Search results for: drain current modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12160

Search results for: drain current modeling

11800 Exploring Socio-Economic Barriers of Green Entrepreneurship in Iran and Their Interactions Using Interpretive Structural Modeling

Authors: Younis Jabarzadeh, Rahim Sarvari, Negar Ahmadi Alghalandis

Abstract:

Entrepreneurship at both individual and organizational level is one of the most driving forces in economic development and leads to growth and competition, job generation and social development. Especially in developing countries, the role of entrepreneurship in economic and social prosperity is more emphasized. But the effect of global economic development on the environment is undeniable, especially in negative ways, and there is a need to rethink current business models and the way entrepreneurs act to introduce new businesses to address and embed environmental issues in order to achieve sustainable development. In this paper, green or sustainable entrepreneurship is addressed in Iran to identify challenges and barriers entrepreneurs in the economic and social sectors face in developing green business solutions. Sustainable or green entrepreneurship has been gaining interest among scholars in recent years and addressing its challenges and barriers need much more attention to fill the gap in the literature and facilitate the way those entrepreneurs are pursuing. This research comprised of two main phases: qualitative and quantitative. At qualitative phase, after a thorough literature review, fuzzy Delphi method is utilized to verify those challenges and barriers by gathering a panel of experts and surveying them. In this phase, several other contextually related factors were added to the list of identified barriers and challenges mentioned in the literature. Then, at the quantitative phase, Interpretive Structural Modeling is applied to construct a network of interactions among those barriers identified at the previous phase. Again, a panel of subject matter experts comprised of academic and industry experts was surveyed. The results of this study can be used by policymakers in both the public and industry sector, to introduce more systematic solutions to eliminate those barriers and help entrepreneurs overcome challenges of sustainable entrepreneurship. It also contributes to the literature as the first research in this type which deals with the barriers of sustainable entrepreneurship and explores their interaction.

Keywords: green entrepreneurship, barriers, fuzzy Delphi method, interpretive structural modeling

Procedia PDF Downloads 129
11799 Integrating Building Information Modeling into Facilities Management Operations

Authors: Mojtaba Valinejadshoubi, Azin Shakibabarough, Ashutosh Bagchi

Abstract:

Facilities such as residential buildings, office buildings, and hospitals house large density of occupants. Therefore, a low-cost facility management program (FMP) should be used to provide a satisfactory built environment for these occupants. Facility management (FM) has been recently used in building projects as a critical task. It has been effective in reducing operation and maintenance cost of these facilities. Issues of information integration and visualization capabilities are critical for reducing the complexity and cost of FM. Building information modeling (BIM) can be used as a strong visual modeling tool and database in FM. The main objective of this study is to examine the applicability of BIM in the FM process during a building’s operational phase. For this purpose, a seven-storey office building is modeled Autodesk Revit software. Authors integrated the cloud-based environment using a visual programming tool, Dynamo, for the purpose of having a real-time cloud-based communication between the facility managers and the participants involved in the project. An appropriate and effective integrated data source and visual model such as BIM can reduce a building’s operational and maintenance costs by managing the building life cycle properly.

Keywords: building information modeling, facility management, operational phase, building life cycle

Procedia PDF Downloads 130
11798 Graphical Modeling of High Dimension Processes with an Environmental Application

Authors: Ali S. Gargoum

Abstract:

Graphical modeling plays an important role in providing efficient probability calculations in high dimensional problems (computational efficiency). In this paper, we address one of such problems where we discuss fragmenting puff models and some distributional assumptions concerning models for the instantaneous, emission readings and for the fragmenting process. A graphical representation in terms of a junction tree of the conditional probability breakdown of puffs and puff fragments is proposed.

Keywords: graphical models, influence diagrams, junction trees, Bayesian nets

Procedia PDF Downloads 374
11797 UV Enhanced Hydrophilicity of the Anodized Films Formed at Low Current Density and Low Voltage

Authors: Phanawan Whangdee, Tomoaki Watanabe, Viritpon Srimaneepong, Dujreutai Pongkao Kashima

Abstract:

The anodized films formed at high current density or high voltage have been widely prepared for dental implant because it can improve the hydrophilicity to the film. Our attempt is exploring whether low current density and low voltage could enhance the good hydrophilicity to the anodized films or not. Furthermore, UV irradiation would be one of the key factor to enhance their hydrophilicity. The anodized films were performed at low current density of 2 mA/cm2 in 1M H3PO4, 1 mA/cm2 in 1M MCPM and low voltage of 6 V in either 1M H3PO4 or 1M MCPM. All samples were treated with UV for various times up to 24 h. After UV irradiation, the contact angle decreased, the chemical species changed. The Ti 2p and O 1s peaks increased, while the C 1s peak decreased which might be due to removal of hydrocarbon. The functional groups of the films shown as the change of OH groups appeared at wave number 3700 cm-1 and 2900-3000 cm-1, however, the peak of H2O at 1630 cm-1disappeared. It is indicated that UV irradiation might change the stretching modes of OH groups coordinated to surface Ti4+ cation but UV did not affect to the changes in surface morphologies. The surface energies increased after UV irradiation resulting in improving of the hydrophilicity. The anodized films formed at low current density or low voltage after UV irradiation showed a low contact angle as well as the film formed at high current density or high voltage.

Keywords: hydrophilicity, low current density, low voltage, UV irradiation

Procedia PDF Downloads 475
11796 An Ontology-Based Framework to Support Asset Integrity Modeling: Case Study of Offshore Riser Integrity

Authors: Mohammad Sheikhalishahi, Vahid Ebrahimipour, Amir Hossein Radman-Kian

Abstract:

This paper proposes an Ontology framework for knowledge modeling and representation of the equipment integrity process in a typical oil and gas production plant. Our aim is to construct a knowledge modeling that facilitates translation, interpretation, and conversion of human-readable integrity interpretation into computer-readable representation. The framework provides a function structure related to fault propagation using ISO 14224 and ISO 15926 OWL-Lite/ Resource Description Framework (RDF) to obtain a generic system-level model of asset integrity that can be utilized in the integrity engineering process during the equipment life cycle. It employs standard terminology developed by ISO 15926 and ISO 14224 to map textual descriptions of equipment failure and then convert it to a causality-driven logic by semantic interpretation and computer-based representation using Lite/RDF. The framework applied for an offshore gas riser. The result shows that the approach can cross-link the failure-related integrity words and domain-specific logic to obtain a representation structure of equipment integrity with causality inference based on semantic extraction of inspection report context.

Keywords: asset integrity modeling, interoperability, OWL, RDF/XML

Procedia PDF Downloads 157
11795 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling

Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie

Abstract:

Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.

Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling

Procedia PDF Downloads 56
11794 Modeling of Virtual Power Plant

Authors: Muhammad Fanseem E. M., Rama Satya Satish Kumar, Indrajeet Bhausaheb Bhavar, Deepak M.

Abstract:

Keeping the right balance of electricity between the supply and demand sides of the grid is one of the most important objectives of electrical grid operation. Power generation and demand forecasting are the core of power management and generation scheduling. Large, centralized producing units were used in the construction of conventional power systems in the past. A certain level of balance was possible since the generation kept up with the power demand. However, integrating renewable energy sources into power networks has proven to be a difficult challenge due to its intermittent nature. The power imbalance caused by rising demands and peak loads is negatively affecting power quality and dependability. Demand side management and demand response were one of the solutions, keeping generation the same but altering or rescheduling or shedding completely the load or demand. However, shedding the load or rescheduling is not an efficient way. There comes the significance of virtual power plants. The virtual power plant integrates distributed generation, dispatchable load, and distributed energy storage organically by using complementing control approaches and communication technologies. This would eventually increase the utilization rate and financial advantages of distributed energy resources. Most of the writing on virtual power plant models ignored technical limitations, and modeling was done in favor of a financial or commercial viewpoint. Therefore, this paper aims to address the modeling intricacies of VPPs and their technical limitations, shedding light on a holistic understanding of this innovative power management approach.

Keywords: cost optimization, distributed energy resources, dynamic modeling, model quality tests, power system modeling

Procedia PDF Downloads 32
11793 Exploring Regularity Results in the Context of Extremely Degenerate Elliptic Equations

Authors: Zahid Ullah, Atlas Khan

Abstract:

This research endeavors to explore the regularity properties associated with a specific class of equations, namely extremely degenerate elliptic equations. These equations hold significance in understanding complex physical systems like porous media flow, with applications spanning various branches of mathematics. The focus is on unraveling and analyzing regularity results to gain insights into the smoothness of solutions for these highly degenerate equations. Elliptic equations, fundamental in expressing and understanding diverse physical phenomena through partial differential equations (PDEs), are particularly adept at modeling steady-state and equilibrium behaviors. However, within the realm of elliptic equations, the subset of extremely degenerate cases presents a level of complexity that challenges traditional analytical methods, necessitating a deeper exploration of mathematical theory. While elliptic equations are celebrated for their versatility in capturing smooth and continuous behaviors across different disciplines, the introduction of degeneracy adds a layer of intricacy. Extremely degenerate elliptic equations are characterized by coefficients approaching singular behavior, posing non-trivial challenges in establishing classical solutions. Still, the exploration of extremely degenerate cases remains uncharted territory, requiring a profound understanding of mathematical structures and their implications. The motivation behind this research lies in addressing gaps in the current understanding of regularity properties within solutions to extremely degenerate elliptic equations. The study of extreme degeneracy is prompted by its prevalence in real-world applications, where physical phenomena often exhibit characteristics defying conventional mathematical modeling. Whether examining porous media flow or highly anisotropic materials, comprehending the regularity of solutions becomes crucial. Through this research, the aim is to contribute not only to the theoretical foundations of mathematics but also to the practical applicability of mathematical models in diverse scientific fields.

Keywords: elliptic equations, extremely degenerate, regularity results, partial differential equations, mathematical modeling, porous media flow

Procedia PDF Downloads 33
11792 Understanding Mathematics Achievements among U. S. Middle School Students: A Bayesian Multilevel Modeling Analysis with Informative Priors

Authors: Jing Yuan, Hongwei Yang

Abstract:

This paper aims to understand U.S. middle school students’ mathematics achievements by examining relevant student and school-level predictors. Through a variance component analysis, the study first identifies evidence supporting the use of multilevel modeling. Then, a multilevel analysis is performed under Bayesian statistical inference where prior information is incorporated into the modeling process. During the analysis, independent variables are entered sequentially in the order of theoretical importance to create a hierarchy of models. By evaluating each model using Bayesian fit indices, a best-fit and most parsimonious model is selected where Bayesian statistical inference is performed for the purpose of result interpretation and discussion. The primary dataset for Bayesian modeling is derived from the Program for International Student Assessment (PISA) in 2012 with a secondary PISA dataset from 2003 analyzed under the traditional ordinary least squares method to provide the information needed to specify informative priors for a subset of the model parameters. The dependent variable is a composite measure of mathematics literacy, calculated from an exploratory factor analysis of all five PISA 2012 mathematics achievement plausible values for which multiple evidences are found supporting data unidimensionality. The independent variables include demographics variables and content-specific variables: mathematics efficacy, teacher-student ratio, proportion of girls in the school, etc. Finally, the entire analysis is performed using the MCMCpack and MCMCglmm packages in R.

Keywords: Bayesian multilevel modeling, mathematics education, PISA, multilevel

Procedia PDF Downloads 305
11791 Analysis of Sound Loss from the Highway Traffic through Lightweight Insulating Concrete Walls and Artificial Neural Network Modeling of Sound Transmission

Authors: Mustafa Tosun, Kevser Dincer

Abstract:

In this study, analysis on whether the lightweight concrete walled structures used in four climatic regions of Turkey are also capable of insulating sound was conducted. As a new approach, first the wall’s thermal insulation sufficiency’s were calculated and then, artificial neural network (ANN) modeling was used on their cross sections to check if they are sound transmitters too. The ANN was trained and tested by using MATLAB toolbox on a personal computer. ANN input parameters that used were thickness of lightweight concrete wall, frequency and density of lightweight concrete wall, while the transmitted sound was the output parameter. When the results of the TS analysis and those of ANN modeling are evaluated together, it is found from this study, that sound transmit loss increases at higher frequencies, higher wall densities and with larger wall cross sections.

Keywords: artificial neuron network, lightweight concrete, sound insulation, sound transmit loss

Procedia PDF Downloads 226
11790 The Geometry of Natural Formation: an Application of Geometrical Analysis for Complex Natural Order of Pomegranate

Authors: Anahita Aris

Abstract:

Geometry always plays a key role in natural structures, which can be a source of inspiration for architects and urban designers to create spaces. By understanding formative principles in nature, a variety of options can be provided that lead to freedom of formation. The main purpose of this paper is to analyze the geometrical order found in pomegranate to find formative principles explaining its complex structure. The point is how spherical arils of pomegranate pressed together inside the fruit and filled the space as they expand in the growing process, which made a self-organized system leads to the formation of each of the arils are unique in size, topology and shape. The main challenge of this paper would be using advanced architectural modeling techniques to discover these principles.

Keywords: advanced modeling techniques, architectural modeling, computational design, the geometry of natural formation, geometrical analysis, the natural order of pomegranate, voronoi diagrams

Procedia PDF Downloads 198
11789 Multiscale Cohesive Zone Modeling of Composite Microstructure

Authors: Vincent Iacobellis, Kamran Behdinan

Abstract:

A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.

Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling

Procedia PDF Downloads 454
11788 An Investigation into Enablers and Barriers of Reverse Technology Transfer

Authors: Nirmal Kundu, Chandan Bhar, Visveswaran Pandurangan

Abstract:

Technology is the most valued possession for a country or an organization. The economic development depends not on stock of technology but on the capabilities how the technology is being exploited. The technology transfer is the best way how the developing countries have an access to state-of- the-art technology. Traditional technology transfer is a unidirectional phenomenon where technology is transferred from developed to developing countries. But now there is a change of wind. There is a general agreement that global shift of economic power is under way from west to east. As China and India are making the transition from users to producers, and producers to innovators, this has increasing important implications on economy, technology and policy of global trade. As a result, Reverse technology transfer has become a phenomenon and field of study in technology management. The term “Reverse Technology Transfer” is not well defined. Initially the concept of Reverse technology transfer was associated with the phenomenon of “Brain drain” from developing to developed countries. In the second phase, Reverse Technology Transfer was associated with the transfer of knowledge and technology from subsidiaries to multinationals. Finally, time has come now to extend the concept of reverse technology transfer to two different organizations or countries related or unrelated by traditional technology transfer but the transfer or has essentially received the technology through traditional mode of technology transfer. The objective of this paper is to study; 1) the present status of Reverse technology transfer, 2) the factors which are the enablers and barriers of Reverse technology transfer and 3) how the reverse technology transfer strategy can be integrated in the technology policy of a country which will give the countries an economic boost. The research methodology used in this study is a combination of literature review, case studies and key informant interviews. The literature review includes both published as well as unpublished sources of literature. In case study, attempt has been made to study the records of reverse technology transfer that have been occurred in developing countries. In case of key informant interviews, informal telephonic discussions have been carried out with the key executives of the organizations (industry, university and research institutions) who are actively engaged in the process of technology transfer- traditional as well as reverse. Reverse technology transfer is possible only by creating technological capabilities. Following four important enablers coupled with government active and aggressive action can help to build technology base to reach to the goal of Reverse technology transfer 1) Imitation to innovation, 2) Reverse engineering, 3) Collaborative R & D approach, and 4) Preventing reverse brain drain. The barriers that come in the way are the mindset of over dependence, over subordination and parent–child attitude (not adult attitude). Exploitation of these enablers and overcoming the barriers of reverse technology transfer, the developing countries like India and China can prove that going “reverse” is the best way to move forward and again establish themselves as leader of the future world.

Keywords: barriers of reverse technology transfer, enablers of reverse technology transfer, knowledge transfer, reverse technology transfer, technology transfer

Procedia PDF Downloads 375
11787 Design and Modeling of Amphibious Houses for Flood Prone Areas: The Case of Nigeria

Authors: Onyebuchi Mogbo, Abdulsalam Mohammed, Salsabila Wali

Abstract:

This research discusses the design and modeling of an amphibious building. The amphibious building is a house with the function of floating during a flood event. Over the years, houses have been built to resist flood events some of which have failed. The floating house is designed to work with nature and not against it. In the event of a flood, the house will rise with the increasing water level and protect the house from sinking. For the design and modeling of this house an estimated cost of N250, 000, approximately $700, will be needed. It is expected that the house will rise when lightweight materials are incorporated in the design, and the concrete dock (in form of a hollow box) carrying the entire house in its hollow space is well designed. When there is flooding the water will fill up the concrete dock, and the house will rise upwards with vertical guides preventing it from moving side to side or out of its boundary. Architectural and Structural designs will be used in this project.

Keywords: amphibious building, flood, housing, design and modelling

Procedia PDF Downloads 144
11786 What 4th-Year Primary-School Students are Thinking: A Paper Airplane Problem

Authors: Neslihan Şahin Çelik, Ali Eraslan

Abstract:

In recent years, mathematics educators have frequently stressed the necessity of instructing students about models and modeling approaches that encompass cognitive and metacognitive thought processes, starting from the first years of school and continuing on through the years of higher education. The purpose of this study is to examine the thought processes of 4th-grade primary school students in their modeling activities and to explore the difficulties encountered in these processes, if any. The study, of qualitative design, was conducted in the 2015-2016 academic year at a public state-school located in a central city in the Black Sea Region of Turkey. A preliminary study was first implemented with designated 4th grade students, after which the criterion sampling method was used to select three students that would be recruited into the focus group. The focus group that was thus formed was asked to work on the model eliciting activity of the Paper Airplane Problem and the entire process was recorded on video. The Paper Airplane Problem required the students to determine the winner with respect to: (a) the plane that stays in the air for the longest time; (b) the plane that travels the greatest distance in a straight-line path; and (c) the overall winner for the contest. A written transcript was made of the video recording, after which the recording and the students' worksheets were analyzed using the Blum and Ferri modeling cycle. The results of the study revealed that the students tested the hypotheses related to daily life that they had set up, generated ideas of their own, verified their models by making connections with real life, and tried to make their models generalizable. On the other hand, the students had some difficulties in terms of their interpretation of the table of data and their ways of operating on the data during the modeling processes.

Keywords: primary school students, model eliciting activity, mathematical modeling, modeling process, paper airplane problem

Procedia PDF Downloads 336
11785 Tram Track Deterioration Modeling

Authors: Mohammad Yousefikia, Sara Moridpour, Ehsan Mazloumi

Abstract:

Perceiving track geometry deterioration decisively influences the optimization of track maintenance operations. The effective management of this deterioration and increasingly utilized system with limited financial resources is a significant challenge. This paper provides a review of degradation models relevant for railroad tracks. Furthermore, due to the lack of long term information on the condition development of tram infrastructures, presents the methodology which will be used to derive degradation models from the data of Melbourne tram network.

Keywords: deterioration modeling, asset management, railway, tram

Procedia PDF Downloads 348
11784 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.

Keywords: launch vehicle modeling, launch vehicle trajectory, mathematical modeling, Matlab- Simulink

Procedia PDF Downloads 256
11783 The Relationship of Building Information Modeling (BIM) Capability in Quantity Surveying Practice and Project Performance

Authors: P. F. Wong, H. Salleh, F. A. Rahim

Abstract:

The adoption of building information modeling (BIM) is increasing in the construction industry. However, quantity surveyors are slow in adoption compared to other professions due to lack of awareness of the BIM’s potential in their profession. It is still unclear on how BIM application can enhance quantity surveyors’ work performance and project performance. The aim of this research is to identify the capabilities of BIM in quantity surveying practices and examine the relationship between BIM capabilities and project performance. Questionnaire survey and interviews were adopted for data collection. Literature reviews identified there are eleven BIM capabilities in quantity surveying practice. Questionnaire results showed that there are several BIM capabilities significantly correlated with project performance in time, cost and quality aspects and the results were validated through interviews. These findings show that BIM has the capabilities to enhance quantity surveyors’ performances and subsequently improved project performance.

Keywords: Building Information Modeling (BIM), quantity surveyors, capability, project performance

Procedia PDF Downloads 342
11782 Study on Safety Management of Deep Foundation Pit Construction Site Based on Building Information Modeling

Authors: Xuewei Li, Jingfeng Yuan, Jianliang Zhou

Abstract:

The 21st century has been called the century of human exploitation of underground space. Due to the characteristics of large quantity, tight schedule, low safety reserve and high uncertainty of deep foundation pit engineering, accidents frequently occur in deep foundation pit engineering, causing huge economic losses and casualties. With the successful application of information technology in the construction industry, building information modeling has become a research hotspot in the field of architectural engineering. Therefore, the application of building information modeling (BIM) and other information communication technologies (ICTs) in construction safety management is of great significance to improve the level of safety management. This research summed up the mechanism of the deep foundation pit engineering accident through the fault tree analysis to find the control factors of deep foundation pit engineering safety management, the deficiency existing in the traditional deep foundation pit construction site safety management. According to the accident cause mechanism and the specific process of deep foundation pit construction, the hazard information of deep foundation pit engineering construction site was identified, and the hazard list was obtained, including early warning information. After that, the system framework was constructed by analyzing the early warning information demand and early warning function demand of the safety management system of deep foundation pit. Finally, the safety management system of deep foundation pit construction site based on BIM through combing the database and Web-BIM technology was developed, so as to realize the three functions of real-time positioning of construction site personnel, automatic warning of entering a dangerous area, real-time monitoring of deep foundation pit structure deformation and automatic warning. This study can initially improve the current situation of safety management in the construction site of deep foundation pit. Additionally, the active control before the occurrence of deep foundation pit accidents and the whole process dynamic control in the construction process can be realized so as to prevent and control the occurrence of safety accidents in the construction of deep foundation pit engineering.

Keywords: Web-BIM, safety management, deep foundation pit, construction

Procedia PDF Downloads 129
11781 Thermo-Hydro-Mechanical Modeling of Landfill Behavior

Authors: Mahtab Delfan Azari, Ali Noorzad, Ahmadreza Mahboubi Ardakani

Abstract:

Municipal solid waste landfills have relatively high temperature which is caused by anaerobic and aerobic degradation. The temperature that is produced is almost 40-70°C. Since this temperature will remain for many years, considering it for studying landfill behavior and its soil is so important. By considering the temperature of landfill, the obtained results will become more logical and more realistic. Vertical displacement and differential settlement are two important values which are studied here. Differential displacements could expand cracks in liner and cover. If cracks appear in the liner, the leachate and gases will propagate to media and hence should be noticed carefully. The present research is focused on the thermo-hydro-mechanical modeling of landfill with finite element method. First, the heat transfer of the landfill is modeled and the temperature is estimated. Then, the results of thermo-hydro-mechanical results are presented to investigate landfill behavior more accurately.

Keywords: finite element method, heat transfer, landfill behavior, thermo-hydro-mechanical modeling

Procedia PDF Downloads 326
11780 Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels

Authors: Meimei Wen, Chang Nyung Kim

Abstract:

In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows.

Keywords: CFX, liquid metal, manifold, MHD flow

Procedia PDF Downloads 327
11779 An Empirical Study of the Best Fitting Probability Distributions for Stock Returns Modeling

Authors: Jayanta Pokharel, Gokarna Aryal, Netra Kanaal, Chris Tsokos

Abstract:

Investment in stocks and shares aims to seek potential gains while weighing the risk of future needs, such as retirement, children's education etc. Analysis of the behavior of the stock market returns and making prediction is important for investors to mitigate risk on investment. Historically, the normal variance models have been used to describe the behavior of stock market returns. However, the returns of the financial assets are actually skewed with higher kurtosis, heavier tails, and a higher center than the normal distribution. The Laplace distribution and its family are natural candidates for modeling stock returns. The Variance-Gamma (VG) distribution is the most sought-after distributions for modeling asset returns and has been extensively discussed in financial literatures. In this paper, it explore the other Laplace family, such as Asymmetric Laplace, Skewed Laplace, Kumaraswamy Laplace (KS) together with Variance-Gamma to model the weekly returns of the S&P 500 Index and it's eleven business sector indices. The method of maximum likelihood is employed to estimate the parameters of the distributions and our empirical inquiry shows that the Kumaraswamy Laplace distribution performs much better for stock returns modeling among the choice of distributions used in this study and in practice, KS can be used as a strong alternative to VG distribution.

Keywords: stock returns, variance-gamma, kumaraswamy laplace, maximum likelihood

Procedia PDF Downloads 46
11778 Effect of Pulse Duration and Current to the EDM Process on Allegheny Ludlum D2 Tool Steel

Authors: S. Sulaiman, M. A. Razak, M. R. Ibrahim, A. A. Khan

Abstract:

An experimental work on the effect of different current and pulse duration on performance of EDM process of Allegheny Ludlum D2 Tool Steel (UNS T30402). The effect of varying the machining parameters on the machining responses such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) have been investigated. In this study, triangular shape and circular shape of copper was used as an electrode with surface area of 100 mm². The experiments were repeated for three different values of pulse duration (100 µs, 200 µs and 400 µs) with combination of three different values of discharge current (12 A, 16 A and 24 A). It was found that the pulse duration and current have significant effect on MRR, EWR and Ra. An increase in the pulse durations causes an increase in the MRR and Ra, but a decrease in the EWR. Meanwhile, the effect of currents on EDM performance shows that the increasing currents lead to an increase in the MRR, EWR and Ra.

Keywords: allegheny ludlum D2 tool steel, current, EDM, surface roughness, pulse duration

Procedia PDF Downloads 358
11777 A Novel Probablistic Strategy for Modeling Photovoltaic Based Distributed Generators

Authors: Engy A. Mohamed, Y. G. Hegazy

Abstract:

This paper presents a novel algorithm for modeling photovoltaic based distributed generators for the purpose of optimal planning of distribution networks. The proposed algorithm utilizes sequential Monte Carlo method in order to accurately consider the stochastic nature of photovoltaic based distributed generators. The proposed algorithm is implemented in MATLAB environment and the results obtained are presented and discussed.

Keywords: comulative distribution function, distributed generation, Monte Carlo

Procedia PDF Downloads 555
11776 Characterization of Porosity and Flow in Solid Oxide Fuel Cell with 3D Focused Ion Beam Serial Slicing

Authors: Daniel Phifer, Anna Prokhodtseva

Abstract:

DualBeam (FIB-SEM) has long been the technology of choice to sub-sample and characterize materials at site-specific locations which are difficult or impossible to extract by conventional embedding/polishing methods. Whereas Ga based FIB provides excellent resolution and enables precise material removal, the current is usually limited and only allows the extraction of small material biopsies typically ranging from 5-70um wide. Xe Plasma FIB, by contrast, has around 38x more current and can remove more material at the same time to extract significant sized chunks (100-1000um) of materials for further analysis. This increased volume has enabled time-prohibitive investigations like large grain 3D serial sectioning and EBSD and micro-machining for micro-mechanical testing. Investigation of the pore spaces with 3D modeling can determine the relative characteristics of the materials to help design or select properties for best function. Pore spaces can be described with a tortuosity number which is calculated by modules in the 3D analysis software. Xe Plasma FIB technology provides a workflow with sufficient volume to characterize porosity when both large-volume 3D materials characterization and nanometer resolution is required to understand the system.

Keywords: dual-beam, FIB-SEM, porosity, SOFC, solid oxide fuel cell

Procedia PDF Downloads 186
11775 Description of a Structural Health Monitoring and Control System Using Open Building Information Modeling

Authors: Wahhaj Ahmed Farooqi, Bilal Ahmad, Sandra Maritza Zambrano Bernal

Abstract:

In view of structural engineering, monitoring of structural responses over time is of great importance with respect to recent developments of construction technologies. Recently, developments of advanced computing tools have enabled researcher’s better execution of structural health monitoring (SHM) and control systems. In the last decade, building information modeling (BIM) has substantially enhanced the workflow of planning and operating engineering structures. Typically, building information can be stored and exchanged via model files that are based on the Industry Foundation Classes (IFC) standard. In this study a modeling approach for semantic modeling of SHM and control systems is integrated into the BIM methodology using the IFC standard. For validation of the modeling approach, a laboratory test structure, a four-story shear frame structure, is modeled using a conventional BIM software tool. An IFC schema extension is applied to describe information related to monitoring and control of a prototype SHM and control system installed on the laboratory test structure. The SHM and control system is described by a semantic model applying Unified Modeling Language (UML). Subsequently, the semantic model is mapped into the IFC schema. The test structure is composed of four aluminum slabs and plate-to-column connections are fully fixed. In the center of the top story, semi-active tuned liquid column damper (TLCD) is installed. The TLCD is used to reduce effects of structural responses in context of dynamic vibration and displacement. The wireless prototype SHM and control system is composed of wireless sensor nodes. For testing the SHM and control system, acceleration response is automatically recorded by the sensor nodes equipped with accelerometers and analyzed using embedded computing. As a result, SHM and control systems can be described within open BIM, dynamic responses and information of damages can be stored, documented, and exchanged on the formal basis of the IFC standard.

Keywords: structural health monitoring, open building information modeling, industry foundation classes, unified modeling language, semi-active tuned liquid column damper, nondestructive testing

Procedia PDF Downloads 113
11774 Modeling and Calculation of Physical Parameters of the Pollution of Water by Oil and Materials in Suspensions

Authors: Ainas Belkacem, Fourar Ali

Abstract:

The present study focuses on the mathematical modeling and calculation of physical parameters of water pollution by oil and sand in regime fully dispersed in water. In this study, the sand particles and oil are suspended in the case of fully developed turbulence. The study consists to understand, model and predict the viscosity, the structure and dynamics of these types of mixtures. The work carried out is Numerical and validated by experience.

Keywords: multi phase flow, pollution, suspensions, turbulence

Procedia PDF Downloads 214
11773 Micro Grids, Solution to Power Off-Grid Areas in Pakistan

Authors: M. Naveed Iqbal, Sheza Fatima, Noman Shabbir

Abstract:

In the presence of energy crisis in Pakistan, off-grid remote areas are not on priority list. The use of new large scale coal fired power plants will also make this situation worst. Therefore, the greatest challenge in our society is to explore new ways to power off grid remote areas with renewable energy sources. It is time for a sustainable energy policy which puts consumers, the environment, human health, and peace first. The renewable energy is one of the biggest growing sectors of the energy industry. Therefore, the large scale use of micro grid is thus described here with modeling, simulation, planning and operating of the micro grid. The goal of this research paper is to go into detail of a library of major components of micro grid. The introduction will go through the detail view of micro grid definition. Then, the simulation of Micro Grid in MATLAB/ Simulink including the Photo Voltaic Cell will be described with the detailed modeling. The simulation with the design and modeling will be introduced too.

Keywords: micro grids, distribution generation, PV, off-grid operations

Procedia PDF Downloads 281
11772 Petri Net Modeling and Simulation of a Call-Taxi System

Authors: T. Godwin

Abstract:

A call-taxi system is a type of taxi service where a taxi could be requested through a phone call or mobile app. A schematic functioning of a call-taxi system is modeled using Petri net, which provides the necessary conditions for a taxi to be assigned by a dispatcher to pick a customer as well as the conditions for the taxi to be released by the customer. A Petri net is a graphical modeling tool used to understand sequences, concurrences, and confluences of activities in the working of discrete event systems. It uses tokens on a directed bipartite multi-graph to simulate the activities of a system. The Petri net model is translated into a simulation model and a call-taxi system is simulated. The simulation model helps in evaluating the operation of a call-taxi system based on the fleet size as well as the operating policies for call-taxi assignment and empty call-taxi repositioning. The developed Petri net based simulation model can be used to decide the fleet size as well as the call-taxi assignment policies for a call-taxi system.

Keywords: call-taxi, discrete event system, petri net, simulation modeling

Procedia PDF Downloads 401
11771 Finite Element Modeling Techniques of Concrete in Steel and Concrete Composite Members

Authors: J. Bartus, J. Odrobinak

Abstract:

The paper presents a nonlinear analysis 3D model of composite steel and concrete beams with web openings using the Finite Element Method (FEM). The core of the study is the introduction of basic modeling techniques comprehending the description of material behavior, appropriate elements selection, and recommendations for overcoming problems with convergence. Results from various finite element models are compared in the study. The main objective is to observe the concrete failure mechanism and its influence on the structural performance of numerical models of the beams at particular load stages. The bearing capacity of beams, corresponding deformations, stresses, strains, and fracture patterns were determined. The results show how load-bearing elements consisting of concrete parts can be analyzed using FEM software with various options to create the most suitable numerical model. The paper demonstrates the versatility of Ansys software usage for structural simulations.

Keywords: Ansys, concrete, modeling, steel

Procedia PDF Downloads 101