Search results for: practical approach to reducing insecurity
15076 New Approach for Load Modeling
Authors: Slim Chokri
Abstract:
Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression
Procedia PDF Downloads 43515075 Impact Assessment of Lean Practices on Social Sustainability Indicators: An Approach Using ISM Method
Authors: Aline F. Marcon, Eduardo F. da Silva, Marina Bouzon
Abstract:
The impact of lean management on environmental sustainability is the research line that receives the most attention from academicians. Therefore, the social dimension of sustainable development has so far received less attention. This paper aims to evaluate the impact of intra-plant lean manufacturing practices on social sustainability indicators extracted from the Global Reporting Initiative (GRI) parameters. The method is two-phased, including MCDM approach to uncover the most relevant practices regarding social performance and Interpretive Structural Modeling (ISM) method to reveal the structural relationship among lean practices. Professionals from the academic and industrial fields answered the questionnaires. From the results of this paper, it is possible to verify that practices such as “Safety Improvement Programs”, “Total Quality Management” and “Cross-functional Workforce” are the ones which have the most positive influence on the set of GRI social indicators.Keywords: indicators, ISM, lean, social, sustainability
Procedia PDF Downloads 14815074 Schooling Culture in Egyptian Public Schools: Reform in Professional Development for Equity and hope in Education
Authors: Nora El-Bilawia
Abstract:
This paper discovers the challenges and/or opportunities to implementing multiple intelligence (MI) practices in English as foreign language (EFL) classrooms at Egyptian public schools as part of the government’s educational reform plan. It is found that Egyptian EFL teachers value the use of MI’s ways of teaching as means for active and higher order thinking. However, teachers believed they were underprivileged, as the government did not provide appropriate trainings, tools, or means to integrate MI in their daily lessons. They also conferred challenges they face due to some Egyptian schooling cultural practices. At the end of this chapter, a proposed need for a paradigm shift in the schooling culture in Egypt to implement practical changes in schools to promote hope in education such as the use of MI teaching tools. This study promotes cross-cultural understanding of educational opportunities and efforts for equal learning outcomes around the globe.Keywords: professional development, schooling culture, acculturation, equitable education
Procedia PDF Downloads 10215073 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design
Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler
Abstract:
When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing
Procedia PDF Downloads 7915072 Development of Industry Sector Specific Factory Standards
Authors: Peter Burggräf, Moritz Krunke, Hanno Voet
Abstract:
Due to shortening product and technology lifecycles, many companies use standardization approaches in product development and factory planning to reduce costs and time to market. Unlike large companies, where modular systems are already widely used, small and medium-sized companies often show a much lower degree of standardization due to lower scale effects and missing capacities for the development of these standards. To overcome these challenges, the development of industry sector specific standards in cooperations or by third parties is an interesting approach. This paper analyzes which branches that are mainly dominated by small or medium-sized companies might be especially interesting for the development of factory standards using the example of the German industry. For this, a key performance indicator based approach was developed that will be presented in detail with its specific results for the German industry structure.Keywords: factory planning, factory standards, industry sector specific standardization, production planning
Procedia PDF Downloads 39415071 Musictherapy and Gardentherapy: A Systemic Approach for the Life Quality of the PsychoPhysical Disability
Authors: Adriana De Serio, Donato Forenza
Abstract:
Aims. In this experimental research the Authors present the methodological plan “Musictherapy and Gardentherapy” that they created interconnected with the garden landscape ecosystems and aimed at PsychoPhysical Disability (MusGarPPhyD). In the context of the environmental education aimed at spreading the landscape culture and its values, it’s necessary to develop a solid perception of the environment sustainability to implement a multidimensional approach that pays attention to the conservation and enhancement of gardens and natural environments. The result is an improvement in the life quality also in compliance with the objectives of the European Agenda 2030. The MusGarPPhyD can help professionals such as musictherapists and environmental and landscape researchers strengthen subjects' motivation to learn to deal with the psychophysical discomfort associated with disability and to cope with the distress and the psychological fragility and the loneliness and the social seclusion and to promote productive social relationships. Materials and Methods. The MusGarPPhyD was implemented in multiple spaces. The musictherapy treatments took place first inside residential therapeutic centres and then in the garden landscape ecosystem. Patients: twenty, set in two groups. Weekly-sessions (50’) for three months. Methodological phases: - Phase P1. MusicTherapy treatments for each group in the indoor spaces. - Phase P2. MusicTherapy sessions inside the gardens. After each Phase, P1 and P2: - a Questionnaire for each patient (ten items / liking-indices) was administrated at t0 time, during the treatment and at tn time at the end of the treatment. - Monitoring of patients' behavioral responses through assessment scales, matrix, table and graph system. MusicTherapy methodology: pazient Sonorous-Musical Anamnesis, Musictherapy Assessment Document, Observation Protocols, Bodily-Environmental-Rhythmical-Sonorous-Vocal-Energy production first indoors and then outside, sonorous-musical instruments and edible instruments made by the Author/musictherapist with some foods; Administration of Patient-Environment-Music Index at time to and tn, to estimate the patient’s behavior evolution, Musictherapeutic Advancement Index. Results. The MusGarPPhyD can strengthen the individual sense of identity and improve the psychophysical skills and the resilience to face and to overcome the difficulties caused by the congenital /acquired disability. The multi-sensory perceptions deriving from contact with the plants in the gardens improve the psychological well-being and regulate the physiological parameters such as blood pressure, cardiac and respiratory rhythm, reducing the cholesterol levels. The secretions of the peptide hormones endorphins and the endogenous opioids enkephalins increase and bring a state of patient’s tranquillity and a better mood. The subjects showed a preference for musictherapy treatments within a setting made up of gardens and peculiar landscape systems. This resulted in greater health benefits. Conclusions. The MusGarPPhyD contributes to reduce psychophysical tensions, anxiety, depression and stress, facilitating the connections between the cerebral hemispheres, thus also improving intellectual performances, self-confidence, motor skills and social interactions. Therefore it is necessary to design hospitals, rehabilitation centers, nursing homes, surrounded by gardens. Ecosystems of natural and urban parks and gardens create fascinating skyline and mosaics of landscapes rich in beauty and biodiversity. The MusGarPPhyD is useful for the health management promoting patient’s psychophysical activation, better mood/affective-tone and relastionships and contributing significantly to improving the life quality.Keywords: musictherapy, gardentherapy, disability, life quality
Procedia PDF Downloads 7215070 Design Optimization of Miniature Mechanical Drive Systems Using Tolerance Analysis Approach
Authors: Eric Mxolisi Mkhondo
Abstract:
Geometrical deviations and interaction of mechanical parts influences the performance of miniature systems.These deviations tend to cause costly problems during assembly due to imperfections of components, which are invisible to a naked eye.They also tend to cause unsatisfactory performance during operation due to deformation cause by environmental conditions.One of the effective tools to manage the deviations and interaction of parts in the system is tolerance analysis.This is a quantitative tool for predicting the tolerance variations which are defined during the design process.Traditional tolerance analysis assumes that the assembly is static and the deviations come from the manufacturing discrepancies, overlooking the functionality of the whole system and deformation of parts due to effect of environmental conditions. This paper presents an integrated tolerance analysis approach for miniature system in operation.In this approach, a computer-aided design (CAD) model is developed from system’s specification.The CAD model is then used to specify the geometrical and dimensional tolerance limits (upper and lower limits) that vary component’s geometries and sizes while conforming to functional requirements.Worst-case tolerances are analyzed to determine the influenced of dimensional changes due to effects of operating temperatures.The method is used to evaluate the nominal conditions, and worse case conditions in maximum and minimum dimensions of assembled components.These three conditions will be evaluated under specific operating temperatures (-40°C,-18°C, 4°C, 26°C, 48°C, and 70°C). A case study on the mechanism of a zoom lens system is used to illustrate the effectiveness of the methodology.Keywords: geometric dimensioning, tolerance analysis, worst-case analysis, zoom lens mechanism
Procedia PDF Downloads 16515069 Clustered Regularly Interspaced Short Palindromic Repeats Interference (CRISPRi): An Approach to Inhibit Microbial Biofilm
Authors: Azna Zuberi
Abstract:
Biofilm is a sessile bacterial accretion in which bacteria adapts different physiological and morphological behavior from planktonic form. It is the root cause of about 80% microbial infections in human. Among them, E. coli biofilms are most prevalent in medical devices associated nosocomial infections. The objective of this study was to inhibit biofilm formation by targeting LuxS gene, involved in quorum sensing using CRISPRi. luxS is a synthase, involved in the synthesis of Autoinducer-2(AI-2), which in turn guides the initial stage of biofilm formation. To implement CRISPRi system, we have synthesized complementary sgRNA to target gene sequence and co-expressed with dCas9. Suppression of luxS was confirmed through qRT-PCR. The effect of luxS gene on biofilm inhibition was studied through crystal violet assay, XTT reduction assay and scanning electron microscopy. We conclude that CRISPRi system could be a potential strategy to inhibit bacterial biofilm through mechanism base approach.Keywords: biofilm, CRISPRi, luxS, microbial
Procedia PDF Downloads 18315068 Community Forest Management Practice in Nepal: Public Understanding of Forest Benefit
Authors: Chandralal Shrestha
Abstract:
In the developing countries like Nepal, the community based forest management approach has often been glorified as one of the best forest management alternatives to maximize the forest benefits. Though the approach has succeeded to construct a local level institution and conserve the forest biodiversity, how the local communities perceived about the forest benefits, the question always remains silent among the researchers and policy makers. The paper aims to explore the understanding of forest benefits from the perspective of local communities who used the forests in terms of institutional stability, equity and livelihood opportunity, and ecological stability. The paper revealed that the local communities have mixed understanding over the forest benefits. The institutional and ecological activities carried out by the local communities indicated that they have better understanding over the forest benefits. However, inequality while sharing the forest benefits, low pricing strategy and its negative consequences in valuation of forest products and limited livelihood opportunities indicated the poor understanding.Keywords: community based forest management, forest benefits, lowland, Nepal
Procedia PDF Downloads 31215067 The International Legal Protection of Foreign Investment Through Bilateral Investment Treaties and Double Taxation Treaties in the Context of International Investment Law and International Tax Law
Authors: Abdulmajeed Abdullah Alqarni
Abstract:
This paper is devoted a study of the current frameworks applicable to foreign investments at the levels of domestic and international law, with a particular focus on the legitimate balance to be achieved between the rights of the host state and the legal protections owed to foreign investors. At the wider level of analysis, the paper attempts to map and critically examine the relationship between foreign investment and economic development. In doing so, the paper offers a study in how current discourses and practices on investment law can reconcile the competing interests of developing and developed countries. The study draws on the growing economic imperative for developing nations to create a favorable investment climate capable of attracting private foreign investment. It notes that that over the past decades, an abundance of legal standards that establish substantive and procedural protections for legal forms of foreign investments in the host countries have evolved and crystalized. The study then goes on to offer a substantive analysis of legal reforms at the domestic level in countries such as Saudi Arabia before going on to provide an in- depth and substantive examination of the most important instruments developed at the levels of international law: bilateral investment agreements and double taxation agreements. As to its methods, the study draws on case studies and from data assessing the link between double taxation and economic development. Drawing from the extant literature and doctrinal research, and international and comparative jurisprudence, the paper excavates and critically examines contemporary definitions and norms of international investment law, many of which have been given concrete form and specificity in an ever-expanding number of bilateral and multilateral investment treaties. By reconsidering the wider challenges of conflicts of law and jurisdiction, and the competing aims of the modern investment law regime, the study reflects on how bilateral investment treaties might succeed in achieving the dual aims of rights protection and economic sovereignty. Through its examination of the double taxation phenomena, the study goes on to identify key practical challenges raised by the implementation of bilateral treaties whilst also assessing the sufficiency of the domestic and international legal solutions that are proposed in response. In its final analysis, the study aims to contribute to existing scholarship by assessing contemporary legal and economic barriers to the free flow of investment with due regard for the legitimate concerns and diversity of developing nations. It does by situating its analysis of the domestic enforcement of international investment instrument in its wider historical and normative context. By focusing on the economic and legal dimensions of foreign investment, the paper also aims to offer an interdisciplinary and holistic perspective on contemporary issues and developments in investment law while offering practical reform proposals that can be used to be achieve a more equitable balance between the rights and interests of states and private entities in an increasingly trans nationalized sphere of investment regulation and treaty arbitration.Keywords: foreign investment, bilateral investment treaties, international tax law, double taxation treaties
Procedia PDF Downloads 8815066 Enhancement of Building Sustainability by Using Environment-Friendly Material
Authors: Rina Yadav, Meng-Ting Tsai
Abstract:
In the present scenario, sustainable buildings are in high demand. The essential decision for building sustainability is made during the design and preconstruction stages. Main objective of this study is reduction of unfavorable environmental impacts, which is a major cause of global warming. Based on this problem, to diminish the environmental hazards, present research study is applied to provide a guideline to designer that will be useful for material selection stage of designing. This can be achieved by using local available materials such as wood, mud, bamboos instead of cement, steel, concrete by reducing carbon dioxide emission. Energy simulation will be analyzed by software to get the comparable result. It will be encouraging and motivational for designer while using ecofriendly material to achieve points in Leadership in energy and environmental design (LEED) in green rating system.Keywords: sustainability design, lead rating, LEED, building performance analyses
Procedia PDF Downloads 49015065 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 28315064 An Algorithm of Set-Based Particle Swarm Optimization with Status Memory for Traveling Salesman Problem
Authors: Takahiro Hino, Michiharu Maeda
Abstract:
Particle swarm optimization (PSO) is an optimization approach that achieves the social model of bird flocking and fish schooling. PSO works in continuous space and can solve continuous optimization problem with high quality. Set-based particle swarm optimization (SPSO) functions in discrete space by using a set. SPSO can solve combinatorial optimization problem with high quality and is successful to apply to the large-scale problem. In this paper, we present an algorithm of SPSO with status memory to decide the position based on the previous position for solving traveling salesman problem (TSP). In order to show the effectiveness of our approach. We examine SPSOSM for TSP compared to the existing algorithms.Keywords: combinatorial optimization problems, particle swarm optimization, set-based particle swarm optimization, traveling salesman problem
Procedia PDF Downloads 55315063 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 16715062 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 15915061 Looking for a Connection between Oceanic Regions with Trends in Evaporation with Continental Ones with Trends in Precipitation through a Lagrangian Approach
Authors: Raquel Nieto, Marta Vázquez, Anita Drumond, Luis Gimeno
Abstract:
One of the hot spots of climate change is the increment of ocean evaporation. The best estimation of evaporation, OAFlux data, shows strong increasing trends in evaporation from the oceans since 1978, with peaks during the hemispheric winter and strongest along the paths of the global western boundary currents and any inner Seas. The transport of moisture from oceanic sources to the continents is the connection between evaporation from the ocean and precipitation over the continents. A key question is to try to relate evaporative source regions over the oceans where trends have occurred in the last decades with their sinks over the continents to check if there have been also any trends in the precipitation amount or its characteristics. A Lagrangian approach based on FLEXPART and ERA-interim data is used to establish this connection. The analyzed period was 1980 to 2012. Results show that there is not a general pattern, but a significant agreement was found in important areas of climate interest.Keywords: ocean evaporation, Lagrangian approaches, contiental precipitation, Europe
Procedia PDF Downloads 25615060 Constructivism and Situational Analysis as Background for Researching Complex Phenomena: Example of Inclusion
Authors: Radim Sip, Denisa Denglerova
Abstract:
It’s impossible to capture complex phenomena, such as inclusion, with reductionism. The most common form of reductionism is the objectivist approach, where processes and relationships are reduced to entities and clearly outlined phases, with a consequent search for relationships between them. Constructivism as a paradigm and situational analysis as a methodological research portfolio represent a way to avoid the dominant objectivist approach. They work with a situation, i.e. with the essential blending of actors and their environment. Primary transactions are taking place between actors and their surroundings. Researchers create constructs based on their need to solve a problem. Concepts therefore do not describe reality, but rather a complex of real needs in relation to the available options how such needs can be met. For examination of a complex problem, corresponding methodological tools and overall design of the research are necessary. Using an original research on inclusion in the Czech Republic as an example, this contribution demonstrates that inclusion is not a substance easily described, but rather a relationship field changing its forms in response to its actors’ behaviour and current circumstances. Inclusion consists of dynamic relationship between an ideal, real circumstances and ways to achieve such ideal under the given circumstances. Such achievement has many shapes and thus cannot be captured by description of objects. It can be expressed in relationships in the situation defined by time and space. Situational analysis offers tools to examine such phenomena. It understands a situation as a complex of dynamically changing aspects and prefers relationships and positions in the given situation over a clear and final definition of actors, entities, etc. Situational analysis assumes creation of constructs as a tool for solving a problem at hand. It emphasizes the meanings that arise in the process of coordinating human actions, and the discourses through which these meanings are negotiated. Finally, it offers “cartographic tools” (situational maps, socials worlds / arenas maps, positional maps) that are able to capture the complexity in other than linear-analytical ways. This approach allows for inclusion to be described as a complex of phenomena taking place with a certain historical preference, a complex that can be overlooked if analyzed with a more traditional approach.Keywords: constructivism, situational analysis, objective realism, reductionism, inclusion
Procedia PDF Downloads 14915059 Unveiling Microbial Potential: Investigating Zinc-Solubilizing Fungi in Rhizospheric Soil Through Isolation, Characterization and Selection
Authors: Pukhrambam Helena Chanu, Janardan Yadav
Abstract:
This study investigates the potential of various fungal isolates to solubilize zinc and counteract rice pathogens, with the aim of mitigating zinc deficiency and disease prevalence in rice farming. Soil samples from the rhizosphere were collected, and zinc-solubilizing fungi were isolated and purified. Molecular analysis identified Talaromyces sp, Talaromyces versatilis, Talaromyces pinophilus, and Aspergillus terreus as effective zinc solubilizers. Through qualitative and quantitative assessments, it was observed that solubilization efficiencies varied among the isolates over time, with Talaromyces versatilis displaying the highest capacity for solubilization. This variability in solubilization rates may be attributed to differences in fungal metabolic activity and their ability to produce organic acids that facilitate zinc release from insoluble sources in the soil. In inhibition assays against rice pathogens, the fungal isolates exhibited antagonistic properties, with Talaromyces versatilis demonstrating the most significant inhibition rates. This antagonistic activity may be linked to the production of secondary metabolites, such as antibiotics or lytic enzymes by fungi, which inhibit the growth of rice pathogens. The ability of Talaromyces versatilis to outperform other isolates in both zinc solubilization and pathogen inhibition highlights its potential as a multifunctional biocontrol agent in rice cultivation systems. These findings emphasize the potential of fungi as natural solutions for enhancing zinc uptake and managing diseases in rice cultivation. Utilizing indigenous zinc-solubilizing fungi offers a sustainable and environmentally friendly approach to addressing zinc deficiency in soils, reducing the need for chemical fertilizers. Moreover, harnessing the antagonistic activity of these fungi can contribute to integrated disease management strategies, minimizing reliance on synthetic pesticides and promoting ecological balance in agroecosystems. Additionally, the study included the evaluation of dipping time under different concentrations, viz.,10 ppm, 20 ppm, and 30 ppm of biosynthesized nano ZnO on rice seedlings. This investigation aimed to optimize the application of nano ZnO for efficient zinc uptake by rice plants while minimizing potential risks associated with excessive nanoparticle exposure. Evaluating the effects of varying concentrations and dipping durations provides valuable insights into the safe and effective utilization of nano ZnO as a micronutrient supplement in rice farming practices.Keywords: biosynthesized nano ZnO, rice, root dipping, zinc solubilizing fungi.
Procedia PDF Downloads 4915058 Efficacy Testing of a Product in Reducing Facial Hyperpigmentation and Photoaging after a 12-Week Use
Authors: Nalini Kaul, Barrie Drewitt, Elsie Kohoot
Abstract:
Hyperpigmentation is the third most common pigmentary disorder where dermatologic treatment is sought. It affects all ages resulting in skin darkening because of melanin accumulation. An uneven skin tone because of either exposure to the sun (solar lentigos/age spots/sun spots or skin disruption following acne, or rashes (post-inflammatory hyperpigmentation -PIH) or hormonal changes (melasma) can lead to significant psychosocial impairment. Dyschromia is a result of various alterations in biochemical processes regulating melanogenesis. Treatments include the daily use of sunscreen with lightening, brightening, and exfoliating products. Depigmentation is achieved by various depigmenting agents: common examples are hydroquinone, arbutin, azelaic acid, aloesin, mulberry, licorice extracts, kojic acid, niacinamide, ellagic acid, arbutin, green tea, turmeric, soy, ascorbic acid, and tranexamic acid. These agents affect pigmentation by interfering with mechanisms before, during, and after melanin synthesis. While immediate correction is much sought after, patience and diligence are key. Our objective was to assess the effects of a facial product with pigmentation treatment and UV protection in 35 healthy F (35-65y), meeting the study criteria. Subjects with mild to moderate hyperpigmentation and fine lines with no use of skin-lightening products in the last six months or any dermatological procedures in the last twelve months before the study started were included. Efficacy parameters included expert clinical grading for hyperpigmentation, radiance, skin tone & smoothness, fine lines, and wrinkles bioinstrumentation (Corneometer®, Colorimeter®), digital photography and imaging (Visia-CR®), and self-assessment questionnaires. Safety included grading for erythema, edema, dryness & peeling and self-assessments for itching, stinging, tingling, and burning. Our results showed statistically significant improvement in clinical grading scores, bioinstrumentation, and digital photos for hyperpigmentation-brown spots, fine lines/wrinkles, skin tone, radiance, pores, skin smoothness, and overall appearance compared to baseline. The product was also well-tolerated and liked by subjects. Conclusion: Facial hyperpigmentation is of great concern, and treatment strategies are increasingly sought. Clinical trials with both subjective and objective assessments, imaging analyses, and self-perception are essential to distinguish evidence-based products. The multifunctional cosmetic product tested in this clinical study showed efficacy, tolerability, and subject satisfaction in reducing hyperpigmentation and global photoaging.Keywords: hyperpigmentation; photoaging, clinical testing, expert visual evaluations, bio-instruments
Procedia PDF Downloads 7715057 Research on the Conservation Strategy of Territorial Landscape Based on Characteristics: The Case of Fujian, China
Authors: Tingting Huang, Sha Li, Geoffrey Griffiths, Martin Lukac, Jianning Zhu
Abstract:
Territorial landscapes have experienced a gradual loss of their typical characteristics during long-term human activities. In order to protect the integrity of regional landscapes, it is necessary to characterize, evaluate and protect them in a graded manner. The study takes Fujian, China, as an example and classifies the landscape characters of the site at the regional scale, middle scale, and detailed scale. A multi-scale approach combining parametric and holistic approaches is used to classify and partition the landscape character types (LCTs) and landscape character areas (LCAs) at different scales, and a multi-element landscape assessment approach is adopted to explore the conservation strategies of the landscape character. Firstly, multiple fields and multiple elements of geography, nature and humanities were selected as the basis of assessment according to the scales. Secondly, the study takes a parametric approach to the classification and partitioning of landscape character, Principal Component Analysis, and two-stage cluster analysis (K-means and GMM) in MATLAB software to obtain LCTs, combines with Canny Operator Edge Detection Algorithm to obtain landscape character contours and corrects LCTs and LCAs by field survey and manual identification methods. Finally, the study adopts the Landscape Sensitivity Assessment method to perform landscape character conservation analysis and formulates five strategies for different LCAs: conservation, enhancement, restoration, creation, and combination. This multi-scale identification approach can efficiently integrate multiple types of landscape character elements, reduce the difficulty of broad-scale operations in the process of landscape character conservation, and provide a basis for landscape character conservation strategies. Based on the natural background and the restoration of regional characteristics, the results of landscape character assessment are scientific and objective and can provide a strong reference in regional and national scale territorial spatial planning.Keywords: parameterization, multi-scale, landscape character identify, landscape character assessment
Procedia PDF Downloads 9915056 Virtualization of Biomass Colonization: Potential of Application in Precision Medicine
Authors: Maria Valeria De Bonis, Gianpaolo Ruocco
Abstract:
Nowadays, computational modeling is paving new design and verification ways in a number of industrial sectors. The technology is ripe to challenge some case in the Bioengineering and Medicine frameworks: for example, looking at the strategical and ethical importance of oncology research, efforts should be made to yield new and powerful resources to tumor knowledge and understanding. With these driving motivations, we approach this gigantic problem by using some standard engineering tools such as the mathematics behind the biomass transfer. We present here some bacterial colonization studies in complex structures. As strong analogies hold with some tumor proliferation, we extend our study to a benchmark case of solid tumor. By means of a commercial software, we model biomass and energy evolution in arbitrary media. The approach will be useful to cast virtualization cases of cancer growth in human organs, while augmented reality tools will be used to yield for a realistic aid to informed decision in treatment and surgery.Keywords: bacteria, simulation, tumor, precision medicine
Procedia PDF Downloads 33515055 Learning Dynamic Representations of Nodes in Temporally Variant Graphs
Authors: Sandra Mitrovic, Gaurav Singh
Abstract:
In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.Keywords: churn prediction, dynamic networks, node2vec, auto-encoders
Procedia PDF Downloads 31515054 Cochliobolus sativus: An Important Pathogen of Cereal Crops
Authors: Awet Araya
Abstract:
Cochliobolus sativus ((anamorphic stage: Bipolaris sorokiniana (synonyms: Helminthosporium sorokinianum, Drechslera sorokiniana, and Helminthosporium sativum)) is an important pathogen of cereal crops. Many other grass species are also hosts for this fungus. Yield losses have been reported from many regions, especially where barley and wheat are commercially cultivated. The fungus has a worldwide distribution. The pathogen causes root rot, seedling blight, spot blotch, head blight, and black point. Environmental conditions affect disease development. Most of the time, fungus survives as mycelia and conidia. Pseudothecium of the fungus is not commonly encountered and probably not important in the epidemiology of the disease. The fungus can be in seed, soil, or in plant parts. Crop rotation, proper fertilization, reducing other stress factors, fungicide treatments, and resistant cultivars may be used for the control of the disease.Keywords: Cochliobolus sativus, barley, cultivars, root rot
Procedia PDF Downloads 23015053 Beyond Rhetoric: Giving Effect to Social Rights Provisions under Chapter II of the Constitution of the Federal Republic of Nigeria
Authors: Abiodun Odusote
Abstract:
This paper gives content to the Provisions of Chapter II of the Constitution of the Federal Republic of Nigeria, it offers new perspectives on the nature of fundamental objectives and directive principles of state policy and the duties of citizens. It makes inquiries into the justiciability of these rights and examines the reasoning of the Nigerian courts in the interpretation and enforcement of the rights. The paper examines the emerging jurisprudence in India and South Africa and lessons are drawn from their respective models of enforcement of similar rights. The paper concludes by proposing more creative and novel alternatives to the enforcement and enjoyments of these rights, including: enforcement through Acts of Parliament, enforcement through other Constitutional provisions, indirect enforcement, enforcement through regional and international courts, enforcement by constructive engagement, and enforcement through electoral process. Overall, it is shown that there are available a variety of practical and effective ways of improving the realization and enjoyment of the provisions of Chapter II of the CFRN.Keywords: constructive-engagement, indirect enforcement, judicial activism, justiciability, social rights
Procedia PDF Downloads 45815052 Development on the Modeling Driven Architecture
Authors: Sahar Shahsavaripour Ghazanfarpour
Abstract:
As our daily life depends on quality of built services by systems and using devices in our environment; so education and model of software′s quality will be so important. By daily growth in software′s systems and using them so much, progressing process and requirements′ evaluation in primary level of progress especially architecture level in software get more important. Modern driver architecture changes an in dependent model of a level into some specific models that their purpose is reducing number of software changes into an executive model. Process of designing software engineering is mid-automated. The needed quality attribute in designing architecture and quality attribute in representation are in architecture models. The main problem is the relationship between needs, and elements in some aspect with implicit models and input sources in process. It’s because there is no detection ability. The MART profile is use to describe real-time properties and perform plat form modeling.Keywords: MDA, DW, OMG, UML, AKB, software architecture, ontology, evaluation
Procedia PDF Downloads 49515051 Data Collection Based on the Questionnaire Survey In-Hospital Emergencies
Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala
Abstract:
The methods identified in data collection are diverse: electronic media, focus group interviews and short-answer questionnaires [1]. The collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses [2]. In this context, we opted to collect good quality data by doing a sizeable questionnaire-based survey on hospital emergencies to improve emergency services and alleviate the problems encountered. At the level of this paper, we will present our study, and we will detail the steps followed to achieve the collection of relevant, consistent and practical data.Keywords: data collection, survey, questionnaire, database, data analysis, hospital emergencies
Procedia PDF Downloads 10815050 Multilayer Neural Network and Fuzzy Logic Based Software Quality Prediction
Authors: Sadaf Sahar, Usman Qamar, Sadaf Ayaz
Abstract:
In the software development lifecycle, the quality prediction techniques hold a prime importance in order to minimize future design errors and expensive maintenance. There are many techniques proposed by various researchers, but with the increasing complexity of the software lifecycle model, it is crucial to develop a flexible system which can cater for the factors which in result have an impact on the quality of the end product. These factors include properties of the software development process and the product along with its operation conditions. In this paper, a neural network (perceptron) based software quality prediction technique is proposed. Using this technique, the stakeholders can predict the quality of the resulting software during the early phases of the lifecycle saving time and resources on future elimination of design errors and costly maintenance. This technique can be brought into practical use using successful training.Keywords: software quality, fuzzy logic, perception, prediction
Procedia PDF Downloads 31715049 Production of New Hadron States in Effective Field Theory
Authors: Qi Wu, Dian-Yong Chen, Feng-Kun Guo, Gang Li
Abstract:
In the past decade, a growing number of new hadron states have been observed, which are dubbed as XYZ states in the heavy quarkonium mass regions. In this work, we present our study on the production of some new hadron states. In particular, we investigate the processes Υ(5S,6S)→ Zb (10610)/Zb (10650)π, Bc→ Zc (3900)/Zc (4020)π and Λb→ Pc (4312)/Pc (4440)/Pc (4457)K. (1) For the production of Zb (10610)/Zb (10650) from Υ(5S,6S) decay, two types of bottom-meson loops were discussed within a nonrelativistic effective field theory. We found that the loop contributions with all intermediate states being the S-wave ground state bottom mesons are negligible, while the loops with one bottom meson being the broad B₀* or B₁' resonance could provide the dominant contributions to the Υ(5S)→ Zb⁽'⁾ π. (2) For the production of Zc (3900)/Zc (4020) from Bc decay, the branching ratios of Bc⁺→ Z (3900)⁺ π⁰ and Bc⁺→ Zc (4020)⁺ π⁰ are estimated to be of order of 10⁽⁻⁴⁾ and 10⁽⁻⁷⁾ in an effective Lagrangian approach. The large production rate of Zc (3900) could provide an important source of the production of Zc (3900) from the semi-exclusive decay of b-flavored hadrons reported by D0 Collaboration, which can be tested by the exclusive measurements in LHCb. (3) For the production of Pc (4312), Pc (4440) and Pc (4457) from Λb decay, the ratio of the branching fraction of Λb→ Pc K was predicted in a molecular scenario by using an effective Lagrangian approach, which is weakly dependent on our model parameter. We also find the ratios of the productions of the branching fractions of Λb→ Pc K and Pc→ J/ψ p can be well interpreted in the molecular scenario. Moreover, the estimated branching fractions of Λb→ Pc K are of order 10⁽⁻⁶⁾, which could be tested by further measurements in LHCb Collaboration.Keywords: effective Lagrangian approach, hadron loops, molecular states, new hadron states
Procedia PDF Downloads 13215048 Effectiveness of Raga Desi Todi on Depression, Anxiety and Stress Among Adults
Authors: Sushila Pareek, Divya Shekhawat
Abstract:
Music has been shown as a therapeutic agent in depression, anxiety, and stress. A pilot study was carried out to see the therapeutic effects of Indian classical instrumental Raga Todi on depression, anxiety, and stress. 50 individuals diagnosed with depression, anxiety, and stress with DSM-V were taken for the study. Subjects were randomly divided into two groups: the experimental group and the control group. The experimental group received the instrumental raga Todi whereas the other control group didn't receive any intervention. DASS-21 was used on the baseline and after the intervention to measure depression, anxiety, and stress. The result indicates that anxiety, stress, and depression level was reduced after listening to the raga desi Todi. It was concluded that raga desi Todi is an effective intervention for reducing depression, anxiety, and stress.Keywords: raga, anxiety, stress, depression, DASS-21, mental health
Procedia PDF Downloads 14415047 The Case for Strategic Participation: How Facilitated Engagement Can Be Shown to Reduce Resistance and Improve Outcomes Through the Use of Strategic Models
Authors: Tony Mann
Abstract:
This paper sets out the case for involving and engaging employees/workers/stakeholders/staff in any significant change that is being considered by the senior executives of the organization. It establishes the rationale, the approach, the methodology of engagement and the benefits of a participative approach. It challenges the new norm of imposing change for fear of resistance and instead suggests that involving people has better outcomes and a longer-lasting impact. Various strategic models are introduced and illustrated to explain how the process can be most effective. The paper highlights one model in particular (the Process Iceberg® Organizational Change model) that has proven to be instrumental in developing effective change. Its use is demonstrated in its various forms and explains why so much change fails to address the key elements and how we can be more productive in managing change. ‘Participation’ in change is too often seen as negative, expensive and unwieldy. The paper aims to show that another model: UIA=O+E, can offset the difficulties and, in fact, produce much more positive and effective change.Keywords: facilitation, stakeholders, buy-in, digital workshops
Procedia PDF Downloads 110