Search results for: real anthropometric database
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7007

Search results for: real anthropometric database

3137 Wireless Sensor Networks for Water Quality Monitoring: Prototype Design

Authors: Cesar Eduardo Hernández Curiel, Victor Hugo Benítez Baltazar, Jesús Horacio Pacheco Ramírez

Abstract:

This paper is devoted to present the advances in the design of a prototype that is able to supervise the complex behavior of water quality parameters such as pH and temperature, via a real-time monitoring system. The current water quality tests that are performed in government water quality institutions in Mexico are carried out in problematic locations and they require taking manual samples. The water samples are then taken to the institution laboratory for examination. In order to automate this process, a water quality monitoring system based on wireless sensor networks is proposed. The system consists of a sensor node which contains one pH sensor, one temperature sensor, a microcontroller, and a ZigBee radio, and a base station composed by a ZigBee radio and a PC. The progress in this investigation shows the development of a water quality monitoring system. Due to recent events that affected water quality in Mexico, the main motivation of this study is to address water quality monitoring systems, so in the near future, a more robust, affordable, and reliable system can be deployed.

Keywords: pH measurement, water quality monitoring, wireless sensor networks, ZigBee

Procedia PDF Downloads 408
3136 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis

Authors: Amir Hajian, Sepehr Damavandinejadmonfared

Abstract:

In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.

Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)

Procedia PDF Downloads 367
3135 Evidence-Based Investigation of the Phonology of Nigerian Instant Messaging

Authors: Emmanuel Uba, Lily Chimuanya, Maryam Tar

Abstract:

Orthographic engineering is no longer the preserve of the Short Messaging Service (SMS), which is characterised by limited space. Such stylistic creativity or deviation is fast creeping into real-time messaging, popularly known as Instant Messaging (IM), despite the large number of characters allowed. This occurs at various linguistic levels: phonology, morphology, syntax, etc. Nigerians are not immune to this linguistic stylisation. This study investigates the phonological and meta-phonological conventions of the messages sent and received via WhatsApp by Nigerian graduates. This is ontological study of 250 instant messages collected from 98 graduates from different ethnic groups in Nigeria. The selection and analysis of the messages are based on figure and ground principle. The results reveal the use of accent stylisation, phoneme substitution, blending, consonantisation (a specialised form of deletion targeting vowels), numerophony (using a figure/number, usually 1-10, to represent a word or syllable that has the same sound) and phonetic respelling in the IMs sent by Nigerians. The study confirms the existence of linguistic creativity.

Keywords: figure and ground principle, instant messaging, linguistic stylisation, meta-phonology

Procedia PDF Downloads 399
3134 A Nonlinear Dynamical System with Application

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.

Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model

Procedia PDF Downloads 256
3133 Genotypic Identification of Oral Bacteria Using 16S rRNA in Children with and without Early Childhood Caries in Kelantan, Malaysia

Authors: Zuliani Mahmood, Thirumulu Ponnuraj Kannan, Yean Yean Chan, Salahddin A. Al-Hudhairy

Abstract:

Caries is the most common childhood disease which develops due to disturbances in the physiological equilibrium in the dental plaque resulting in demineralization of tooth structures. Plaque and dentine samples were collected from three different tooth surfaces representing caries progression (intact, over carious lesion and dentine) in children with early childhood caries (ECC, n=36). In caries free (CF) children, plaque samples were collected from sound tooth surfaces at baseline and after one year (n=12). The genomic DNA was extracted from all samples and subjected to 16S rRNA PCR amplification. The end products were cloned into pCR®2.1-TOPO® Vector. Five randomly selected positive clones collected from each surface were sent for sequencing. Identification of the bacterial clones was performed using BLAST against GenBank database. In the ECC group, the frequency of Lactobacillus sp. detected was significantly higher in the dentine surface (p = 0.031) than over the cavitated lesion. The highest frequency of bacteria detected in the intact surfaces was Fusobacterium nucleatum subsp. polymorphum (33.3%) while Streptococcus mutans was detected over the carious lesions and dentine surfaces at a frequency of 33.3% and 52.7% respectively. Fusobacterium nucleatum subsp. polymorphum was also found to be highest in the CF group (41.6%). Follow up at the end of one year showed that the frequency of Corynebacterium matruchotii detected was highest in those who remained caries free (16.6%), while Porphyromonas catoniae was highest in those who developed caries (25%). In conclusion, Streptococcus mutans and Porphyromonas catoniae are strongly associated with caries progression, while Lactobacillus sp. is restricted to deep carious lesions. Fusobacterium nucleatum subsp. polymorphum and Corynebacterium matruchotii may play a role in sustaining the healthy equilibrium in the dental plaque. These identified bacteria show promise as potential biomarkers in diagnosis which could help in the management of dental caries in children.

Keywords: early childhood caries, genotypic identification, oral bacteria, 16S rRNA

Procedia PDF Downloads 278
3132 MLOps Scaling Machine Learning Lifecycle in an Industrial Setting

Authors: Yizhen Zhao, Adam S. Z. Belloum, Goncalo Maia Da Costa, Zhiming Zhao

Abstract:

Machine learning has evolved from an area of academic research to a real-word applied field. This change comes with challenges, gaps and differences exist between common practices in academic environments and the ones in production environments. Following continuous integration, development and delivery practices in software engineering, similar trends have happened in machine learning (ML) systems, called MLOps. In this paper we propose a framework that helps to streamline and introduce best practices that facilitate the ML lifecycle in an industrial setting. This framework can be used as a template that can be customized to implement various machine learning experiment. The proposed framework is modular and can be recomposed to be adapted to various use cases (e.g. data versioning, remote training on cloud). The framework inherits practices from DevOps and introduces other practices that are unique to the machine learning system (e.g.data versioning). Our MLOps practices automate the entire machine learning lifecycle, bridge the gap between development and operation.

Keywords: cloud computing, continuous development, data versioning, DevOps, industrial setting, MLOps

Procedia PDF Downloads 269
3131 Impacts of Building Design Factors on Auckland School Energy Consumptions

Authors: Bin Su

Abstract:

This study focuses on the impact of school building design factors on winter extra energy consumption which mainly includes space heating, water heating and other appliances related to winter indoor thermal conditions. A number of Auckland schools were randomly selected for the study which introduces a method of using real monthly energy consumption data for a year to calculate winter extra energy data of school buildings. The study seeks to identify the relationships between winter extra energy data related to school building design data related to the main architectural features, building envelope and elements of the sample schools. The relationships can be used to estimate the approximate saving in winter extra energy consumption which would result from a changed design datum for future school development, and identify any major energy-efficient design problems. The relationships are also valuable for developing passive design guides for school energy efficiency.

Keywords: building energy efficiency, building thermal design, building thermal performance, school building design

Procedia PDF Downloads 444
3130 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines

Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun

Abstract:

This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.

Keywords: capacitated MRP, tabu search, simulated annealing, variable neighborhood search, linear programming, assembly flow shop, application in industry

Procedia PDF Downloads 236
3129 A Solution for Production Facility Assignment: An Automotive Subcontract Case

Authors: Cihan Çetinkaya, Eren Özceylan, Kerem Elibal

Abstract:

This paper presents a solution method for selection of production facility. The motivation has been taken from a real life case, an automotive subcontractor which has two production facilities at different cities and parts. The problem is to decide which part(s) should be produced at which facility. To the best of our knowledge, until this study, there was no scientific approach about this problem at the firm and decisions were being given intuitively. In this study, some logistic cost parameters have been defined and with these parameters a mathematical model has been constructed. Defined and collected cost parameters are handling cost of parts, shipment cost of parts and shipment cost of welding fixtures. Constructed multi-objective mathematical model aims to minimize these costs while aims to balance the workload between two locations. Results showed that defined model can give optimum solutions in reasonable computing times. Also, this result gave encouragement to develop the model with addition of new logistic cost parameters.

Keywords: automotive subcontract, facility assignment, logistic costs, multi-objective models

Procedia PDF Downloads 369
3128 An Extended X-Ray Absorption Fine Structure Study of CoTi Thin Films

Authors: Jose Alberto Duarte Moller, Cynthia Deisy Gomez Esparza

Abstract:

The cobalt-titanium system was grown as thin films in an INTERCOVAMEX V3 sputtering system, equipped with four magnetrons assisted by DC pulsed and direct DC. A polished highly oriented (400) silicon wafer was used as substrate and the growing temperature was 500 oC. Xray Absorption Spectroscopy experiments were carried out in the SSRL in the 4-3 beam line. The Extenden X-Ray Absorption Fine Structure spectra have been numerically processed by WINXAS software from the background subtraction until the normalization and FFT adjustment. Analyzing the absorption spectra of cobalt in the CoTi2 phase we can appreciate that they agree in energy with the reference spectra that corresponds to the CoO, which indicates that the valence where upon working is Co2+. The RDF experimental results were then compared with those RDF´s generated theoretically by using FEFF software, from a model compound of CoTi2 phase obtained by XRD. The fitting procedure is a highly iterative process. Fits are also checked in R-space using both the real and imaginary parts of Fourier transform. Finally, the presence of overlapping coordination shells and the correctness of the assumption about the nature of the coordinating atom were checked.

Keywords: XAS, EXAFS, FEFF, CoTi

Procedia PDF Downloads 297
3127 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems

Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu

Abstract:

The modeling lung respiratory system which has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the lung pulmonary system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically-relevant three dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue which produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue visco-elasticity and tidal breathing period.

Keywords: lung deformation and mechanics; Tissue mechanics; Viscoelasticity; Fluid-structure interactions; ANSYS

Procedia PDF Downloads 327
3126 Evaluating Forecasts Through Stochastic Loss Order

Authors: Wilmer Osvaldo Martinez, Manuel Dario Hernandez, Juan Manuel Julio

Abstract:

We propose to assess the performance of k forecast procedures by exploring the distributions of forecast errors and error losses. We argue that non systematic forecast errors minimize when their distributions are symmetric and unimodal, and that forecast accuracy should be assessed through stochastic loss order rather than expected loss order, which is the way it is customarily performed in previous work. Moreover, since forecast performance evaluation can be understood as a one way analysis of variance, we propose to explore loss distributions under two circumstances; when a strict (but unknown) joint stochastic order exists among the losses of all forecast alternatives, and when such order happens among subsets of alternative procedures. In spite of the fact that loss stochastic order is stronger than loss moment order, our proposals are at least as powerful as competing tests, and are robust to the correlation, autocorrelation and heteroskedasticity settings they consider. In addition, since our proposals do not require samples of the same size, their scope is also wider, and provided that they test the whole loss distribution instead of just loss moments, they can also be used to study forecast distributions as well. We illustrate the usefulness of our proposals by evaluating a set of real world forecasts.

Keywords: forecast evaluation, stochastic order, multiple comparison, non parametric test

Procedia PDF Downloads 91
3125 Labview-Based System for Fiber Links Events Detection

Authors: Bo Liu, Qingshan Kong, Weiqing Huang

Abstract:

With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.

Keywords: empirical mode decomposition, events detection, Gabor transform, optical time domain reflectometer, wavelet threshold denoising

Procedia PDF Downloads 125
3124 Detection of Phoneme [S] Mispronounciation for Sigmatism Diagnosis in Adults

Authors: Michal Krecichwost, Zauzanna Miodonska, Pawel Badura

Abstract:

The diagnosis of sigmatism is mostly based on the observation of articulatory organs. It is, however, not always possible to precisely observe the vocal apparatus, in particular in the oral cavity of the patient. Speech processing can allow to objectify the therapy and simplify the verification of its progress. In the described study the methodology for classification of incorrectly pronounced phoneme [s] is proposed. The recordings come from adults. They were registered with the speech recorder at the sampling rate of 44.1 kHz and the resolution of 16 bit. The database of pathological and normative speech has been collected for the study including reference assessments provided by the speech therapy experts. Ten adult subjects were asked to simulate a certain type of stigmatism under the speech therapy expert supervision. In the recordings, the analyzed phone [s] was surrounded by vowels, viz: ASA, ESE, ISI, SPA, USU, YSY. Thirteen MFCC (mel-frequency cepstral coefficients) and RMS (root mean square) values are calculated within each frame being a part of the analyzed phoneme. Additionally, 3 fricative formants along with corresponding amplitudes are determined for the entire segment. In order to aggregate the information within the segment, the average value of each MFCC coefficient is calculated. All features of other types are aggregated by means of their 75th percentile. The proposed method of features aggregation reduces the size of the feature vector used in the classification. Binary SVM (support vector machine) classifier is employed at the phoneme recognition stage. The first group consists of pathological phones, while the other of the normative ones. The proposed feature vector yields classification sensitivity and specificity measures above 90% level in case of individual logo phones. The employment of a fricative formants-based information improves the sole-MFCC classification results average of 5 percentage points. The study shows that the employment of specific parameters for the selected phones improves the efficiency of pathology detection referred to the traditional methods of speech signal parameterization.

Keywords: computer-aided pronunciation evaluation, sibilants, sigmatism diagnosis, speech processing

Procedia PDF Downloads 285
3123 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network

Authors: Marcio Leal, Marta Villamil

Abstract:

Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.

Keywords: artificial neural network, computer vision, dynamic time warping, infrared, sign language recognition

Procedia PDF Downloads 219
3122 Benders Decomposition Approach to Solve the Hybrid Flow Shop Scheduling Problem

Authors: Ebrahim Asadi-Gangraj

Abstract:

Hybrid flow shop scheduling problem (HFS) contains sequencing in a flow shop where, at any stage, there exist one or more related or unrelated parallel machines. This production system is a common manufacturing environment in many real industries, such as the steel manufacturing, ceramic tile manufacturing, and car assembly industries. In this research, a mixed integer linear programming (MILP) model is presented for the hybrid flow shop scheduling problem, in which, the objective consists of minimizing the maximum completion time (makespan). For this purpose, a Benders Decomposition (BD) method is developed to solve the research problem. The proposed approach is tested on some test problems, small to moderate scale. The experimental results show that the Benders decomposition approach can solve the hybrid flow shop scheduling problem in a reasonable time, especially for small and moderate-size test problems.

Keywords: hybrid flow shop, mixed integer linear programming, Benders decomposition, makespan

Procedia PDF Downloads 199
3121 Violations of Press Freedom

Authors: Khalid Achaat

Abstract:

It is difficult to speak about freedom of the press in Algeria without first talking to fifty-seven journalists killed in the country between 1993 and 1997 and the five missing journalists. No serious investigation was conducted to find the culprits. When a State is not able to guarantee law, there is no justice and violations of the law become "systematic". How to claim the freedom of press in Algeria, when death becomes "banal"? In these circumstances, can we talk of rights of the Algerian press? It is impossible to understand the problems of the press in Algeria, focusing solely legal issues. Take into account technical, financial and political. Their respective roles varies depending on whether one focuses on the collection of information, the regime of the newspaper company or publication and dissemination. Can we say that the Algerian press is "the freest in the Arab world", while the latter reflects only partially the real problems facing the country? While any newspaper company is subject, de facto, to an authorization scheme, permanently subjected to the constant threat of withdrawal of the authorization, suspension, prohibition or closure without it has the right to a remedy? Can it be free when the majority of "media owners", head of the largest daily newspapers are derived from the single party in power since independence? Some of this release does not it serves the interests of the Algerian power?

Keywords: freedom, press, power, closure, suspension

Procedia PDF Downloads 352
3120 Non-Standard Monetary Policy Measures and Their Consequences

Authors: Aleksandra Nocoń (Szunke)

Abstract:

The study is a review of the literature concerning the consequences of non-standard monetary policy, which are used by central banks during unconventional periods, threatening instability of the banking sector. In particular, the attention was paid to the effects of non-standard monetary policy tools for financial markets. However, the empirical evidence about their effects and real consequences for the financial markets are still not final. The main aim of the study is to survey the consequences of standard and non-standard monetary policy instruments, implemented during the global financial crisis in the United States, United Kingdom and Euroland, with particular attention to the results for the stabilization of global financial markets. The study analyses the consequences for short and long-term market interest rates, interbank interest rates and LIBOR-OIS spread. The study consists mainly of the empirical review, indicating the impact of the implementation of these tools for the financial markets. The following research methods were used in the study: literature studies, including domestic and foreign literature, cause and effect analysis and statistical analysis.

Keywords: asset purchase facility, consequences of monetary policy instruments, non-standard monetary policy, quantitative easing

Procedia PDF Downloads 334
3119 Scenarios for the Energy Transition in Residential Buildings for the European Regions

Authors: Domenico Carmelo Mongelli, Laura Carnieletto, Michele De Carli, Filippo Busato

Abstract:

Starting from the current context in which the Russian invasion in Ukraine has highlighted Europe's dependence on natural gas imports for heating buildings, this study proposes solutions to resolve this dependency and evaluates related scenarios in the near future. In the first part of this work the methodologies and results of the economic impact are indicated by simulating a massive replacement of boilers powered by fossil fuels with electrically powered hightemperature air-water heat pumps for heating residential buildings in different European climates, without changing the current energy mix. For each individual European region, the costs for the purchase and installation of heat pumps for all residential buildings have been determined. Again for each individual European region, the economic savings during the operation phase that would be obtained in this future scenario of energy transition from fossil fuels to the electrification of domestic heating were calculated. For the European regions for which the economic savings were identified as positive, the payback times of the economic investments were analysed. In the second part of the work, hypothesizing different scenarios for a possible greater use of renewable energy sources and therefore with different possible future scenarios of the energy mix, the methodologies and results of the simulations on the economic analysis and on the environmental analysis are reported which have allowed us to evaluate the future effects of the energy transition from boilers to heat pumps for each European region. In the third part, assuming a rapid short-term diffusion of cooling for European residential buildings, the penetration shares in the cooling market and future projections of energy needs for cooling for each European region have been identified. A database was created where the results of this research relating to 38 European Nations divided into 179 regions were reported. Other previous works on the topics covered were limited to analyzing individual European nations, without ever going into detail about the individual regions within each nation, while the original contribution of the present work lies in the fact that the results achieved allow a specific numerical analysis and punctual for every single European region.

Keywords: buildings, energy, Europe, future

Procedia PDF Downloads 98
3118 Beggar-Thy-Neighbor's Beach: Pricing Adaptation to Sea-Level Rise

Authors: Arlan Zandro Brucal, John Lynham

Abstract:

With the accelerated sea-level rise (SLR) increasingly becoming a concern, demand for coastal management and protection is expected to grow. Among the coastal management and protection methods, building seawalls are among the most controversial due to the negative externalities they impose on beachgoers and neighboring properties. This paper provides estimates of the external cost associated with building seawalls on the island of Oahu in Hawaii. Using hedonic pricing approach on real properties sold between 1980-2010 and aerial photographs of seawalls in 1995, the paper finds that (1) while seawalls do increase the value of protected properties, the share of armored properties appear to be negatively correlated with property sale prices, suggesting that the positive effect of seawalls tend to decline as more and more rely on this coastal management method; and (2) the value of beachfront properties tend to decline as they get approach seawalls. Results suggest that policymakers should devise a policy that would internalize the externalities associated with private-sector adaptation to climate change.

Keywords: private sector climate change adaptation, externalities, sea-level rise, hedonic pricing

Procedia PDF Downloads 290
3117 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 177
3116 A Systematic Review of Pedometer-or Accelerometer-Based Interventions for Increasing Physical Activity in Low Socioeconomic Groups

Authors: Shaun G. Abbott, Rebecca C. Reynolds, James B. Etter, John B. F. de Wit

Abstract:

The benefits of physical activity (PA) on health are well documented. Low socioeconomic status (SES) is associated with poor health, with PA a suggested mediator. Pedometers and accelerometers offer an effective behavior change tool to increase PA levels. While the role of pedometer and accelerometer use in increasing PA is recognized in many populations, little is known in low-SES groups. We are aiming to assess the effectiveness of pedometer- and accelerometer-based interventions for increasing PA step count and improving subsequent health outcomes among low-SES groups of high-income countries. Medline, Embase, PsycINFO, CENTRAL and SportDiscus databases were searched to identify articles published before 10th July, 2015; using search terms developed from previous systematic reviews. Inclusion criteria are: low-SES participants classified by income, geography, education, occupation or ethnicity; study duration minimum 4 weeks; an intervention and control group; wearing of an unsealed pedometer or accelerometer to objectively measure PA as step counts per day for the duration of the study. We retrieved 2,142 articles from our database searches, after removal of duplicates. Two investigators independently reviewed titles and abstracts of these articles (50% each) and a combined 20% sample were reviewed to account for inter-assessor variation. We are currently verifying the full texts of 430 articles. Included studies will be critically appraised for risk of bias using guidelines suggested by the Cochrane Public Health Group. Two investigators will extract data concerning the intervention; study design; comparators; steps per day; participants; context and presence or absence of obesity and/or chronic disease. Heterogeneity amongst studies is anticipated, thus a narrative synthesis of data will be conducted with the simplification of selected results into percentage increases from baseline to allow for between-study comparison. Results will be presented at the conference in December if selected.

Keywords: accelerometer, pedometer, physical activity, socioeconomic, step count

Procedia PDF Downloads 333
3115 Minimizing the Impact of Covariate Detection Limit in Logistic Regression

Authors: Shahadut Hossain, Jacek Wesolowski, Zahirul Hoque

Abstract:

In many epidemiological and environmental studies covariate measurements are subject to the detection limit. In most applications, covariate measurements are usually truncated from below which is known as left-truncation. Because the measuring device, which we use to measure the covariate, fails to detect values falling below the certain threshold. In regression analyses, it causes inflated bias and inaccurate mean squared error (MSE) to the estimators. This paper suggests a response-based regression calibration method to correct the deleterious impact introduced by the covariate detection limit in the estimators of the parameters of simple logistic regression model. Compared to the maximum likelihood method, the proposed method is computationally simpler, and hence easier to implement. It is robust to the violation of distributional assumption about the covariate of interest. In producing correct inference, the performance of the proposed method compared to the other competing methods has been investigated through extensive simulations. A real-life application of the method is also shown using data from a population-based case-control study of non-Hodgkin lymphoma.

Keywords: environmental exposure, detection limit, left truncation, bias, ad-hoc substitution

Procedia PDF Downloads 240
3114 Analytical Terahertz Characterization of In0.53Ga0.47As Transistors and Homogenous Diodes

Authors: Abdelmadjid Mammeri, Fatima Zohra Mahi, Luca Varani, H. Marinchoi

Abstract:

We propose an analytical model for the admittance and the noise calculations of the InGaAs transistor and diode. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The frequency-dependent of the small-signal admittance response is determined by the total currents and the potentials matrix relation between the gate and the drain terminals. The noise is evaluated by using the real part of the transistor/diode admittance under a small-signal perturbation. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand; to control the appearance of the plasma resonances, and on other hand; can give significant information about the noise frequency dependence in the InGaAs transistor and diode.

Keywords: InGaAs transistors, InGaAs diode, admittance, resonant peaks, plasma waves, analytical model

Procedia PDF Downloads 318
3113 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 117
3112 Impact of Safety and Quality Considerations of Housing Clients on the Construction Firms’ Intention to Adopt Quality Function Deployment: A Case of Construction Sector

Authors: Saif Ul Haq

Abstract:

The current study intends to examine the safety and quality considerations of clients of housing projects and their impact on the adoption of Quality Function Deployment (QFD) by the construction firm. Mixed method research technique has been used to collect and analyze the data wherein a survey was conducted to collect the data from 220 clients of housing projects in Saudi Arabia. Then, the telephonic and Skype interviews were conducted to collect data of 15 professionals working in the top ten real estate companies of Saudi Arabia. Data were analyzed by using partial least square (PLS) and thematic analysis techniques. Findings reveal that today’s customer prioritizes the safety and quality requirements of their houses and as a result, construction firms adopt QFD to address the needs of customers. The findings are of great importance for the clients of housing projects as well as for the construction firms as they could apply QFD in housing projects to address the safety and quality concerns of their clients.

Keywords: construction industry, quality considerations, quality function deployment, safety considerations

Procedia PDF Downloads 127
3111 Evaluation of Fusion Sonar and Stereo Camera System for 3D Reconstruction of Underwater Archaeological Object

Authors: Yadpiroon Onmek, Jean Triboulet, Sebastien Druon, Bruno Jouvencel

Abstract:

The objective of this paper is to develop the 3D underwater reconstruction of archaeology object, which is based on the fusion between a sonar system and stereo camera system. The underwater images are obtained from a calibrated camera system. The multiples image pairs are input, and we first solve the problem of image processing by applying the well-known filter, therefore to improve the quality of underwater images. The features of interest between image pairs are selected by well-known methods: a FAST detector and FLANN descriptor. Subsequently, the RANSAC method is applied to reject outlier points. The putative inliers are matched by triangulation to produce the local sparse point clouds in 3D space, using a pinhole camera model and Euclidean distance estimation. The SFM technique is used to carry out the global sparse point clouds. Finally, the ICP method is used to fusion the sonar information with the stereo model. The final 3D models have a précised by measurement comparing with the real object.

Keywords: 3D reconstruction, archaeology, fusion, stereo system, sonar system, underwater

Procedia PDF Downloads 301
3110 Identifying Degradation Patterns of LI-Ion Batteries from Impedance Spectroscopy Using Machine Learning

Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha Lee

Abstract:

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS) -- a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis -- with Gaussian process machine learning. We collect over 20,000 EIS spectra of commercial Li-ion batteries at different states of health, states of charge and temperatures -- the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.

Keywords: battery degradation, machine learning method, electrochemical impedance spectroscopy, battery diagnosis

Procedia PDF Downloads 151
3109 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 76
3108 Data Mining As A Tool For Knowledge Management: A Review

Authors: Maram Saleh

Abstract:

Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.

Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.

Procedia PDF Downloads 212