublets arise as pseudo Nambu-Goldstone bosons from the breaking of SO(6). By calculating the Higgs potential at one-loop level through the Coleman-Weinberg mechanism from the explicit breaking of the global symmetry induced by the partial compositeness of fermions and gauge bosons, we derive the phenomenological properties of the Higgs states and highlight the main signatures of this Composite 2-Higgs Doublet Model at the Large Hadron Collider. These include modifications to the SM-like Higgs couplings as well as production and decay channels of heavier Higgs bosons. We contrast the properties of this composite scenario to the well-known ones established in supersymmetry, with the MSSM being the most notorious example. We show how 2HDM spectra of masses and couplings accessible at the Large Hadron Collider may allow one to distinguish between the two paradigms.Keywords: beyond the standard model, composite Higgs, supersymmetry, Two-Higgs Doublet Model
Procedia PDF Downloads 12815118 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor
Authors: Yash Jain
Abstract:
The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier
Procedia PDF Downloads 16615117 Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand
Authors: A. C. Galvis-Castro, R. D. Tovar, R. Salgado, M. Prezzi
Abstract:
It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles.Keywords: digital image correlation, piles, sand, shaft resistance
Procedia PDF Downloads 27415116 Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide
Authors: Ude N. Callistus, Amulu F. Ndidi, Onukwuli D. Okechukwu, Amulu E. Patrick
Abstract:
Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 oC. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr-1g-1cat, obtained at the temperature of 65 oC best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction.Keywords: refined cottonseed oil, transesterification, CaO, heterogeneous catalysts, kinetic model
Procedia PDF Downloads 54715115 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning
Procedia PDF Downloads 11415114 Thermal Instability in Rivlin-Ericksen Elastico-Viscous Nanofluid with Connective Boundary Condition: Effect of Vertical Throughflow
Authors: Shivani Saini
Abstract:
The effect of vertical throughflow on the onset of convection in Rivlin-Ericksen Elastico-Viscous nanofluid with convective boundary condition is investigated. The flow is stimulated with modified Darcy model under the assumption that the nanoparticle volume fraction is not actively managed on the boundaries. The heat conservation equation is formulated by introducing the convective term of nanoparticle flux. A linear stability analysis based upon normal mode is performed, and an approximate solution of eigenvalue problems is obtained using the Galerkin weighted residual method. Investigation of the dependence of the Rayleigh number on various viscous and nanofluid parameter is performed. It is found that through flow and nanofluid parameters hasten the convection while capacity ratio, kinematics viscoelasticity, and Vadasz number do not govern the stationary convection. Using the convective component of nanoparticle flux, critical wave number is the function of nanofluid parameters as well as the throughflow parameter. The obtained solution provides important physical insight into the behavior of this model.Keywords: Darcy model, nanofluid, porous layer, throughflow
Procedia PDF Downloads 14015113 Case Study about Women Driving in Saudi Arabia Announced in 2018: Netnographic and Data Mining Study
Authors: Majdah Alnefaie
Abstract:
The ‘netnographic study’ and data mining have been used to monitor the public interaction on Social Media Sites (SMSs) to understand what the motivational factors influence the Saudi intentions regarding allowing women driving in Saudi Arabia in 2018. The netnographic study monitored the publics’ textual and visual communications in Twitter, Snapchat, and YouTube. SMSs users’ communications method is also known as electronic word of mouth (eWOM). Netnography methodology is still in its initial stages as it depends on manual extraction, reading and classification of SMSs users text. On the other hand, data mining is come from the computer and physical sciences background, therefore it is much harder to extract meaning from unstructured qualitative data. In addition, the new development in data mining software does not support the Arabic text, especially local slang in Saudi Arabia. Therefore, collaborations between social and computer scientists such as ‘netnographic study’ and data mining will enhance the efficiency of this study methodology leading to comprehensive research outcome. The eWOM communications between individuals on SMSs can promote a sense that sharing their preferences and experiences regarding politics and social government regulations is a part of their daily life, highlighting the importance of using SMSs as assistance in promoting participation in political and social. Therefore, public interactions on SMSs are important tools to comprehend people’s intentions regarding the new government regulations in the country. This study aims to answer this question, "What factors influence the Saudi Arabians' intentions of Saudi female's car-driving in 2018". The study utilized qualitative method known as netnographic study. The study used R studio to collect and analyses 27000 Saudi users’ comments from 25th May until 25th June 2018. The study has developed data collection model that support importing and analysing the Arabic text in the local slang. The data collection model in this study has been clustered based on different type of social networks, gender and the study main factors. The social network analysis was employed to collect comments from SMSs owned by governments’ originations, celebrities, vloggers, social activist and news SMSs accounts. The comments were collected from both males and females SMSs users. The sentiment analysis shows that the total number of positive comments Saudi females car driving was higher than negative comments. The data have provided the most important factors influenced the Saudi Arabians’ intention of Saudi females car driving including, culture and environment, freedom of choice, equal opportunities, security and safety. The most interesting finding indicted that women driving would play a role in increasing the individual freedom of choice. Saudi female will be able to drive cars to fulfill her daily life and family needs without being stressed due to the lack of transportation. The study outcome will help Saudi government to improve woman quality of life by increasing the ability to find more jobs and studies, increasing income through decreasing the spending on transport means such as taxi and having more freedom of choice in woman daily life needs. The study enhances the importance of using use marketing research to measure the public opinions on the new government regulations in the country. The study has explained the limitations and suggestions for future research.Keywords: netnographic study, data mining, social media, Saudi Arabia, female driving
Procedia PDF Downloads 15515112 A Hybrid of BioWin and Computational Fluid Dynamics Based Modeling of Biological Wastewater Treatment Plants for Model-Based Control
Authors: Komal Rathore, Kiesha Pierre, Kyle Cogswell, Aaron Driscoll, Andres Tejada Martinez, Gita Iranipour, Luke Mulford, Aydin Sunol
Abstract:
Modeling of Biological Wastewater Treatment Plants requires several parameters for kinetic rate expressions, thermo-physical properties, and hydrodynamic behavior. The kinetics and associated mechanisms become complex due to several biological processes taking place in wastewater treatment plants at varying times and spatial scales. A dynamic process model that incorporated the complex model for activated sludge kinetics was developed using the BioWin software platform for an Advanced Wastewater Treatment Plant in Valrico, Florida. Due to the extensive number of tunable parameters, an experimental design was employed for judicious selection of the most influential parameter sets and their bounds. The model was tuned using both the influent and effluent plant data to reconcile and rectify the forecasted results from the BioWin Model. Amount of mixed liquor suspended solids in the oxidation ditch, aeration rates and recycle rates were adjusted accordingly. The experimental analysis and plant SCADA data were used to predict influent wastewater rates and composition profiles as a function of time for extended periods. The lumped dynamic model development process was coupled with Computational Fluid Dynamics (CFD) modeling of the key units such as oxidation ditches in the plant. Several CFD models that incorporate the nitrification-denitrification kinetics, as well as, hydrodynamics was developed and being tested using ANSYS Fluent software platform. These realistic and verified models developed using BioWin and ANSYS were used to plan beforehand the operating policies and control strategies for the biological wastewater plant accordingly that further allows regulatory compliance at minimum operational cost. These models, with a little bit of tuning, can be used for other biological wastewater treatment plants as well. The BioWin model mimics the existing performance of the Valrico Plant which allowed the operators and engineers to predict effluent behavior and take control actions to meet the discharge limits of the plant. Also, with the help of this model, we were able to find out the key kinetic and stoichiometric parameters which are significantly more important for modeling of biological wastewater treatment plants. One of the other important findings from this model were the effects of mixed liquor suspended solids and recycle ratios on the effluent concentration of various parameters such as total nitrogen, ammonia, nitrate, nitrite, etc. The ANSYS model allowed the abstraction of information such as the formation of dead zones increases through the length of the oxidation ditches as compared to near the aerators. These profiles were also very useful in studying the behavior of mixing patterns, effect of aerator speed, and use of baffles which in turn helps in optimizing the plant performance.Keywords: computational fluid dynamics, flow-sheet simulation, kinetic modeling, process dynamics
Procedia PDF Downloads 21315111 Supply Air Pressure Control of HVAC System Using MPC Controller
Authors: P. Javid, A. Aeenmehr, J. Taghavifar
Abstract:
In this paper, supply air pressure of HVAC system has been modeled with second-order transfer function plus dead-time. In HVAC system, the desired input has step changes, and the output of proposed control system should be able to follow the input reference, so the idea of using model based predictive control is proceeded and designed in this paper. The closed loop control system is implemented in MATLAB software and the simulation results are provided. The simulation results show that the model based predictive control is able to control the plant properly.Keywords: air conditioning system, GPC, dead time, air supply control
Procedia PDF Downloads 52915110 Maackiain Attenuates Alpha-Synuclein Accumulation and Improves 6-OHDA-Induced Dopaminergic Neuron Degeneration in Parkinson's Disease Animal Model
Authors: Shao-Hsuan Chien, Ju-Hui Fu
Abstract:
Parkinson’s disease (PD) is a degenerative disorder of the central nervous system that is characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta and motor impairment. Aggregation of α-synuclein in neuronal cells plays a key role in this disease. At present, therapeutics for PD provides moderate symptomatic benefit but is not able to delay the development of this disease. Current efforts for the treatment of PD are to identify new drugs that show slow or arrest progressive course of PD by interfering with a disease-specific pathogenetic process in PD patients. Maackiain is a bioactive compound isolated from the roots of the Chinese herb Sophora flavescens. The purpose of the present study was to assess the potential for maackiain to ameliorate PD in Caenorhabditis elegans models. Our data reveal that maackiain prevents α-synuclein accumulation in the transgenic Caenorhabditis elegans model and also improves dopaminergic neuron degeneration, food-sensing behavior, and life-span in 6-hydroxydopamine-induced Caenorhabditis elegans model, thus indicating its potential as a candidate antiparkinsonian drug.Keywords: maackiain, Parkinson’s disease, dopaminergic neurons, α-Synuclein
Procedia PDF Downloads 201