Search results for: earthquake resistant structural design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16694

Search results for: earthquake resistant structural design

16334 Bio-Genetic Activities Associated with Resistant in Peppers to Phytophthora capsici

Authors: Mehdi Nasr-Esfahani, Leila Mohammad Bagheri, Ava Nasr-Esfahani

Abstract:

Root and collar rot disease caused by Phytophthora capsici (Leonian) is one of the most serious diseases in pepper, Capsicum annuum L. In this study, a diverse collection of 37 commercial edible and ornamental pepper genotypes infected with P. capsici were investigated for biomass parameters and enzymatic activity of peroxidase or peroxide reductases (EC), superoxide dismutase (SOD), polyphenol oxidase (PPOs), catalase (CAT) and phenylalanine ammonia-lyase (PAL). Seven candidate DEG genes were also evaluated on resistant and susceptible pepper cultivars, through measuring product formation, using spectrophotometry and real-time polymerase chain reaction. All the five enzymes and seven defense-gene candidates were up-regulated in all inoculated pepper accessions to P. capsici. But, the enzymes and DEG genes were highly expressed in resistant cv. 19OrnP-PBI, 37ChillP-Paleo, and “23CherryP-Orsh". The expression level of enzymes were 1.5 to 5.6-fold higher in the resistant peppers, than the control non-inoculated genotypes. Also, the transcriptional levels of related candidate DEG genes were 3.16 to 5.90-fold higher in the resistant genotypes. There was a direct and high correlation coefficient between resistance, bio-mass parameters, enzymatic activity, and resistance gene expression. The related enzymes and candidate genes expressed herein will provide a basis for further gene cloning and functional verification studies, and also will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici.

Keywords: AP2/ERF, cDNA, enzymes, MIP gene, q-RTPCR, XLOC

Procedia PDF Downloads 144
16333 Identification of Two Novel Carbapenemase Gene Variants from a Carbapenem-Resistant Aeromonas Veronii Environmental Isolate

Authors: Rafael Estrada, Cristian Ruiz Rueda

Abstract:

Carbapenems are last-resort antibiotics used in clinical settings to treat antibiotic-resistant bacterial infections. Thus, the emergence and spread of resistance to carbapenems is a major public health concern. Here, we have studied a carbapenem-resistant Aeromonas veronii strain previously isolated from a water sample from Sam Simeon Creek (Hearst San Simeon State Park, CA). Analysis of this isolate using disk-diffusion, CarbaNP, eCIM and mCIM assays revealed that it was resistant to amoxicillin-clavulanic acid and all carbapenems tested and that this isolate produced a potentially novel carbapenemase of the Metallo-β-lactamase family. Whole genome sequencing analysis revealed that this A. veronii isolate carries a novel variant of the blacₚₕₐ class β-carbapenemase gene that was closely related to the blacₚₕₐ₇ gene of Aeromonas jandaei. This isolate also carried a novel variant of the blaₒₓₐ class D carbapenemase gene that was most closely related to the blaₒₓₐ-₉₁₂ gene found in other Aeromonas veronii isolates. Finally, we also identified a novel class C β-lactamase gene moderately related to the blaFₒₓ-₁₇ gene of Providencia stuartii and other blaFₒₓ variants identified in Klebsiella pneumoniae, Escherichia coli and other Enterobacteriaceae. Overall, our findings reveal that environmental isolates are an important reservoir of multiple carbapenemases and other β-lactamases of clinical significance.

Keywords: β-lactamases, carbapenem, antibiotic-resistant, aeromonas veronii

Procedia PDF Downloads 78
16332 Seismic Impact and Design on Buried Pipelines

Authors: T. Schmitt, J. Rosin, C. Butenweg

Abstract:

Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety, but in particular for the maintenance of supply infrastructure after an earthquake. Past earthquakes have shown the vulnerability of pipeline systems. After the Kobe earthquake in Japan in 1995 for instance, in some regions the water supply was interrupted for almost two months. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. Buried pipelines are exposed to different effects of seismic impacts. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. Other effects are permanent displacements due to fault rupture displacements at the surface, soil liquefaction, landslides and seismic soil compaction. The presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, soil depth and selected displacement time histories. In the computer model, the interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs. A propagating wave is simulated affecting the pipeline punctually independently in time and space. The resulting stresses mainly are caused by displacement differences of neighboring pipeline segments and by soil-structure interaction. The calculation examples focus on pipeline bends as the most critical parts. Special attention is given to the calculation of long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which in the event of an earthquake lead to high bending stresses at the cross-section of the pipeline. Therefore, Karman's elasticity factors, as well as the stress intensity factors for curved pipe sections, must be taken into account. The seismic verification of the pipeline for wave propagation in the soil can be achieved by observing normative strain criteria. Finally, an interpretation of the results and recommendations are given taking into account the most critical parameters.

Keywords: buried pipeline, earthquake, seismic impact, transient displacement

Procedia PDF Downloads 173
16331 Evaluation of Essential Oils Toxicity on Resistant and Susceptible House Fly Strains

Authors: Xing Ping Hu, Yuexun Tian, Jerome Hogsette

Abstract:

Housefly, Musca domestica L., is a serious urban nuisance and public health/food safety concern. This study evaluated the topical toxicity of 17 essential oil components and 3 plant essential oils against permethrin-resistant adult females and insecticide-susceptible house fly strains. Results show that thymol had the lowest LD₅₀ values against permethrin-resistant strain (43.77 and 41.10 ug per fly) and permethrin-susceptible strain (35.19 and 29.16 ug per fly) at both 24- and 48-hours post treatments; (+)-Pulegone had the lowest LD₉₅ values against the permethrin-resistant strain (0.15 and 0.10 mg per fly) at 24- and 48-hours post treatments, whereas plant thyme oil had the lowest LD₉₅ value of 0.17 mg per fly at post-24h and post-48h against the permethrin-susceptible strain. Additionally, the LD₅₀s was slightly but not significantly negatively correlated with the boiling points of the compounds tested; but showed no correlation with the density and LogP. These results indicate that specific essential oils and compounds have topical insecticidal properties against house flies with low dose. They may have the potential for development as botanical insecticides.

Keywords: urban pest, public health, pest management, botanical chemical

Procedia PDF Downloads 368
16330 Neuropsychological Deficits in Drug-Resistant Epilepsy

Authors: Timea Harmath-Tánczos

Abstract:

Drug-resistant epilepsy (DRE) is defined as the persistence of seizures despite at least two syndrome-adapted antiseizure drugs (ASD) used at efficacious daily doses. About a third of patients with epilepsy suffer from drug resistance. Cognitive assessment has a crucial role in the diagnosis and clinical management of epilepsy. Previous studies have addressed the clinical targets and indications for measuring neuropsychological functions; best to our knowledge, no studies have examined it in a Hungarian therapy-resistant population. To fill this gap, we investigated the Hungarian diagnostic protocol between 18 and 65 years of age. This study aimed to describe and analyze neuropsychological functions in patients with drug-resistant epilepsy and identify factors associated with neuropsychology deficits. We perform a prospective case-control study comparing neuropsychological performances in 50 adult patients and 50 healthy individuals between March 2023 and July 2023. Neuropsychological functions were examined in both patients and controls using a full set of specific tests (general performance level, motor functions, attention, executive facts., verbal and visual memory, language, and visual-spatial functions). Potential risk factors for neuropsychological deficit were assessed in the patient group using a multivariate analysis. The two groups did not differ in age, sex, dominant hand and level of education. Compared with the control group, patients with drug-resistant epilepsy showed worse performance on motor functions and visuospatial memory, sustained attention, inhibition and verbal memory. Neuropsychological deficits could therefore be systematically detected in patients with drug-resistant epilepsy in order to provide neuropsychological therapy and improve quality of life. The analysis of the classical and complex indices of the special neuropsychological tasks presented in the presentation can help in the investigation of normal and disrupted memory and executive functions in the DRE.

Keywords: drug-resistant epilepsy, Hungarian diagnostic protocol, memory, executive functions, cognitive neuropsychology

Procedia PDF Downloads 60
16329 Earthquake Forecasting Procedure Due to Diurnal Stress Transfer by the Core to the Crust

Authors: Hassan Gholibeigian, Kazem Gholibeigian

Abstract:

In this paper, our goal is determination of loading versus time in crust. For this goal, we present a computational procedure to propose a cumulative strain energy time profile which can be used to predict the approximate location and time of the next major earthquake (M > 4.5) along a specific fault, which we believe, is more accurate than many of the methods presently in use. In the coming pages, after a short review of the research works presently going on in the area of earthquake analysis and prediction, earthquake mechanisms in both the jerk and sequence earthquake direction is discussed, then our computational procedure is presented using differential equations of equilibrium which govern the nonlinear dynamic response of a system of finite elements, modified with an extra term to account for the jerk produced during the quake. We then employ Von Mises developed model for the stress strain relationship in our calculations, modified with the addition of an extra term to account for thermal effects. For calculation of the strain energy the idea of Pulsating Mantle Hypothesis (PMH) is used. This hypothesis, in brief, states that the mantle is under diurnal cyclic pulsating loads due to unbalanced gravitational attraction of the sun and the moon. A brief discussion is done on the Denali fault as a case study. The cumulative strain energy is then graphically represented versus time. At the end, based on some hypothetic earthquake data, the final results are verified.

Keywords: pulsating mantle hypothesis, inner core’s dislocation, outer core’s bulge, constitutive model, transient hydro-magneto-thermo-mechanical load, diurnal stress, jerk, fault behaviour

Procedia PDF Downloads 266
16328 Differentially Response of Superoxide Dismutase in Wheat Susceptible and Resistant Cultivars against FHB

Authors: M. Sorahi Nobar, V. Niknam, H. Ebrahimzadeh, H. Soltanloo

Abstract:

Fusarium graminearum is one of the most destructive crop diseases in the world. Infection occurs during the flowering period in warm and humid conditions. It causes reduction in yield. Moreover, harvested grain is often contaminated with mycotoxins and its acetylated derivatives. Fusarium mycotoxines are potent inhibitor of protein synthesis, and thereby presents hazards for both human and animal health. A rapid production of reactive oxygen intermediates, primarily superoxide and hydrogen peroxide at the site of attempted infection considered as key feature underlying successful pathogen recognition. Here, we compared the time course activity of superoxide dismutase (SOD) as a first line of defenses against ROS- induced oxidative burst between FHB- resistant Sumai3 and susceptible Falat at 48, 96 and 144 hours after infection. Our results showed that Sumai3 SOD activity increased with time and reached the highest-level 4 days after infection while in susceptible cultivar Falat, SOD activity decreased during the first 96 h. after infection. Decreased was followed by an increased at 6 days after infection. According to our results rapid induction of SOD activity in resistant cultivar may play an important role in resistance against FHB in wheat.

Keywords: Fusarium graminearum, mycotoxins, resistant cultivar, superoxide dismutase

Procedia PDF Downloads 432
16327 Identifying Dynamic Structural Parameters of Soil-Structure System Based on Data Recorded during Strong Earthquakes

Authors: Vahidreza Mahmoudabadi, Omid Bahar, Mohammad Kazem Jafari

Abstract:

In many applied engineering problems, structural analysis is usually conducted by assuming a rigid bed, while imposing the effect of structure bed flexibility can affect significantly on the structure response. This article focuses on investigation and evaluation of the effects arising from considering a soil-structure system in evaluation of dynamic characteristics of a steel structure with respect to elastic and inelastic behaviors. The recorded structure acceleration during Taiwan’s strong Chi-Chi earthquake on different floors of the structure was our evaluation criteria. The respective structure is an eight-story steel bending frame structure designed using a displacement-based direct method assuring weak beam - strong column function. The results indicated that different identification methods i.e. reverse Fourier transform or transfer functions, is capable to determine some of the dynamic parameters of the structure precisely, rather than evaluating all of them at once (mode frequencies, mode shapes, structure damping, structure rigidity, etc.). Response evaluation based on the input and output data elucidated that the structure first mode is not significantly affected, even considering the soil-structure interaction effect, but the upper modes have been changed. Also, it was found that the response transfer function of the different stories, in which plastic hinges have occurred in the structure components, provides similar results.

Keywords: bending steel frame structure, dynamic characteristics, displacement-based design, soil-structure system, system identification

Procedia PDF Downloads 489
16326 Layout Design Optimization of Spars under Multiple Load Cases of the High-Aspect-Ratio Wing

Authors: Yu Li, Jingwu He, Yuexi Xiong

Abstract:

The spar layout will affect the wing’s stiffness characteristics, and irrational spar arrangement will reduce the overall bending and twisting resistance capacity of the wing. In this paper, the active structural stiffness design theory is used to match the stiffness-center axis position and load-cases under the corresponding multiple flight conditions, in order to achieve better stiffness properties of the wing. The combination of active stiffness method and principle of stiffness distribution is proved to be reasonable supplying an initial reference for wing designing. The optimized layout of spars is eventually obtained, and the high-aspect-ratio wing will have better stiffness characteristics.

Keywords: active structural stiffness design theory, high-aspect-ratio wing, flight load cases, layout of spars

Procedia PDF Downloads 306
16325 Software Development for AASHTO and Ethiopian Roads Authority Flexible Pavement Design Methods

Authors: Amare Setegn Enyew, Bikila Teklu Wodajo

Abstract:

The primary aim of flexible pavement design is to ensure the development of economical and safe road infrastructure. However, failures can still occur due to improper or erroneous structural design. In Ethiopia, the design of flexible pavements relies on doing calculations manually and selecting pavement structure from catalogue. The catalogue offers, in eight different charts, alternative structures for combinations of traffic and subgrade classes, as outlined in the Ethiopian Roads Authority (ERA) Pavement Design Manual 2001. Furthermore, design modification is allowed in accordance with the structural number principles outlined in the AASHTO 1993 Guide for Design of Pavement Structures. Nevertheless, the manual calculation and design process involves the use of nomographs, charts, tables, and formulas, which increases the likelihood of human errors and inaccuracies, and this may lead to unsafe or uneconomical road construction. To address the challenge, a software called AASHERA has been developed for AASHTO 1993 and ERA design methods, using MATLAB language. The software accurately determines the required thicknesses of flexible pavement surface, base, and subbase layers for the two methods. It also digitizes design inputs and references like nomographs, charts, default values, and tables. Moreover, the software allows easier comparison of the two design methods in terms of results and cost of construction. AASHERA's accuracy has been confirmed through comparisons with designs from handbooks and manuals. The software can aid in reducing human errors, inaccuracies, and time consumption as compared to the conventional manual design methods employed in Ethiopia. AASHERA, with its validated accuracy, proves to be an indispensable tool for flexible pavement structure designers.

Keywords: flexible pavement design, AASHTO 1993, ERA, MATLAB, AASHERA

Procedia PDF Downloads 50
16324 High-Frequency Monitoring Results of a Piled Raft Foundation under Wind Loading

Authors: Laurent Pitteloud, Jörg Meier

Abstract:

Piled raft foundations represent an efficient and reliable technique for transferring high vertical and horizontal loads to the subsoil. Piled raft foundations were success­fully implemented for several high-rise buildings world­wide over the last decades. For the structural design of this foundation type the stiffnesses of both the piles and the raft have to be deter­mined for the static (e.g. dead load, live load) and the dynamic load cases (e.g. earthquake). In this context the question often arises, to which proportion wind loads are to be considered as dynamic loads. Usually a piled raft foundation has to be monitored in order to verify the design hypotheses. As an additional benefit, the analysis of this monitoring data may lead to a better under­standing of the behaviour of this foundation type for future projects in similar subsoil conditions. In case the measurement frequency is high enough, one may also draw conclusions on the effect of wind loading on the piled raft foundation. For a 41-storey office building in Basel, Switzerland, the preliminary design showed that a piled raft foundation was the best solution to satisfy both design requirements, as well as economic aspects. A high-frequency monitoring of the foundation including pile loads, vertical stresses under the raft, as well as pore water pressures was performed over 5 years. In windy situations the analysis of the measure­ments shows that the pile load increment due to wind consists of a static and a cyclic load term. As piles and raft react with different stiffnesses under static and dynamic loading, these measure­ments are useful for the correct definition of stiffnesses of future piled raft foundations. This paper outlines the design strategy and the numerical modelling of the aforementioned piled raft foundation. The measurement results are presented and analysed. Based on the findings, comments and conclusions on the definition of pile and raft stiffnesses for vertical and wind loading are proposed.

Keywords: design, dynamic, foundation, monitoring, pile, raft, wind load

Procedia PDF Downloads 179
16323 Assessment of Bridge Performance with Laminated versus Spring Seismic Isolation

Authors: M. Z. Ramli, A. Adnan, Chee Wei Tan

Abstract:

To gain a better understanding of earthquake forces on reinforced concrete bridge piers with different bearing condition, a series of experiments was conducted on a realistic, 1:4 scale reinforced concrete bridge pier. The normal practices of laminated seismic isolation bearing is compared with the new design spring seismic isolation bearing where invented by Engineering Seismology and Earthquake Engineering Research (e-SEER), Universiti Teknologi Malaysia. The nonlinear behavior of piers is modeled using the fibre beam theory to verify the experimental works. The hysteresis of bridge pier with different bearing condition was illustrated under different Peak Ground Acceleration (PGAs). The average slope of the hysteresis respectively to the global stiffness was also investigated.

Keywords: bridge, laminated seismic isolation, spring seismic isolation, Peak Ground Acceleration, stiffness

Procedia PDF Downloads 545
16322 Soil Characteristics and Liquefaction Potential of the Bengkulu Region Based on the Microtremor Method

Authors: Aditya Setyo Rahman, Dwikorita Karnawati, Muzli, Dadang Permana, Sigit Pramono, Fajri Syukur Rahmatullah, Oriza Sativa, Moehajirin, Edy Santoso, Nur Hidayati Oktavia, Ardian Yudhi Octantyo, Robby Wallansha, Juwita Sari Pradita, Nur Fani Habibah, Audia Kaluku, Amelia Chelcea, Yoga Dharma Persada, Anton Sugiharto

Abstract:

Earthquake vibrations on the surface are not only affected by the magnitude of the earthquake and the distance from the hypocenter but also by the characteristics of the local soil. Variations and changes in soil characteristics from the depth of the bedrock to the surface can cause an amplification of earthquake vibrations that also affect the impact they may have on the surface. Soil characteristics vary widely even at relatively close distances, so for earthquake hazard mapping in cities with earthquake threats, it is necessary to study the characteristics of the local soil on a detailed or micro-scale (microzonation). This study proposes seismic microzonation and liquefaction potential based on microtremor observations. We carried out 143 microtremor observations, and the observation sites were spread across all populated sub-districts in Bengkulu City; the results showed that the dominance of Bengkulu City had medium soil types with a dominant period value of 0.4 < T₀ < 0.6, and there was one location with soft soil characteristics in the river, shaved with T₀ > 0.6. These results correlate with the potential for liquefaction as indicated by a seismic vulnerability index (K𝓰) greater than 5.

Keywords: microtremor, dominant period, microzonation, seismic vulnerability index

Procedia PDF Downloads 98
16321 Transient Analysis of Laminated Rubber Bearing Bridge during High Intensity Earthquake

Authors: N. M. Amin, W. N. A. W. Sulaiman

Abstract:

The effectiveness of the seismic response between 3D solid elements model and simplified beam elements model has been investigated. At present, the studies of the numerical modelling using 3D solid element are minimal due to numerical software constraint. The finite element analysis using 3D solid element was chosen to study displacement response of laminated rubber bearing (LRB) during high intensity Kobe earthquake. In this research a simply supported bridge (single span), fixed at support was analysed by using transient analysis subjected to real time history loading of Kobe earthquake.

Keywords: laminated rubber bearing, solid element, simplified beam element, transient analysis

Procedia PDF Downloads 417
16320 Seismic Analysis of Adjacent Buildings Connected with Dampers

Authors: Devyani D. Samarth, Sachin V. Bakre, Ratnesh Kumar

Abstract:

This work deals with two buildings adjacent to each other connected with dampers. The “Imperial Valley Earthquake - El Centro", "May 18, 1940 earthquake time history is used for dynamic analysis of the system in the time domain. The effectiveness of fluid joint dampers is then investigated in terms of the reduction of displacement, acceleration and base shear responses of adjacent buildings. Finally, an extensive parametric study is carried out to find optimum damper properties like stiffness (Kd) and damping coefficient (Cd) for adjacent buildings. Results show that using fluid dampers to connect the adjacent buildings of different fundamental frequencies can effectively reduce earthquake-induced responses of either building if damper optimum properties are selected.

Keywords: energy dissipation devices, time history analysis, viscous damper, optimum parameters

Procedia PDF Downloads 479
16319 Application Procedure for Optimized Placement of Buckling Restrained Braces in Reinforced Concrete Building Structures

Authors: S. A. Faizi, S. Yoshitomi

Abstract:

The optimal design procedure of buckling restrained braces (BRBs) in reinforced concrete (RC) building structures can provide the distribution of horizontal stiffness of BRBs at each story, which minimizes story drift response of the structure under the constraint of specified total stiffness of BRBs. In this paper, a simple rule is proposed to convert continuous horizontal stiffness of BRBs into sectional sizes of BRB which are available from standardized section list assuming realistic structural design stage.

Keywords: buckling restrained brace, building engineering, optimal damper placement, structural engineering

Procedia PDF Downloads 309
16318 Behaviour of Rc Column under Biaxial Cyclic Loading-State of the Art

Authors: L. Pavithra, R. Sharmila, Shivani Sridhar

Abstract:

Columns severe structural damage needs proportioning a significant portion of earthquake energy can be dissipated yielding in the beams. Presence of axial load along with cyclic loading has a significant influence on column. The objective of this paper is to present the analytical results of columns subjected to biaxial cyclic loading.

Keywords: RC column, Seismic behaviour, cyclic behaviour, biaxial testing, ductile behaviour

Procedia PDF Downloads 347
16317 Investigating the Behavior of Underground Structures in the Event of an Earthquake

Authors: Davoud Beheshtizadeh, Farzin Malekpour

Abstract:

The progress of technology and producing new machinery have made a big change in excavation operations and construction of underground structures. The limitations of space and some other economic, politic and military considerations gained the attention of most developed and developing countries towards the construction of these structures for mine, military, and development objectives. Underground highways, tunnels, subways, oil reservoir resources, fuels, nuclear wastes burying reservoir and underground stores are increasingly developing and being used in these countries. The existence and habitability of the cities depend on these underground installations or in other words these vital arteries. Stopping the flow of water, gas leakage and explosion, collapsing of sewage paths, etc., resulting from the earthquake are among the factors that can severely harm the environment and increase the casualty. Lack of sewage network and complete stoppage of the flow of water in Bam (Iran) is a good example of this kind. In this paper, we investigate the effect of wave orientation on structures and deformation of them and the effect of faulting on underground structures, and then, we study resistance of reinforced concrete against earthquake, simulate two different samples, analyze the result and point out the importance of paying attention to underground installations.

Keywords: underground structures, earthquake, underground installations, axial deformations

Procedia PDF Downloads 184
16316 The Effects of Critical Incident Stress Debriefing and Other Related Interventions on the Psychological Recovery of Earthquake Survivors

Authors: Joyce Fernandez

Abstract:

This study examined the effects of critical incident stress debriefing and other related interventions on the psychological recovery of earthquake survivors. It is a mixed experimental and qualitative study using post-test only control group design and focus group discussion. After the conduct of critical incident stress debriefing activities and other related interventions in the form of counseling and psychiatric treatment to the survivors of a 6.9 magnitude earthquake, a post-test measuring the level of psychological recovery was given to randomized participants categorized as intervention and control groups. Using the traumatic assessment and belief scale as instrument for the quantitative aspect in order to gauge recovery in the psychological need areas of safety, trust, esteem, intimacy and control, the findings are the following: Intervention group participants have relatively better adjustment along the five psychological need areas compared to the control group participants; there is no significant difference in the psychological recovery among female and male participants of the invention and control groups and; there are significant differences between intervention and control groups in the psychological need areas of self-safety, self-trust, other-trust, self-esteem, and self-intimacy. Using a guided interview for the qualitative data, the themes derived are the following. Safety: The world is an unsafe place to live because of the calamities. Trust: Trust and dependence are anchored on the family. Esteem: Participants are having confused self-worth. Intimacy: Participants are thriving on attachment with their family. Control: Participants have unaltered desire to help but feeling restricted because of personal and logistical concerns.As an outcome of the study a Psychosocial Care Program for Individuals, Families and Communities Affected by Disaster and Trauma was proposed.

Keywords: critical incident stress debriefing, earthquake survivors, psychological recovery, related interventions

Procedia PDF Downloads 285
16315 Analysis of a Strengthening of a Building Reinforced Concrete Structure

Authors: Nassereddine Attari

Abstract:

Each operation to strengthen or repair requires special consideration and requires the use of methods, tools and techniques appropriate to the situation and specific problems of each of the constructs. The aim of this paper is to study the pathology of building of reinforced concrete towards the earthquake and the vulnerability assessment using a non-linear Pushover analysis and to develop curves for a medium capacity building in order to estimate the damaged condition of the building.

Keywords: pushover analysis, earthquake, damage, strengthening

Procedia PDF Downloads 417
16314 Embedment Design Concept of Signature Tower in Chennai

Authors: M. Gobinath, S. Balaji

Abstract:

Assumptions in model inputs: Grade of concrete=40 N/mm2 (for slab), Grade of concrete=40 N/mm2 (for shear wall), Grade of Structural steel (plate girder)=350 N/mm2 (yield strength), Ultimate strength of structural steel=490 N/mm2, Grade of rebar=500 N/mm2 (yield strength), Applied Load=1716 kN (un-factored). Following assumptions are made for the mathematical modelling of RCC with steel embedment: (1) The bond between the structural steel and concrete is neglected. (2) The stiffener is provided with shear studs to transfer the shear force. Hence nodal connectivity is established between solid nodes (concrete) and shell elements (stiffener) at those locations. (3) As the end reinforcements transfer either tension/compression, it is modeled as line element and connected to solid nodes. (4) In order to capture the bearing of bottom flange on to the concrete, the line element of plan size of solid equal to the cross section of line elements is connected between solid and shell elements below for bottom flange and above for top flange. (5) As the concrete cannot resist tension at the interface (i.e., between structural steel and RCC), the tensile stiffness is assigned as zero and only compressive stiffness is enabled to take. Hence, non-linear static analysis option is invoked.

Keywords: structure, construction, signature tower, embedment design concept

Procedia PDF Downloads 287
16313 Antibacterial Activity of Copper Nanoparticles on Vancomycin Resistant Staphylococcus Aureus in Vitro and Animal Models

Authors: Sina Gharevali

Abstract:

Staphylococcus aureus is one of the most important factors for nosocomial infections and infections acquired in a hospital setting role as is. Drug-resistant bacteria methicillin, which in 1961 was reported in many parts of the world, Made the role as the last drug, vancomycin, in the treatment of infections caused by the Staphylococcus aureus chain be taken into consideration. The aim of this study was to evaluate the antimicrobial effects of copper nanoparticles and compared it with antibiotics on Staphylococcus aureus resistant to vancomycin in vitro and animal model. In this study, this test was performed, and the most effective antibiotic for vancomycin-resistant Staphylococcus aureus was determined by disk diffusion method. After various concentrations of copper nanoparticles and antibiotics were prepared and vancomycin resistant Staphylococcus aureus bacteria with serial dilution method for determining antibiotic ciprofloxacin. Minimum Inhibitory Concentration and Minimum Bactericidal Concentrationcopper nanoparticles was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. Then the broth dilution method for the antibiotic ciprofloxacin, nano-particles, and nano-particles of copper and copper-established antibiotic synergy MIC and MBC were obtained. MBC was obtained from the experimental animal model test method, and the results were compared. The results showed that copper nanoparticles compared with the antibiotic ciprofloxacin in vitro and animal model more effective in inhibiting the growth of Staphylococcus aureus resistant to vancomycin and ciprofloxacin and extent of the impact of the Synthetic effect of lower copper nanoparticles. Which can then be used to treat clinical research as a candidate.

Keywords: nanoparticles, copper, staphylococcus, aureus

Procedia PDF Downloads 84
16312 Direct-Displacement Based Design for Buildings with Non-Linear Viscous Dampers

Authors: Kelly F. Delgado-De Agrela, Sonia E. Ruiz, Marco A. Santos-Santiago

Abstract:

An approach is proposed for the design of regular buildings equipped with non-linear viscous dissipating devices. The approach is based on a direct-displacement seismic design method which satisfies seismic performance objectives. The global system involved is formed by structural regular moment frames capable of supporting gravity and lateral loads with elastic response behavior plus a set of non-linear viscous dissipating devices which reduce the structural seismic response. The dampers are characterized by two design parameters: (1) a positive real exponent α which represents the non-linearity of the damper, and (2) the damping coefficient C of the device, whose constitutive force-velocity law is given by F=Cvᵃ, where v is the velocity between the ends of the damper. The procedure is carried out using a substitute structure. Two limits states are verified: serviceability and near collapse. The reduction of the spectral ordinates by the additional damping assumed in the design process and introduced to the structure by the viscous non-linear dampers is performed according to a damping reduction factor. For the design of the non-linear damper system, the real velocity is considered instead of the pseudo-velocity. The proposed design methodology is applied to an 8-story steel moment frame building equipped with non-linear viscous dampers, located in intermediate soil zone of Mexico City, with a dominant period Tₛ = 1s. In order to validate the approach, nonlinear static analyses and nonlinear time history analyses are performed.

Keywords: based design, direct-displacement based design, non-linear viscous dampers, performance design

Procedia PDF Downloads 184
16311 A Study on Earthquake Activities and Tectonic Setting in the Northeastern Part of Egypt

Authors: Sayed Abdallah Mohamed Dahy

Abstract:

Northeastern part of Egypt is considered one of the few regions of the world whereas evidence of historical activities has been documented during the last 48 centuries or more. Instrumental, historical and pre-historical seismicity data indicate that large destructive earthquakes have occurred quite frequently in the investigated area. The main aims in the present study were to redraw attention to the fact that the northeastern part of Egypt is seismically active and this result is associated with earthquake risk in the region. The interaction of the African, Arabian and Eurasian plates and Sinai subplate, is the main factor behind the earthquake activities of northeastern part of Egypt. All earthquakes occur at shallow depth and are concentrated at four seismic zones, these zones including the Gulfs of Suez and Aqaba, around the entrance of the Gulf of Suez and the fourth one is located at the south-west of great Cairo (Dahshour area). The seismicity map of the previous zones shows that the activity is coincide with the major tectonic trends of the Suez rift, Aqaba rift with their connection with the great rift system of the Red Sea and Gulf of Suez-Cairo-Alexandria trend.

Keywords: earthquake ectivities, Egypt, northeastern, tectonic setting

Procedia PDF Downloads 393
16310 Damages of Highway Bridges in Thailand during the 2014-Chiang Rai Earthquake

Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom

Abstract:

On May 5, 2014, an earthquake of magnitude 6.3 Richter hit the Northern part of Thailand. The epicenter was in Phan District, Chiang Rai Province. This earthquake or the so-called 2014-Chiang Rai Earthquake is the strongest ground shaking that Thailand has ever been experienced in her modern history. The 2014-Chiang Rai Earthquake confirms the geological evidence, which has previously been ignored by most engineers, that earthquakes of considerable magnitudes 6 to 7 Richter can occurr within the country. This promptly stimulates authorized agencies to pay more attention at the safety of their assets and promotes the comprehensive review of seismic resistance design of their building structures. The focus of this paper is to summarize the damages of highway bridges as a result of the 2014-Chiang Rai ground shaking, the remedy actions, and the research needs. The 2014-Chiang Rai Earthquake caused considerable damages to nearby structures such as houses, schools, and temples. The ground shaking, however, caused damage to only one highway bridge, Mae Laos Bridge, located several kilometers away from the epicenter. The damage of Mae Laos Bridge was in the form of concrete spalling caused by pounding of cap beam on the deck structure. The damage occurred only at the end or abutment span. The damage caused by pounding is not a surprise, but the pounding by only one bridge requires further investigation and discussion. Mae Laos Bridge is a river crossing bridge with relatively large approach structure. In as much, the approach structure is confined by strong retaining walls. This results in a rigid-like approach structure which vibrates at the acceleration approximately equal to the ground acceleration during the earthquake and exerts a huge force to the abutment causing the pounding of cap beam on the deck structure. Other bridges nearby have relatively small approach structures, and therefore have no capability to generate pounding. The effect of mass of the approach structure on pounding of cap beam on the deck structure is also evident by the damage of one pedestrian bridge in front of Thanthong Wittaya School located 50 meters from Mae Laos Bridge. The width of the approach stair of this bridge is wider than the typical one to accommodate the stream of students during pre- and post-school times. This results in a relatively large mass of the approach stair which in turn exerts a huge force to the pier causing pounding of cap beam on the deck structure during ground shaking. No sign of pounding was observed for a typical pedestrian bridge located at another end of Mae Laos Bridge. Although pounding of cap beam on the deck structure of the above mentioned bridges does not cause serious damage to bridge structure, this incident promotes the comprehensive review of seismic resistance design of highway bridges in Thailand. Given a proper mass and confinement of the approach structure, the pounding of cap beam on the deck structure can be easily excited even at the low to moderate ground shaking. In as much, if the ground shaking becomes stronger, the pounding is certainly more powerful. This may cause the deck structure to be unseated and fall off in the case of unrestrained bridge. For the bridge with restrainer between cap beam and the deck structure, the restrainer may prevent the deck structure from falling off. However, preventing free movement of the pier by the restrainer may damage the pier itself. Most highway bridges in Thailand have dowel bars embedded connecting cap beam and the deck structure. The purpose of the existence of dowel bars is, however, not intended for any seismic resistance. Their ability to prevent the deck structure from unseating and their effect on the potential damage of the pier should be evaluated. In response to this expected situation, Thailand Department of Highways (DOH) has set up a team to revise the standard practices for the seismic resistance design of highway bridges in Thailand. In addition, DOH has also funded the research project 'Seismic Resistance Evaluation of Pre- and Post-Design Modifications of DOH’s Bridges' with the scope of full-scale tests of single span bridges under reversed cyclic static loadings for both longitudinal and transverse directions and computer simulations to evaluate the seismic performance of the existing bridges and the design modification bridges. The research is expected to start in October, 2015.

Keywords: earthquake, highway bridge, Thailand, damage, pounding, seismic resistance

Procedia PDF Downloads 280
16309 Enhancing Seismic Resilience in Colombia's Informal Housing: A Low-cost Retrofit Strategy with Buckling-restrained Braces to Protect Vulnerable Communities in Earthquake-prone Regions

Authors: Luis F. Caballero-castro, Dirsa Feliciano, Daniela Novoa, Orlando Arroyo, Jesús D. Villalba-morales

Abstract:

Colombia faces a critical challenge in seismic resilience due to the prevalence of informal housing, which constitutes approximately 70% of residential structures. More than 10 million Colombians (20% of the population), live in homes susceptible to collapse in the event of an earthquake. This, combined with the fact that 83% of the population is in intermediate and high seismic hazard areas, has brought serious consequences to the country. These consequences became evident during the 1999 Armenia earthquake, which affected nearly 100,000 properties and represented economic losses equivalent to 1.88% of that year's Gross Domestic Product (GDP). Despite previous efforts to reinforce informal housing through methods like externally reinforced masonry walls, alternatives related to seismic protection systems (SPDs), such as Buckling-Restrained Braces (BRB), have not yet been explored in the country. BRBs are reinforcement elements capable of withstanding both compression and tension, making them effective in enhancing the lateral stiffness of structures. In this study, the use of low-cost and easily installable BRBs for the retrofit of informal housing in Colombia was evaluated, considering the economic limitations of the communities. For this purpose, a case study was selected involving an informally constructed dwelling in the country, from which field information on its structural characteristics and construction materials was collected. Based on the gathered information, nonlinear models with and without BRBs were created, and their seismic performance was analyzed and compared through incremental static (pushover) and nonlinear dynamic analyses. In the first analysis, the capacity curve was identified, showcasing the sequence of failure events occurring from initial yielding to structural collapse. In the second case, the model underwent nonlinear dynamic analyses using a set of seismic records consistent with the country's seismic hazard. Based on the results, fragility curves were calculated to evaluate the probability of failure of the informal housings before and after the intervention with BRBs, providing essential information about their effectiveness in reducing seismic vulnerability. The results indicate that low-cost BRBs can significantly increase the capacity of informal housing to withstand earthquakes. The dynamic analysis revealed that retrofit structures experienced lower displacements and deformations, enhancing the safety of residents and the seismic performance of informally constructed houses. In other words, the use of low-cost BRBs in the retrofit of informal housing in Colombia is a promising strategy for improving structural safety in seismic-prone areas. This study emphasizes the importance of seeking affordable and practical solutions to address seismic risk in vulnerable communities in earthquake-prone regions in Colombia and serves as a model for addressing similar challenges of informal housing worldwide.

Keywords: buckling-restrained braces, fragility curves, informal housing, incremental dynamic analysis, seismic retrofit

Procedia PDF Downloads 81
16308 Weak Instability in Direct Integration Methods for Structural Dynamics

Authors: Shuenn-Yih Chang, Chiu-Li Huang

Abstract:

Three structure-dependent integration methods have been developed for solving equations of motion, which are second-order ordinary differential equations, for structural dynamics and earthquake engineering applications. Although they generally have the same numerical properties, such as explicit formulation, unconditional stability and second-order accuracy, a different performance is found in solving the free vibration response to either linear elastic or nonlinear systems with high frequency modes. The root cause of this different performance in the free vibration responses is analytically explored herein. As a result, it is verified that a weak instability is responsible for the different performance of the integration methods. In general, a weak instability will result in an inaccurate solution or even numerical instability in the free vibration responses of high frequency modes. As a result, a weak instability must be prohibited for time integration methods.

Keywords: dynamic analysis, high frequency, integration method, overshoot, weak instability

Procedia PDF Downloads 210
16307 Effect of the Structural Parameters on Subbands of Fibonacci AlxGa1-xAs/GaAs Superlattices

Authors: Y. Sefir, Z. Aziz, S. Cherid, Z. F. Meghoufel, F. Bendahama, S. Terkhi, B. Bouadjemi. A. Zitouni S. Bentata

Abstract:

This work is to study the effect of the variation of structural parameters on the band structure in the quasiperiodic Fibonacci superlattices AlxGa1-xAs/GaAs using the formalism of the transfer matrix and Airy function. Our results show that increasing the width of Fibonacci’s wells of allows to the confinement of subminibands with a widening of minigaps, this causes a consistent and coherent fragmentation. The barrier thickness of Fibonacci bf acts on the width of subminibands by controlling the interaction force between neighboring eigenstates. Its increase gives rise to singularly extended states. The barrier height Fibonacci Vf permit to control the degree of structural disorder in these structures. The variation of these parameters permits the design of laser with modulated wavelength.

Keywords: transmission coefficient – Quasiperiodic superlattices- singularly localized and extended states- structural parameters- Laser with modulated wavelength

Procedia PDF Downloads 357
16306 Methicillin Resistant Staphylococcus aureus Specific Bacteriophage Isolation from Sewage Treatment Plant and in vivo Analysis of Phage Efficiency in Swiss Albino Mice

Authors: Pratibha Goyal, Nupur Mathur, Anuradha Singh

Abstract:

Antibiotic resistance is the worldwide threat to human health in this century. Excessive use of antibiotic after their discovery in 1940 makes certain bacteria to become resistant against antibiotics. Most common antibiotic-resistant bacteria include Staphylococcus aureus, Salmonella typhi, E.coli, Klebsiella pneumonia, and Streptococcus pneumonia. Among all Staphylococcus resistant strain called Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for several lives threatening infection in human commonly found in the hospital environment. Our study aimed to isolate bacteriophage against MRSA from the hospital sewage treatment plant and to analyze its efficiency In Vivo in Swiss albino mice model. Sewage sample for the isolation of bacteriophages was collected from SDMH hospital sewage treatment plant in Jaipur. Bacteriophages isolated by the use of enrichment technique and after characterization, isolated phages used to determine phage treatment efficiency in mice. Mice model used to check the safety and suitability of phage application in human need which in turn directly support the use of natural bacteriophage rather than synthetic chemical to kill pathogens. Results show the plaque formation in-vitro and recovery of MRSA infected mice during the experiment. Favorable lytic efficiency determination of MRSA and Salmonella presents a natural way to treat lethal infections caused by Multidrug-resistant bacteria by using their natural host-pathogen relationship.

Keywords: antibiotic resistance, bacteriophages, methicillin resistance Staphylococcus aureus, pathogens, phage therapy, Salmonella typhi

Procedia PDF Downloads 130
16305 Time to Second Line Treatment Initiation Among Drug-Resistant Tuberculosis Patients in Nepal

Authors: Shraddha Acharya, Sharad Kumar Sharma, Ratna Bhattarai, Bhagwan Maharjan, Deepak Dahal, Serpahine Kaminsa

Abstract:

Background: Drug-resistant (DR) tuberculosis (TB) continues to be a threat in Nepal, with an estimated 2800 new cases every year. The treatment of DR-TB with second line TB drugs is complex and takes longer time with comparatively lower treatment success rate than drug-susceptible TB. Delay in treatment initiation for DR-TB patients might further result in unfavorable treatment outcomes and increased transmission. This study thus aims to determine median time taken to initiate second-line treatment among Rifampicin Resistant (RR) diagnosed TB patients and to assess the proportion of treatment delays among various type of DR-TB cases. Method: A retrospective cohort study was done using national routine electronic data (DRTB and TB Laboratory Patient Tracking System-DHIS2) on drug resistant tuberculosis patients between January 2020 and December 2022. The time taken for treatment initiation was computed as– days from first diagnosis as RR TB through Xpert MTB/Rif test to enrollment on second-line treatment. The treatment delay (>7 days after diagnosis) was calculated. Results: Among total RR TB cases (N=954) diagnosed via Xpert nationwide, 61.4% were enrolled under shorter-treatment regimen (STR), 33.0% under longer treatment regimen (LTR), 5.1% for Pre-extensively drug resistant TB (Pre-XDR) and 0.4% for Extensively drug resistant TB (XDR) treatment. Among these cases, it was found that the median time from diagnosis to treatment initiation was 6 days (IQR:2-15.8). The median time was 5 days (IQR:2.0-13.3) among STR, 6 days (IQR:3.0-15.0) among LTR, 30 days (IQR:5.5-66.8) among Pre-XDR and 4 days (IQR:2.5-9.0) among XDR TB cases. The overall treatment delay (>7 days after diagnosis) was observed in 42.4% of the patients, among which, cases enrolled under Pre-XDR contributed substantially to treatment delay (72.0%), followed by LTR (43.6%), STR (39.1%) and XDR (33.3%). Conclusion: Timely diagnosis and prompt treatment initiation remain fundamental focus of the National TB program. The findings of the study, however suggest gaps in timeliness of treatment initiation for the drug-resistant TB patients, which could bring adverse treatment outcomes. Moreover, there is an alarming delay in second line treatment initiation for the Pre-XDR TB patients. Therefore, this study generates evidence to identify existing gaps in treatment initiation and highlights need for formulating specific policies and intervention in creating effective linkage between the RR TB diagnosis and enrollment on second line TB treatment with intensified efforts from health providers for follow-ups and expansion of more decentralized, adequate, and accessible diagnostic and treatment services for DR-TB, especially Pre-XDR TB cases, due to the observed long treatment delays.

Keywords: drug-resistant, tuberculosis, treatment initiation, Nepal, treatment delay

Procedia PDF Downloads 68