Search results for: tectonic sheet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 623

Search results for: tectonic sheet

263 Neotectonic Characteristics of the Western Part of Konya, Central Anatolia, Turkey

Authors: Rahmi Aksoy

Abstract:

The western part of Konya consists of an area of block faulted basin and ranges. Present day topography is characterized by alternating elongate mountains and depressions trending east-west. A number of depressions occur in the region. One of the large depressions is the E-W trending Kızılören-Küçükmuhsine (KK basin) basin bounded on both sides by normal faults and located on the west of the Konya city. The basin is about 5-12 km wide and 40 km long. Ranges north and south of the basin are composed of undifferentiated low grade metamorphic rocks of Silurian-Cretaceous age and smaller bodies of ophiolites of probable Cretaceous age. The basin fill consists of the upper Miocene-lower Pliocene fluvial, lacustrine, alluvial sediments and volcanic rocks. The younger and undeformed Plio-Quaternary basin fill unconformably overlies the older basin fill and is composed predominantly of conglomerate, mudstone, silt, clay and recent basin floor deposits. The paleostress data on the striated fault planes in the basin indicates NW-SE extension and associated with an NE-SW compression. The eastern end of the KK basin is cut and terraced by the active Konya fault zone. The Konya fault zone is NE trending, east dipping normal fault forming the western boundary of the Konya depression. The Konya depression consists mainly of Plio-Quaternary alluvial complex and recent basin floor sediments. The structural data gathered from the Konya fault zone support normal faulting with a small amount of dextral strike-slip tensional tectonic regime that shaped under the WNW-ESE extensional stress regime.

Keywords: central Anatolia, fault kinematics, Kızılören-Küçükmuhsine basin, Konya fault zone, neotectonics

Procedia PDF Downloads 336
262 The Effect of Diapirs on the Geometry and Evolution of the Ait Ourir Basin, High Atlas Mountains of Marrakesh, Morocco

Authors: Hadach Fatiha, Algouti Ahmed, Algouti Abdellah, Jdaba Naji, Es-Sarrar Othman, Mourabit Zahra

Abstract:

This paper investigates the structure and evolution of diapirism in the Ait Ourir basin, located in the High Atlas of Marrakesh, using structural and sedimentological fieldwork integrated with field mapping. A tectonic-sedimentological study of the Mesozoic cover of the Ait Ourir basin area revealed that these units were subjected to important saccadic halokinetic activity, reflected by anticline structures associated with regional faults that created several synclinal mini-basins. However, the lack of seismic coverage in the study area makes the proposed interpretation based on extrapolations of information observed on the surface. In this work, we suggest that faults and salt activity led to the formation of different structures within the studied area. The growth of the Triassic evaporites at different stages during the Mesozoic is reflected by progressive and local unconformities, recorded as having different ages. These structures created high diapiric zones with reduced sedimentation, showing abrupt lateral thickness variations in several places where this activity was occurring; this is clearly defined within the Wanina and Jbel Sour’s mini-basins, where the Senonian was observed to rest at an angular unconformity over the entire sedimentary cover encompassing the time period from the Liassic to the Turonian. The diapirism associated with the major faults, especially encountered between the basins, is often accompanied by late Triassic volcanic material. This diapir-fault relationship resulted in shallow and often depocentric zones in a pull-apart system within a distensive context.

Keywords: diapir, evaporites, faults, pull-apart, Mesozoic cover, Ait Ourir, western High Atlas, Morocco

Procedia PDF Downloads 46
261 A Visual Inspection System for Automotive Sheet Metal Chasis Parts Produced with Cold-Forming Method

Authors: İmren Öztürk Yılmaz, Abdullah Yasin Bilici, Yasin Atalay Candemir

Abstract:

The system consists of 4 main elements: motion system, image acquisition system, image processing software, and control interface. The parts coming out of the production line to enter the image processing system with the conveyor belt at the end of the line. The 3D scanning of the produced part is performed with the laser scanning system integrated into the system entry side. With the 3D scanning method, it is determined at what position and angle the parts enter the system, and according to the data obtained, parameters such as part origin and conveyor speed are calculated with the designed software, and the robot is informed about the position where it will take part. The robot, which receives the information, takes the produced part on the belt conveyor and shows it to high-resolution cameras for quality control. Measurement processes are carried out with a maximum error of 20 microns determined by the experiments.

Keywords: quality control, industry 4.0, image processing, automated fault detection, digital visual inspection

Procedia PDF Downloads 80
260 Analyzing Oil Seeps Manifestations and Petroleum Impregnation in Northwestern Tunisia From Aliphatic Biomarkers and Statistical Data

Authors: Sawsen Jarray, Tahani Hallek, Mabrouk Montacer

Abstract:

The tectonically damaged terrain in Tunisia's Northwest is seen in the country's numerous oil leaks. Finding a genetic link between these oil seeps and the area's putative source rocks is the goal of this investigation. Here, we use aliphatic biomarkers assessed by GC-MS to describe the organic geochemical data of 18 oil seeps samples and 4 source rocks (M'Cherga, Fahdene, Bahloul, and BouDabbous). In order to establish correlations between oil and oil and oil and source rock, terpanes, hopanes, and steranes biomarkers were identified. The source rocks under study were deposited in a marine environment and were suboxic, with minor signs of continental input for the M'Cherga Formation. There is no connection between the Fahdene and Bahloul source rocks and the udied oil seeps. According to the biomarkers C27 18-22,29,30trisnorneohopane (Ts) and C27 17-22,29,30-trisnorhopane (Tm), these source rocks are mature and have reached the oil window. Regarding oil seeps, geochemical data indicate that, with the exception of four samples that showed some continental markings, the bulk of samples were deposited in an open marine environment. These most recent samples from oil seeps have a unique lithology (marl) that distinguishes them from the others (carbonate). There are two classes of oil seeps, according to statistical analysis of relationships between oil and oil and oil and source rocks. The first comprised samples that showed a positive connection with carbonate-lithological and marine-derived BouDabbous black shales. The second is a result of M'Cherga source rock and is made up of oil seeps with remnants of the terrestrial environment and a lithology with a marl trend. The Fahdene and Bahloul source rocks have no connection to the observed oil seeps. There are two different types of hydrocarbon spills depending on their link to tectonic deformations (oil seeps) and outcropping mature source rocks (oil impregnations), in addition to the existence of two generations of hydrocarbon spills in Northwest Tunisia (Lower Cretaceous/Ypresian).

Keywords: petroleum seeps, source rocks, biomarkers, statistic, Northern Tunisia

Procedia PDF Downloads 43
259 The Effect of the Weld Current Types on Microstructure and Hardness in Tungsten Inert Gas Welding of the AZ31 Magnesium Alloy Sheet

Authors: Bilge Demir, Ahmet Durgutlu, Mustafa Acarer

Abstract:

In this study, the butt welding of the commercial AZ31 magnesium alloy sheets have been carried out by using Tungsten Inert Gas (TIG) welding process with alternative and pulsed current. Welded samples were examined with regards to hardness and microstructure. Despite some recent developments in welding of magnesium alloys, they have some problems such as porosity, hot cracking, oxide formation and so on. Samples of the welded parts have undergone metallographic and mechanical examination. Porosities and homogeneous micron grain oxides were rarely observed. Orientations of the weld microstructure in terms of heat transfer also were rarely observed and equiaxed grain morphology was dominant grain structure as in the base metal. As results, fusion zone and few locations of the HAZ of the welded samples have shown twin’s grains. Hot cracking was not observed for any samples. Weld bead geometry of the welded samples were evaluated as normal according to welding parameters. In the results, conditions of alternative and pulsed current and the samples were compared to each other with regards to microstructure and hardness.

Keywords: AZ31 magnesium alloy, microstructures, micro hardness TIG welding

Procedia PDF Downloads 356
258 Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation

Authors: Jeong-Won Kang

Abstract:

Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force vs deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.

Keywords: graphene, pressure sensor, circular graphene nanoflake, molecular dynamics

Procedia PDF Downloads 364
257 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 143
256 Tectonostratigraphic, Paleogeography and Amalgamation of Sumatra Terranes, Indonesia

Authors: Syahrir Andi Mangga, Ipranta

Abstract:

The geological, paleomagnetic, geochemical and geophysical Investigation in The Sumatra Region has yielded some new data, has stimulated a reassessment of stratigraphy, structure, tectonic evolution and which can show a Sumatra geodynamic model. Sumatra island has in the margin of southwest part of the Eurasia plate in the Sundaland cratonic block and occurred as the amalgamation of allochtonous microplates, continental fragments, Island arc and accrctionary by foreland complex which assembled prior to Tertiary. The allochtonous rocks (terranes), can be divided into 4 (four) Terranes with Paleozoic to Mesosoic in age, had different origin, lithology and are separated by a Suture as main fault with trending NW-SE. The terranes are: the Tigapuluh-Bohorok (East Sumatra block / Sibumasu block), Permo-Carboniferous in age and is characterized by the rock types formed in glacio-marine and was intruded by Late Triassic to Early Jurrasic granitics, occupied in the Eastern part of Sumatra, the paleomagnetic data shown 41° South. Tanjung Karang - Gunung Kasih Terrane, is composed of higher metamorphic rocks and supposed to be pre-Carboniferous in age, covered by Mesozoic sedimentary rocks and were intruded by granitic-dioritic rocks, occupied in the Southern part of Sumatra, the paleomagnetic data shown 19° North. The Kuantan-Duabelas Mountain (West Sumatra block) is occupied by metamorphic, sedimentary and volcanic rocks of Paleozoic - Mesozoic (Carboniferous - Triassic) in age, contains a Cathaysion fauna and flora and are intruded by the Mesozoic granitoid rocks. The terrane occurred in the western part of Sumatra. Meanwhile, the Gumai-Garba (Waloya Terrane) which is occupied by the tectonite/melange, metasediment, carbonate and volcanic rocks of Mesozoic (Jurassic - Cretaceous) in age, are intruted by the Late Cretaceous granitoid rocks, the paleomagnetic data shown 30° - 31° South.

Keywords: tectonostratigraphy, amalgamation, allochtonous, terranes, sumatra

Procedia PDF Downloads 318
255 A Novel All-Solid-State Microsupercapacitor Based on Carbon Nanotube Sheets

Authors: Behnoush Dousti, Ye Choi, Gil S. Lee

Abstract:

Supercapacitors which are also known as ultra supercapacitors play a significant role in development of energy storage devices owing to their high power density and rate capability. Nobel research has been conducted on micro scale energy storage systems currently to address the demand for smaller wearable technology and portable devices. Improving the performance of these microsupercapacitors have been always a challenge. Here, we demonstrate a facile fabrication of a microsupercapacitor (MSC) with interdigitated electrodes using novel structure of carbon nanotube sheets which are spun directly from as-grown carbon nanotube forests. Stability and performance of the device was tested using an aqueous PVA-H3PO4 gel electrolyte that also offers desirable electrochemical capacitive properties. High Coulombic efficiency around 100%, great rate capability and excellent capacitance retention over 15,000 cycles were obtained. Capacitive performance greatly improved with surface modification with acid and nitrogen doping of the CNT sheets. The high power density and stable cycling performance make this microsupercapacitor a suitable candidate for verity of energy storage application.

Keywords: carbon nanotube sheet, energy storage, solid state electrolyte, supercapacitor

Procedia PDF Downloads 122
254 Case Studies of Mitigation Methods against the Impacts of High Water Levels in the Great Lakes

Authors: Jennifer M. Penton

Abstract:

Record high lake levels in 2017 and 2019 (2017 max lake level = 75.81 m; 2018 max lake level = 75.26 m; 2019 max lake level = 75.92 m) combined with a number of severe storms in the Great Lakes region, have resulted in significant wave generation across Lake Ontario. The resulting large wave heights have led to erosion of the natural shoreline, overtopping of existing revetments, backshore erosion, and partial and complete failure of several coastal structures, which in turn have led to further erosion of the shoreline and damaged existing infrastructure. Such impacts can be seen all along the coast of Lake Ontario. Three specific locations have been chosen as case studies for this paper, each addressing erosion and/or flood mitigation methods, such as revetments and sheet piling with increased land levels. Varying site conditions and the resulting shoreline damage are compared herein. The results are reflected in the case-specific design components of the mitigation and adaptation methods and are presented in this paper.

Keywords: erosion mitigation, flood mitigation, great lakes, high water levels

Procedia PDF Downloads 143
253 The Genesis of the Anomalous Sernio Fan (Valtellina, Northern Italy)

Authors: Erika De Finis, Paola Gattinoni, Laura Scesi

Abstract:

Massive rock avalanches formed some of the largest landslide deposits on Earth and they represent one of the major geohazards in high-relief mountains. This paper interprets a very large sedimentary fan (the Sernio fan, Valtellina, Northern Italy), located 20 Km SW from Val Pola Rock avalanche (1987), as the deposit of a partial collapse of a Deep Seated Gravitational Slope Deformation (DSGSD), afterwards eroded and buried by debris flows. The proposed emplacement sequence has been reconstructed based on geomorphological, structural and mechanical evidences. The Sernio fan is actually considered anomalous with reference to the very high ratio between the fan area (about 4.5km2) and the basin area (about 3km2). The morphology of the fan area is characterised by steep slopes (dip about 20%) and the fan apex is extended for 1.8 km inside the small catchment basin. This sedimentary fan was originated by a landslide that interested a part of a large deep-seated gravitational slope deformation, involving a wide area of about 55 km². The main controlling factor is tectonic and it is related to the proximity to regional fault systems and the consequent occurrence of fault weak rocks (GSI locally lower than 10 with compressive stress lower than 20MPa). Moreover, the fan deposit shows sedimentary evidences of recent debris flow events. The best current explanation of the Sernio fan involves an initial failure of some hundreds of Mm3. The run-out was quite limited because of the morphology of Valtellina’s valley floor, and the deposit filled the main valley forming a landslide dam, as confirmed by the lacustrine deposits detected upstream the fan. Nowadays the debris flow events represent the main hazard in the study area.

Keywords: anomalous sedimentary fans, deep seated gravitational slope deformation, Italy, rock avalanche

Procedia PDF Downloads 453
252 Using Seismic and GPS Data for Hazard Estimation in Some Active Regions in Egypt

Authors: Abdel-Monem Sayed Mohamed

Abstract:

Egypt rapidly growing development is accompanied by increasing levels of standard living particular in its urban areas. However, there is a limited experience in quantifying the sources of risk management in Egypt and in designing efficient strategies to keep away serious impacts of earthquakes. From the historical point of view and recent instrumental records, there are some seismo-active regions in Egypt, where some significant earthquakes had occurred in different places. The special tectonic features in Egypt: Aswan, Greater Cairo, Red Sea and Sinai Peninsula regions are the territories of a high seismic risk, which have to be monitored by up-to date technologies. The investigations of the seismic events and interpretations led to evaluate the seismic hazard for disaster prevention and for the safety of the dense populated regions and the vital national projects as the High Dam. In addition to the monitoring of the recent crustal movements, the most powerful technique of satellite geodesy GPS are used where geodetic networks are covering such seismo-active regions. The results from the data sets are compared and combined in order to determine the main characteristics of the deformation and hazard estimation for specified regions. The final compiled output from the seismological and geodetic analysis threw lights upon the geodynamical regime of these seismo-active regions and put Aswan and Greater Cairo under the lowest class according to horizontal crustal strains classifications. This work will serve a basis for the development of so-called catastrophic models and can be further used for catastrophic risk management. Also, this work is trying to evaluate risk of large catastrophic losses within the important regions including the High Dam, strategic buildings and archeological sites. Studies on possible scenarios of earthquakes and losses are a critical issue for decision making in insurance as a part of mitigation measures.

Keywords: b-value, Gumbel distribution, seismic and GPS data, strain parameters

Procedia PDF Downloads 427
251 Metal-Organic Chemical Vapor Deposition (MOCVD) Process Investigation for Co Thin Film as a TSV Alternative Seed Layer

Authors: Sajjad Esmaeili, Robert Krause, Lukas Gerlich, Alireza Mohammadian Kia, Benjamin Uhlig

Abstract:

This investigation aims to develop the feasible and qualitative process parameters for the thin films fabrication into ultra-large through-silicon-vias (TSVs) as vertical interconnections. The focus of the study is on TSV metallization and its challenges employing new materials for the purpose of rapid signal propagation in the microsystems technology. Cobalt metal-organic chemical vapor deposition (Co-MOCVD) process enables manufacturing an adhesive and excellent conformal ultra-thin film all the way through TSVs in comparison with the conventional non-conformal physical vapor deposition (PVD) process of copper (Cu) seed layer. Therefore, this process provides a Cu seed-free layer which is capable of direct Cu electrochemical deposition (Cu-ECD) on top of it. The main challenge of this metallization module is to achieve the proper alternative seed layer with less roughness, sheet resistance and granular organic contamination (e.g. carbon) which intensify the Co corrosion under the influence of Cu electrolyte.

Keywords: Cobalt MOCVD, direct Cu electrochemical deposition (ECD), metallization technology, through-silicon-via (TSV)

Procedia PDF Downloads 129
250 Procyclicality of Leverage: An Empirical Analysis from Turkish Banks

Authors: Emin Avcı, Çiydem Çatak

Abstract:

The recent economic crisis have shown that procyclicality, which could threaten the stability and growth of the economy, is a major problem of financial and real sector. The term procyclicality refers here the cyclical behavior of banks that lead them to follow the same patterns as the real economy. In this study, leverage which demonstrate how a bank manage its debt, is chosen as bank specific variable to see the effect of changes in it over the economic cycle. The procyclical behavior of Turkish banking sector (commercial, participation, development-investment banks) is tried to explain with analyzing the relationship between leverage and asset growth. On the basis of theoretical explanations, eight different leverage ratios are utilized in eight different panel data models to demonstrate the procyclicality effect of Turkish banks leverage using monthly data covering the 2005-2014 period. It is tested whether there is an increasing (decreasing) trend in the leverage ratio of Turkish banks when there is an enlargement (contraction) in their balance sheet. The major finding of the study indicates that asset growth has a significant effect on all eight leverage ratios. In other words, the leverage of Turkish banks follow a cyclical pattern, which is in line with those of earlier literature.

Keywords: banking, economic cycles, leverage, procyclicality

Procedia PDF Downloads 234
249 Assessment Proposal to Establish the First Geo-Park in Egypt at Abu-Roash Area, Cairo

Authors: Kholoud Abdelmaksoud, Mahmoud Emam, Wael Al-Metwaly

Abstract:

Egypt is known as cradle of civilization due to its ancient history and archeological sites, but Egypt possess also a cradle of Geo-sites, which qualify it to be listed as one of the most important Geo-heritage sites all over the country. Geology and landscape in Abu-Roash area is considered as one of the most important geological places (geo-sites) inside Cairo which help us to know and understand geology and geologic processes, so the area is used mainly for geological education purposes, also the area contain an archeological sites; pyramid complex, tombs, and Coptic monastery which give the area unique importance. Abu-Roash area is located inside Cairo 9 km north of the Giza Pyramids, which make the accessibility to the area easy and safe, the geology of Abu-Roash constitutes a complex Cretaceous sedimentary succession mass with showing outstanding tectonic features (Syrian Arc system event), these features are considered as a Geo-heritage, which will be the main designation of ‘Geo-parks’ establishing. The research is dealing with the numerous geo-sites found in the area, and its geologic and archeological importance, the relation between geo-sites and archeology, also the research proposed a detailed maps for these sites depicting Geo-routes and the hazardous places surrounding Abu-Roash area. The research is proposing a new proposal not applied in Egypt before, establishing a Geo-park, to promote this unique geo-heritage from hazardous factors and anthropogenic effects, also it will offer geo-educational opportunities to the general public and to the scientific community, enhancement of Geo-tourism which will be linked easily with the Ancient Egyptian tourism, it will also provide a significant economic benefit to Abu-Roash residential area. Finally, the research recommends that The United Nations Educational, Scientific and Cultural Organizations promote conservation of geological and geo-morphological heritage to list this area for its importance under the umbrella of geo-parks.

Keywords: geo-park, geo-sites, Abu-roash, archaeological sites, geo-tourism

Procedia PDF Downloads 276
248 Algorithmic Generation of Carbon Nanochimneys

Authors: Sorin Muraru

Abstract:

Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018.

Keywords: carbon nanochimneys, computational, carbon nanotube, carbon nanocone, molecular modeling, carbon nanostructures

Procedia PDF Downloads 140
247 Earthquake Identification to Predict Tsunami in Andalas Island, Indonesia Using Back Propagation Method and Fuzzy TOPSIS Decision Seconder

Authors: Muhamad Aris Burhanudin, Angga Firmansyas, Bagus Jaya Santosa

Abstract:

Earthquakes are natural hazard that can trigger the most dangerous hazard, tsunami. 26 December 2004, a giant earthquake occurred in north-west Andalas Island. It made giant tsunami which crushed Sumatra, Bangladesh, India, Sri Lanka, Malaysia and Singapore. More than twenty thousand people dead. The occurrence of earthquake and tsunami can not be avoided. But this hazard can be mitigated by earthquake forecasting. Early preparation is the key factor to reduce its damages and consequences. We aim to investigate quantitatively on pattern of earthquake. Then, we can know the trend. We study about earthquake which has happened in Andalas island, Indonesia one last decade. Andalas is island which has high seismicity, more than a thousand event occur in a year. It is because Andalas island is in tectonic subduction zone of Hindia sea plate and Eurasia plate. A tsunami forecasting is needed to mitigation action. Thus, a Tsunami Forecasting Method is presented in this work. Neutral Network has used widely in many research to estimate earthquake and it is convinced that by using Backpropagation Method, earthquake can be predicted. At first, ANN is trained to predict Tsunami 26 December 2004 by using earthquake data before it. Then after we get trained ANN, we apply to predict the next earthquake. Not all earthquake will trigger Tsunami, there are some characteristics of earthquake that can cause Tsunami. Wrong decision can cause other problem in the society. Then, we need a method to reduce possibility of wrong decision. Fuzzy TOPSIS is a statistical method that is widely used to be decision seconder referring to given parameters. Fuzzy TOPSIS method can make the best decision whether it cause Tsunami or not. This work combines earthquake prediction using neural network method and using Fuzzy TOPSIS to determine the decision that the earthquake triggers Tsunami wave or not. Neural Network model is capable to capture non-linear relationship and Fuzzy TOPSIS is capable to determine the best decision better than other statistical method in tsunami prediction.

Keywords: earthquake, fuzzy TOPSIS, neural network, tsunami

Procedia PDF Downloads 465
246 First-Principles Study of Inter-Cage Interactions in Inorganic Molecular Crystals

Authors: Abdul Majid, Alia Jabeen, Nimra Zulifqar

Abstract:

The inorganic molecular crystal (IMCs) due to their unusual structure has grabbed a lot of attention due to anisotropy in crystal structure. The IMCs consist of the molecular structures joined together via weak forces. Therefore, a difference between the bonding between the inter-cage and intra-cage interactions exists. To look closely at the bonding and interactions, we investigated interactions between two cages of Sb2O3 structure. The interactions were characterized via Extended Transition State-Natural Orbital for Chemical Valence-method (ETS-NOCV), Natural Bond Orbitals (NBO) and Quantum Theory of Atoms in Molecules (QTAIM). The results revealed strong intra-cage covalent bonding while weak van der Waals (vdWs) interactions along inter-cages exits. This structure cannot be termed as layered material although they have anisotropy in bonding and presence of weak vdWs interactions but its bulk is termed as inorganic layered clusters. This is due to the fact that the free standing sheet/films with these materials are not possible. This type of structures may be the most feasible to be used for the system to deal with high pressures and stress bearing materials.

Keywords: inorganic molecular crystals, density functional theory, cages, interactions

Procedia PDF Downloads 65
245 Research on Sensing Performance of Polyimide-Based Composite Materials

Authors: Rui Zhao, Dongxu Zhang, Min Wan

Abstract:

Composite materials are widely used in the fields of aviation, aerospace, and transportation due to their lightweight and high strength. Functionalization of composite structures is a hot topic in the future development of composite materials. This article proposed a polyimide-resin based composite material with a sensing function. This material can serve as a sensor to achieve deformation monitoring of metal sheets in room temperature environments. In the deformation process of metal sheets, the slope of the linear fitting line for the corresponding material resistance change rate is different in the elastic stage and the plastic strengthening stage. Therefore, the slope of the material resistance change rate can be used to characterize the deformation stage of the metal sheet. In addition, the resistance change rate of the material exhibited a good negative linear relationship with temperature in a high-temperature environment, and the determination coefficient of the linear fitting line for the change rate of material resistance in the range of 520-650℃ was 0.99. These results indicate that the material has the potential to be applied in the monitoring of mechanical properties of structural materials and temperature monitoring of high-temperature environments.

Keywords: polyimide, composite, sensing, resistance change rate

Procedia PDF Downloads 47
244 Shear Strengthening of RC T-Beams by Means of CFRP Sheets

Authors: Omar A. Farghal

Abstract:

This research aimed to experimentally and analytically investigate the contribution of bonded web carbon fiber reinforced polymer (CFRP) sheets to the shear strength of reinforced concrete (RC) T-beams. Two strengthening techniques using CFRP strips were applied along the shear-span zone: the first one is vertical U-jacket and the later is vertical strips bonded to the beam sides only. Fibers of both U-jacket and side sheets were vertically oriented (θ = 90°). Test results showed that the strengthening technique with U-jacket CFRP sheets improved the shear strength particularly. Three mechanisms of failure were recognized for the tested beams depending upon the end condition of the bonded CFRP sheet. Although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket CFRP sheets showed more or less a ductile behavior at a higher loading level up to a load level just before failure. As a consequence, these beams approved an acceptable enhancement in the structural ductility. Moreover, the obtained results concerning both the strains induced in the CFRP sheets and the maximum loads are used to study the applicability of the analytical models proposed in this study (ACI code) to predict: the nominal shear strength of the strengthened beams.

Keywords: carbon fiber reinforced polymer, wrapping, ductility, shear strengthening

Procedia PDF Downloads 229
243 Implementation of Integrated Multi-Channel Analysis of Surface Waves and Waveform Inversion Techniques for Seismic Hazard Estimation with Emphasis on Associated Uncertainty: A Case Study at Zafarana Wind Turbine Towers Farm, Egypt

Authors: Abd El-Aziz Khairy Abd El-Aal, Yuji Yagi, Heba Kamal

Abstract:

In this study, an integrated multi-channel analysis of Surface Waves (MASW) technique is applied to explore the geotechnical parameters of subsurface layers at the Zafarana wind farm. Moreover, a seismic hazard procedure based on the extended deterministic technique is used to estimate the seismic hazard load for the investigated area. The study area includes many active fault systems along the Gulf of Suez that cause many moderate and large earthquakes. Overall, the seismic activity of the area has recently become better understood following the use of new waveform inversion methods and software to develop accurate focal mechanism solutions for recent recorded earthquakes around the studied area. These earthquakes resulted in major stress-drops in the Eastern desert and the Gulf of Suez area. These findings have helped to reshape the understanding of the seismotectonic environment of the Gulf of Suez area, which is a perplexing tectonic domain. Based on the collected new information and data, this study uses an extended deterministic approach to re-examine the seismic hazard for the Gulf of Suez region, particularly the wind turbine towers at Zafarana Wind Farm and its vicinity. Alternate seismic source and magnitude-frequency relationships were combined with various indigenous attenuation relationships, adapted within a logic tree formulation, to quantify and project the regional exposure on a set of hazard maps. We select two desired exceedance probabilities (10 and 20%) that any of the applied scenarios may exceed the largest median ground acceleration. The ground motion was calculated at 50th, 84th percentile levels.

Keywords: MASW, seismic hazard, wind turbine towers, Zafarana wind farm

Procedia PDF Downloads 381
242 Optimization of Laser Doping Selective Emitter for Silicon Solar Cells

Authors: Meziani Samir, Moussi Abderrahmane, Chaouchi Sofiane, Guendouzi Awatif, Djema Oussama

Abstract:

Laser doping has a large potential for integration into silicon solar cell technologies. The ability to process local, heavily diffused regions in a self-aligned manner can greatly simplify processing sequences for the fabrication of selective emitter. The choice of laser parameters for a laser doping process with 532nm is investigated. Solid state lasers with different power and speed were used for laser doping. In this work, the aim is the formation of selective emitter solar cells with a reduced number of technological steps. In order to have a highly doped localized emitter region, we used a 532 nm laser doping. Note that this region will receive the metallization of the Ag grid by screen printing. For this, we use SOLIDWORKS software to design a single type of pattern for square silicon cells. Sheet resistances, phosphorus doping concentration and silicon bulk lifetimes of irradiated samples are presented. Additionally, secondary ion mass spectroscopy (SIMS) profiles of the laser processed samples were acquired. Scanning electron microscope and optical microscope images of laser processed surfaces at different parameters are shown and compared.

Keywords: laser doping, selective emitter, silicon, solar cells

Procedia PDF Downloads 68
241 Investigation of Flow Structure over X-45 Type Non-Slender Delta Wing Planform

Authors: B. Yanıktepe, C. Özalp, B. Şahin

Abstract:

Delta wing planform is an essential aerodynamic configuration, which could be effectively used at relatively high angles of attack than conventional wings in subsonic flow conditions. The flow over delta wings can be characterized by a pair of leading edge vortices emanating from wing apex. Boundary layer separation causes these vortical structures formed by rolling up of viscous flow sheet. This flow separation mechanism is occurred due to angle of attack and sharp leading edges of the delta wing. Therefore, complexity and variety in planform designs rise to catch the best under abnormal flow conditions. The present experimental study investigates the near surface flow structure and aerodynamic flow characteristics of X-45 type non-slender delta wing planform using dye visualization, Stereoscopic Particle Image Velocimetry (stereo-PIV). The instantaneous images are acquired on the plan-view plane within 5o≤α≤20o to calculate the time-averaged flow data. It can be concluded that vortical flow with a pair of well-defined LEVs over X-45 develop at very low angles of attack, secondary vortex are also evident and form close to the wing surface similar to delta and lambda planforms. The stall occurs at an angle of attack α=32o.

Keywords: aerodynamic, delta wing, PIV, vortex breakdown

Procedia PDF Downloads 390
240 Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho

Authors: M. Ntšolo, D. Kalumba, N. Lefu, G. Letlatsa

Abstract:

Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Letšeng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Letšeng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits.

Keywords: numerical modeling, open pit mine, shear zone, slope stability

Procedia PDF Downloads 275
239 A New Design of Vacuum Membrane Distillation Module for Water Desalination

Authors: Adnan Alhathal Alanezi

Abstract:

The performance of vacuum membrane distillation (VMD) process for water desalination was investigated utilizing a new design membrane module using two commercial polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes. The membrane module's design demonstrated its suitability for achieving a high heat transfer coefficient of the order of 103 (W/m2K) and a high Reynolds number (Re). The heat and mass transport coefficients within the membrane module were measured using VMD experiments. The permeate flux has been examined in relation to process parameters such as feed temperature, feed flow rate, vacuum degree, and feed concentration. Because the feed temperature, feed flow rate, and vacuum degree all play a role in improving the performance of the VMD process, optimizing all of these parameters is the best method to achieve a high permeate flux. In VMD desalination, the PTFE membrane outperformed the PVDF membrane. When compared to previous studies, the obtained water flux is relatively high, reaching 43.8 and 52.6 (kg/m2h) for PVDF and PTFE, respectively. For both membranes, the salt rejection of NaCl was greater than 99%.

Keywords: desalination, vacuum membrane distillation, PTFE and PVDF, hydrophobic membranes, O-ring membrane module

Procedia PDF Downloads 52
238 Preparation and Characterization of Antifouling Polysulfone Flat Sheet Membrane by Phase Inversion

Authors: Bharti Saini, Sukanta K. Dash

Abstract:

In this work polymeric Nanofiltration (NF) membranes of polysulfone (PSF) (average molecular weight of 22400 Da) were prepared using polyethylene glycol (PEG) (average molecular weight of 200 Da) as an organic additive and ZnCl2 as an inorganic additive. Dimethyl acetamide (DMAc) was used as the solvent, and Deionised water as nonsolvent. The membranes were prepared by phase inversion (immersion precipitation) method. PEG 200 and ZnCl2 in varying concentration are directly added into the casting solution of PSF and DMAc. PEG 200 was used in concentration varying from 0 to 10 % (w/w) in the solution of PSF and DMAc, while ZnCl2 is varied from 0 to 2% (w/w). Membranes were characterized for surface morphology, water uptake, porosity and contact angle, with respect to concentration of PEG and ZnCl2. It was observed that with the increase in additive PEG 200, the porosity and hence, hydrophilicity increase. As a result, the number of pores increases as justified by the SEM analysis as well. The study revealed that the synergistic effect of PEG with ZnCl2 is more effective, and the best results were produced by the solution containing 2% PEG 200 and 1% ZnCl2. It was inferred that with the increase in concentration of additives, the pore size goes on decreasing. The membranes obtained gradually move from microfiltration range to nanofiltration range, and this change is primarily brought about by the addition of ZnCl2.

Keywords: membrane, phase inversion method, polysulfone, porous structure

Procedia PDF Downloads 215
237 Relationships among Parentification, Self-Differentiation, and Ambivalence over Emotional Expression for Children of Migratory Families

Authors: Wan-Chun Chang, Yi-Jung Lee

Abstract:

Due to cultural factors, expressing emotions may not be encouraged in collectivist cultures, which emphasize the needs of the group over the needs of the individual. This phenomenon is more prominent for children of migratory families. Due to the absence of one parent, children were often parentified by adults, which then impacted on their self-differentiation process. It made them more difficult to express their needs and emotions freely and openly. This study aimed to investigate the meditation effect of self-differentiation between parentification, and ambivalence over emotional expression for children of migratory families in Taiwan. Participants included 460 (326 females, 134 males) Taiwanese adults (age 18-25 years). The data were collected through questionnaires and analyzed using descriptive statistics and multiple regression analysis. The questionnaire included informed consent form, 'Filial Responsibility Scale-Adult', 'Chinese version of the Differentiation of Self Inventory', 'Ambivalence over Emotion Expressiveness Questionnaire', and the demographic sheet. Results indicated that self-differentiation mediated the relationship between parentified experience and ambivalence over emotional expression. In other words, parentified experience itself does not have the power to affect ambivalence over emotional expression. Only by affecting self-differentiation can it make an actual difference. The results were as expected and confirmed the hypothesis. Implications for clinical practice, research, and training were discussed.

Keywords: ambivalence over emotional expression, children of migratory families, parentification, self-differentiation

Procedia PDF Downloads 114
236 Mechanistic Structural Insights into the UV Induced Apoptosis via Bcl-2 proteins

Authors: Akash Bera, Suraj Singh, Jacinta Dsouza, Ramakrishna V. Hosur, Pushpa Mishra

Abstract:

Ultraviolet C (UVC) radiation induces apoptosis in mammalian cells and it is suggested that the mechanism by which this occurs is the mitochondrial pathway of apoptosis through the release of cytochrome c from the mitochondria into the cytosol. The Bcl-2 family of proteins pro-and anti-apoptotic is the regulators of the mitochondrial pathway of apoptosis. Upon UVC irradiation, the proliferation of apoptosis is enhanced through the downregulation of the anti-apoptotic protein Bcl-xl and up-regulation of Bax. Although the participation of the Bcl-2 family of proteins in apoptosis appears responsive to UVC radiation, to the author's best knowledge, it is unknown how the structure and, effectively, the function of these proteins are directly impacted by UVC exposure. In this background, we present here a structural rationale for the effect of UVC irradiation in restoring apoptosis using two of the relevant proteins, namely, Bid-FL and Bcl-xl ΔC, whose solution structures have been reported previously. Using a variety of biophysical tools such as circular dichroism, fluorescence and NMR spectroscopy, we show that following UVC irradiation, the structures of Bcl-xlΔC and Bid-FL are irreversibly altered. Bcl-xLΔC is found to be more sensitive to UV exposure than Bid-FL. From the NMR data, dramatic structural perturbations (α-helix to β-sheet) are seen to occur in the BH3 binding region, a crucial segment of Bcl-xlΔC which impacts the efficacy of its interactions with pro-apoptotic tBid. These results explain the regulation of apoptosis by UVC irradiation. Our results on irradiation dosage dependence of the structural changes have therapeutic potential for the treatment of cancer.

Keywords: Bid, Bcl-xl, UVC, apoptosis

Procedia PDF Downloads 102
235 Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas

Authors: Anand Malik

Abstract:

The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning.

Keywords: debris flow, geospatial data, GIS based modeling, flow-R

Procedia PDF Downloads 248
234 Sepiolite as a Processing Aid in Fibre Reinforced Cement Produced in Hatschek Machine

Authors: R. Pérez Castells, J. M. Carbajo

Abstract:

Sepiolite is used as a processing aid in the manufacture of fibre cement from the start of the replacement of asbestos in the 80s. Sepiolite increases the inter-laminar bond between cement layers and improves homogeneity of the slurries. A new type of sepiolite processed product, Wollatrop TF/C, has been checked as a retention agent for fine particles in the production of fibre cement in a Hatschek machine. The effect of Wollatrop T/FC on filtering and fine particle losses was studied as well as the interaction with anionic polyacrylamide and microsilica. The design of the experiments were factorial and the VDT equipment used for measuring retention and drainage was modified Rapid Köethen laboratory sheet former. Wollatrop TF/C increased the fine particle retention improving the economy of the process and reducing the accumulation of solids in recycled process water. At the same time, drainage time increased sharply at high concentration, however drainage time can be improved by adjusting APAM concentration. Wollatrop TF/C and microsilica are having very small interactions among them. Microsilica does not control fine particle losses while Wollatrop TF/C does efficiently. Further research on APAM type (molecular weight and anionic character) is advisable to improve drainage.

Keywords: drainage, fibre-reinforced cement, fine particle losses, flocculation, microsilica, sepiolite

Procedia PDF Downloads 305