Search results for: mineral processing.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4450

Search results for: mineral processing.

610 Finite Element Analysis of Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel

Authors: Bijit Kalita, R. Jayaganthan

Abstract:

Additive manufacturing (AM) is a novel manufacturing method which provides more freedom in design, manufacturing near-net-shaped parts as per demand, lower cost of production, and expedition in delivery time to market. Among various metals, AM techniques, Laser Powder Bed Fusion (L-PBF) is the most prominent one that provides higher accuracy and powder proficiency in comparison to other methods. Particularly, 17-4 PH alloy is martensitic precipitation hardened (PH) stainless steel characterized by resistance to corrosion up to 300°C and tailorable strengthening by copper precipitates. Additively manufactured 17-4 PH stainless steel exhibited a dendritic/cellular solidification microstructure in the as-built condition. It is widely used as a structural material in marine environments, power plants, aerospace, and chemical industries. The excellent weldability of 17-4 PH stainless steel and its ability to be heat treated to improve mechanical properties make it a good material choice for L-PBF. In this study, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Mechanical properties of fabricated parts are studied through micro-hardness and tensile tests. Tensile tests are carried out under different strain rates at room temperature. In addition, the effect of process parameters and heat treatment conditions on mechanical properties is critically reviewed. These studies revealed the performance of L-PBF fabricated 17–4 PH stainless-steel parts under cyclic loading, and the results indicated that fatigue properties were more sensitive to the defects generated by L-PBF (e.g., porosity, microcracks), leading to the low fracture strains and stresses under cyclic loading. Rapid melting, solidification, and re-melting of powders during the process and different combinations of processing parameters result in a complex thermal history and heterogeneous microstructure and are necessary to better control the microstructures and properties of L-PBF PH stainless steels through high-efficiency and low-cost heat treatments.

Keywords: 17–4 PH stainless steel, laser powder bed fusion, selective laser melting, microstructure, additive manufacturing

Procedia PDF Downloads 117
609 Cellular RNA-Binding Domains with Distant Homology in Viral Proteomes

Authors: German Hernandez-Alonso, Antonio Lazcano, Arturo Becerra

Abstract:

Until today, viruses remain controversial and poorly understood; about their origin, this problem represents an enigma and one of the great challenges for the contemporary biology. Three main theories have tried to explain the origin of viruses: regressive evolution, escaped host gene, and pre-cellular origin. Under the perspective of the escaped host gene theory, it can be assumed a cellular origin of viral components, like protein RNA-binding domains. These universal distributed RNA-binding domains are related to the RNA metabolism processes, including transcription, processing, and modification of transcripts, translation, RNA degradation and its regulation. In the case of viruses, these domains are present in important viral proteins like helicases, nucleases, polymerases, capsid proteins or regulation factors. Therefore, they are implicated in the replicative cycle and parasitic processes of viruses. That is why it is possible to think that those domains present low levels of divergence due to selective pressures. For these reasons, the main goal for this project is to create a catalogue of the RNA-binding domains found in all the available viral proteomes, using bioinformatics tools in order to analyze its evolutionary process, and thus shed light on the general virus evolution. ProDom database was used to obtain larger than six thousand RNA-binding domain families that belong to the three cellular domains of life and some viral groups. From the sequences of these families, protein profiles were created using HMMER 3.1 tools in order to find distant homologous within greater than four thousand viral proteomes available in GenBank. Once accomplished the analysis, almost three thousand hits were obtained in the viral proteomes. The homologous sequences were found in proteomes of the principal Baltimore viral groups, showing interesting distribution patterns that can contribute to understand the evolution of viruses and their host-virus interactions. Presence of cellular RNA-binding domains within virus proteomes seem to be explained by closed interactions between viruses and their hosts. Recruitment of these domains is advantageous for the viral fitness, allowing viruses to be adapted to the host cellular environment.

Keywords: bioinformatics tools, distant homology, RNA-binding domains, viral evolution

Procedia PDF Downloads 387
608 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech

Authors: Monica Gonzalez Machorro

Abstract:

Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.

Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment

Procedia PDF Downloads 127
607 A Furniture Industry Concept for a Sustainable Generative Design Platform Employing Robot Based Additive Manufacturing

Authors: Andrew Fox, Tao Zhang, Yuanhong Zhao, Qingping Yang

Abstract:

The furniture manufacturing industry has been slow in general to adopt the latest manufacturing technologies, historically relying heavily upon specialised conventional machinery. This approach not only requires high levels of specialist process knowledge, training, and capital investment but also suffers from significant subtractive manufacturing waste and high logistics costs due to the requirement for centralised manufacturing, with high levels of furniture product not re-cycled or re-used. This paper aims to address the problems by introducing suitable digital manufacturing technologies to create step changes in furniture manufacturing design, as the traditional design practices have been reported as building in 80% of environmental impact. In this paper, a 3D printing robot for furniture manufacturing is reported. The 3D printing robot mainly comprises a KUKA industrial robot, an Arduino microprocessor, and a self-assembled screw fed extruder. Compared to traditional 3D printer, the 3D printing robot has larger motion range and can be easily upgraded to enlarge the maximum size of the printed object. Generative design is also investigated in this paper, aiming to establish a combined design methodology that allows assessment of goals, constraints, materials, and manufacturing processes simultaneously. ‘Matrixing’ for part amalgamation and product performance optimisation is enabled. The generative design goals of integrated waste reduction increased manufacturing efficiency, optimised product performance, and reduced environmental impact institute a truly lean and innovative future design methodology. In addition, there is massive future potential to leverage Single Minute Exchange of Die (SMED) theory through generative design post-processing of geometry for robot manufacture, resulting in ‘mass customised’ furniture with virtually no setup requirements. These generatively designed products can be manufactured using the robot based additive manufacturing. Essentially, the 3D printing robot is already functional; some initial goals have been achieved and are also presented in this paper.

Keywords: additive manufacturing, generative design, robot, sustainability

Procedia PDF Downloads 131
606 Damage Detection in a Cantilever Beam under Different Excitation and Temperature Conditions

Authors: A. Kyprianou, A. Tjirkallis

Abstract:

Condition monitoring of structures in service is very important as it provides information about the risk of damage development. One of the essential constituents of structural condition monitoring is the damage detection methodology. In the context of condition monitoring of in service structures a damage detection methodology analyses data obtained from the structure while it is in operation. Usually, this means that the data could be affected by operational and environmental conditions in a way that could mask the effects of a possible damage on the data. This, depending on the damage detection methodology, could lead to either false alarms or miss existing damages. In this article a damage detection methodology that is based on the Spatio-temporal continuous wavelet transform (SPT-CWT) analysis of a sequence of experimental time responses of a cantilever beam is proposed. The cantilever is subjected to white and pink noise excitation to simulate different operating conditions. In addition, in order to simulate changing environmental conditions, the cantilever is subjected to heating by a heat gun. The response of the cantilever beam is measured by a high-speed camera. Edges are extracted from the series of images of the beam response captured by the camera. Subsequent processing of the edges gives a series of time responses on 439 points on the beam. This sequence is then analyzed using the SPT-CWT to identify damage. The algorithm proposed was able to clearly identify damage under any condition when the structure was excited by white noise force. In addition, in the case of white noise excitation, the analysis could also reveal the position of the heat gun when it was used to heat the structure. The analysis could identify the different operating conditions i.e. between responses due to white noise excitation and responses due to pink noise excitation. During the pink noise excitation whereas damage and changing temperature were identified it was not possible to clearly identify the effect of damage from that of temperature. The methodology proposed in this article for damage detection enables the separation the damage effect from that due to temperature and excitation on data obtained from measurements of a cantilever beam. This methodology does not require information about the apriori state of the structure.

Keywords: spatiotemporal continuous wavelet transform, damage detection, data normalization, varying temperature

Procedia PDF Downloads 279
605 Application of Raman Spectroscopy for Ovarian Cancer Detection: Comparative Analysis of Fresh, Formalin-Fixed, and Paraffin-Embedded Samples

Authors: Zeinab Farhat, Nicolas Errien, Romuald Wernert, Véronique Verriele, Frédéric Amiard, Philippe Daniel

Abstract:

Ovarian cancer, also known as the silent killer, is the fifth most common cancer among women worldwide, and its death rate is higher than that of other gynecological cancers. The low survival rate of women with high-grade serous ovarian carcinoma highlights the critical need for the development of new methods for early detection and diagnosis of the disease. The aim of this study was to evaluate if Raman spectroscopy combined with chemometric methods such as Principal Component Analysis (PCA) could differentiate between cancerous and normal tissues from different types of samples, such as paraffin embedding, chemical deparaffinized, formalin-fixed and fresh samples of the same normal and malignant ovarian tissue. The method was applied specifically to two critical spectral regions: the signature region (860-1000 〖cm〗^(-1)) and the high-frequency region (2800-3100 〖cm〗^(-1) ). The mean spectra of paraffin-embedded in normal and malignant tissues showed almost similar intensity. On the other hand, the mean spectra of normal and cancer tissues from chemical deparaffinized, formalin-fixed, and fresh samples show significant intensity differences. These spectral differences reflect variations in the molecular composition of the tissues, particularly lipids and proteins. PCA, which was applied to distinguish between cancer and normal tissues, was performed on whole spectra and on selected regions—the PCA score plot of paraffin-embedded shows considerable overlap between the two groups. However, the PCA score of chemicals deparaffinized, formalin-fixed, and fresh samples showed a good discrimination of tissue types. Our findings were validated by analyses of a set of samples whose status (normal and cancerous) was not previously known. The results of this study suggest that Raman Spectroscopy associated with PCA methods has the capacity to provide clinically significant differentiation between normal and cancerous ovarian tissues.

Keywords: Raman spectroscopy, ovarian cancer, signal processing, Principal Component Analysis, classification

Procedia PDF Downloads 25
604 Coherent Optical Tomography Imaging of Epidermal Hyperplasia in Vivo in a Mouse Model of Oxazolone Induced Atopic Dermatitis

Authors: Eric Lacoste

Abstract:

Laboratory animals are currently widely used as a model of human pathologies in dermatology such as atopic dermatitis (AD). These models provide a better understanding of the pathophysiology of this complex and multifactorial disease, the discovery of potential new therapeutic targets and the testing of the efficacy of new therapeutics. However, confirmation of the correct development of AD is mainly based on histology from skin biopsies requiring invasive surgery or euthanasia of the animals, plus slicing and staining protocols. However, there are currently accessible imaging technologies such as Optical Coherence Tomography (OCT), which allows non-invasive visualization of the main histological structures of the skin (like stratum corneum, epidermis, and dermis) and assessment of the dynamics of the pathology or efficacy of new treatments. Briefly, female immunocompetent hairless mice (SKH1 strain) were sensitized and challenged topically on back and ears for about 4 weeks. Back skin and ears thickness were measured using calliper at 3 occasions per week in complement to a macroscopic evaluation of atopic dermatitis lesions on back: erythema, scaling and excoriations scoring. In addition, OCT was performed on the back and ears of animals. OCT allows a virtual in-depth section (tomography) of the imaged organ to be made using a laser, a camera and image processing software allowing fast, non-contact and non-denaturing acquisitions of the explored tissues. To perform the imaging sessions, the animals were anesthetized with isoflurane, placed on a support under the OCT for a total examination time of 5 to 10 minutes. The results show a good correlation of the OCT technique with classical HES histology for skin lesions structures such as hyperkeratosis, epidermal hyperplasia, and dermis thickness. This OCT imaging technique can, therefore, be used in live animals at different times for longitudinal evaluation by repeated measurements of lesions in the same animals, in addition to the classical histological evaluation. Furthermore, this original imaging technique speeds up research protocols, reduces the number of animals and refines the use of the laboratory animal.

Keywords: atopic dermatitis, mouse model, oxzolone model, histology, imaging

Procedia PDF Downloads 132
603 An Integrated Approach to Solid Waste Management of Karachi, Pakistan (Waste-to-Energy Options)

Authors: Engineer Dilnawaz Shah

Abstract:

Solid Waste Management (SWM) is perhaps one of the most important elements constituting the environmental health and sanitation of the urban developing sector. The management system has several components that are integrated as well as interdependent; thus, the efficiency and effectiveness of the entire system are affected when any of its functional components fails or does not perform up to the level mark of operation. Sindh Solid Waste Management Board (SSWMB) is responsible for the management of solid waste in the entire city. There is a need to adopt the engineered approach in the redesigning of the existing system. In most towns, street sweeping operations have been mechanized and done by machinery operated by vehicles. Construction of Garbage Transfer Stations (GTS) at a number of locations within the city will cut the cost of transportation of waste to disposal sites. Material processing, recovery of recyclables, compaction, volume reduction, and increase in density will enable transportation of waste to disposal sites/landfills via long vehicles (bulk transport), minimizing transport/traffic and environmental pollution-related issues. Development of disposal sites into proper sanitary landfill sites is mandatory. The transportation mechanism is through garbage vehicles using either hauled or fixed container systems employing crew for mechanical or manual loading. The number of garbage vehicles is inadequate, and due to comparatively long haulage to disposal sites, there are certain problems of frequent vehicular maintenance and high fuel costs. Foreign investors have shown interest in enterprising improvement schemes and proposed operating a solid waste management system in Karachi. The waste to Energy option is being considered to provide a practical answer to be adopted to generate power and reduce waste load – a two-pronged solution for the increasing environmental problem. The paper presents results and analysis of a recent study into waste generation and characterization probing into waste-to-energy options for Karachi City.

Keywords: waste to energy option, integrated approach, solid waste management, physical and chemical composition of waste in Karachi

Procedia PDF Downloads 45
602 Revealing Single Crystal Quality by Insight Diffraction Imaging Technique

Authors: Thu Nhi Tran Caliste

Abstract:

X-ray Bragg diffraction imaging (“topography”)entered into practical use when Lang designed an “easy” technical setup to characterise the defects / distortions in the high perfection crystals produced for the microelectronics industry. The use of this technique extended to all kind of high quality crystals, and deposited layers, and a series of publications explained, starting from the dynamical theory of diffraction, the contrast of the images of the defects. A quantitative version of “monochromatic topography” known as“Rocking Curve Imaging” (RCI) was implemented, by using synchrotron light and taking advantage of the dramatic improvement of the 2D-detectors and computerised image processing. The rough data is constituted by a number (~300) of images recorded along the diffraction (“rocking”) curve. If the quality of the crystal is such that a one-to-onerelation between a pixel of the detector and a voxel within the crystal can be established (this approximation is very well fulfilled if the local mosaic spread of the voxel is < 1 mradian), a software we developped provides, from the each rocking curve recorded on each of the pixels of the detector, not only the “voxel” integrated intensity (the only data provided by the previous techniques) but also its “mosaic spread” (FWHM) and peak position. We will show, based on many examples, that this new data, never recorded before, open the field to a highly enhanced characterization of the crystal and deposited layers. These examples include the characterization of dislocations and twins occurring during silicon growth, various growth features in Al203, GaNand CdTe (where the diffraction displays the Borrmannanomalous absorption, which leads to a new type of images), and the characterisation of the defects within deposited layers, or their effect on the substrate. We could also observe (due to the very high sensitivity of the setup installed on BM05, which allows revealing these faint effects) that, when dealing with very perfect crystals, the Kato’s interference fringes predicted by dynamical theory are also associated with very small modifications of the local FWHM and peak position (of the order of the µradian). This rather unexpected (at least for us) result appears to be in keeping with preliminary dynamical theory calculations.

Keywords: rocking curve imaging, X-ray diffraction, defect, distortion

Procedia PDF Downloads 131
601 A Closed Loop Audit of Pre-operative Transfusion Samples in Orthopaedic Patients at a Major Trauma Centre

Authors: Tony Feng, Rea Thomson, Kathryn Greenslade, Ross Medine, Jennifer Easterbrook, Calum Arthur, Matilda Powell-bowns

Abstract:

There are clear guidelines on taking group and screen samples (G&S) for elective arthroplasty and major trauma. However, there is limited guidance on blood grouping for other trauma patients. The purpose of this study was to review the level of blood grouping at a major trauma centre and validate a protocol that limits the expensive processing of G&S samples. After reviewing the national guidance on transfusion samples in orthopaedic patients, data was prospectively collected for all orthopaedic admissions in the Royal Infirmary of Edinburgh between January to February 2023. The cause of admission, number of G&S samples processed on arrival and need for red cells was collected using the hospital blood bank. A new protocol was devised based on a multidisciplinary meeting which limited the requirement for G&S samples only to presentations in “category X”, including neck-of-femur fractures (NOFs), pelvic fractures and major trauma. A re-audit was completed between April and May after departmental education and institution of this protocol. 759 patients were admitted under orthopaedics in the major trauma centre across two separate months. 47% of patients were admitted with presentations falling in category X (354/759) and patients in this category accounted for 88% (92/104) of those requiring post-operative red cell transfusions. Of these, 51% were attributed to NOFs (47/92). In the initial audit, 50% of trauma patients outwith category X had samples sent (116/230), estimated to cost £3800. Of these 230 patients, 3% required post-operative transfusions (7/230). In the re-audit, 23% of patients outwith category X had samples sent (40/173), estimated to cost £1400, of which 3% (5/173) required transfusions. None of the transfusions in these patients in either audit were related to their operation and the protocol achieved an estimated cost saving of £2400 over one month. This study highlights the importance of sending samples for patients with certain categories of orthopaedic trauma (category X) due to the high demand for post-operative transfusions. However, the absence of transfusion requirements in other presentations suggests over-testing. While implementation of the new protocol has markedly reduced over-testing, additional interventions are required to reduce this further.

Keywords: blood transfusion, quality improvement, orthopaedics, trauma

Procedia PDF Downloads 76
600 Economics of Sugandhakokila (Cinnamomum Glaucescens (Nees) Dury) in Dang District of Nepal: A Value Chain Perspective

Authors: Keshav Raj Acharya, Prabina Sharma

Abstract:

Sugandhakokila (Cinnamomum glaucescens Nees. Dury) is a large evergreen native tree species; mostly confined naturally in mid-hills of Rapti Zone of Nepal. The species is identified as prioritized for agro-technology development as well as for research and development by a department of plant resources. This species is band for export outside the country without processing by the government of Nepal to encourage the value addition within the country. The present study was carried out in Chillikot village of Dang district to find out the economic contribution of C. glaucescens in the local economy and to document the major conservation threats for this species. Participatory Rural Appraisal (PRA) tools such as Household survey, key informants interviews and focus group discussions were carried out to collect the data. The present study reveals that about 1.7 million Nepalese rupees (NPR) have been contributed annually in the local economy of 29 households from the collection of C. glaucescens berries in the study area. The average annual income of each family was around NPR 67,165.38 (US$ 569.19) from the sale of the berries which contributes about 53% of the total household income. Six different value chain actors are involved in C. glaucescens business. Maximum profit margin was taken by collector followed by producer, exporter and processor. The profit margin was found minimum to regional and village traders. The total profit margin for producers was NPR 138.86/kg, and regional traders have gained NPR 17/kg. However, there is a possibility to increase the profit of producers by NPR 8.00 more for each kg of berries through the initiation of community forest user group and village cooperatives in the area. Open access resource, infestation by an insect to over matured trees and browsing by goats were identified as major conservation threats for this species. Handing over the national forest as a community forest, linking the producers with the processor through organized market channel and replacing the old tree through new plantation has been recommended for future.

Keywords: community forest, conservation threats, C. glaucescens, value chain analysis

Procedia PDF Downloads 140
599 Transition in Protein Profile, Maillard Reaction Products and Lipid Oxidation of Flavored Ultra High Temperature Treated Milk

Authors: Muhammad Ajmal

Abstract:

- Thermal processing and subsequent storage of ultra-heat treated (UHT) milk leads to alteration in protein profile, Maillard reaction and lipid oxidation. Concentration of carbohydrates in normal and flavored version of UHT milk is considerably different. Transition in protein profile, Maillard reaction and lipid oxidation in UHT flavored milk was determined for 90 days at ambient conditions and analyzed at 0, 45 and 90 days of storage. Protein profile, hydroxymethyl furfural, furosine, Nε-carboxymethyl-l-lysine, fatty acid profile, free fatty acids, peroxide value and sensory characteristics were determined. After 90 days of storage, fat, protein, total solids contents and pH were significantly less than the initial values determined at 0 day. As compared to protein profile normal UHT milk, more pronounced changes were recorded in different fractions of protein in UHT milk at 45 and 90 days of storage. Tyrosine content of flavored UHT milk at 0, 45 and 90 days of storage were 3.5, 6.9 and 15.2 µg tyrosine/ml. After 45 days of storage, the decline in αs1-casein, αs2-casein, β-casein, κ-casein, β-lactoglobulin, α-lactalbumin, immunoglobulin and bovine serum albumin were 3.35%, 10.5%, 7.89%, 18.8%, 53.6%, 20.1%, 26.9 and 37.5%. After 90 days of storage, the decline in αs1-casein, αs2-casein, β-casein, κ-casein, β-lactoglobulin, α-lactalbumin, immunoglobulin and bovine serum albumin were 11.2%, 34.8%, 14.3%, 33.9%, 56.9%, 24.8%, 36.5% and 43.1%. Hydroxy methyl furfural content of UHT milk at 0, 45 and 90 days of storage were 1.56, 4.18 and 7.61 (µmol/L). Furosine content of flavored UHT milk at 0, 45 and 90 days of storage intervals were 278, 392 and 561 mg/100g protein. Nε-carboxymethyl-l-lysine content of UHT flavored milk at 0, 45 and 90 days of storage were 67, 135 and 343mg/kg protein. After 90 days of storage of flavored UHT milk, the loss of unsaturated fatty acids 45.7% from the initial values. At 0, 45 and 90 days of storage, free fatty acids of flavored UHT milk were 0.08%, 0.11% and 0.16% (p<0.05). Peroxide value of flavored UHT milk at 0, 45 and 90 days of storage was 0.22, 0.65 and 2.88 (MeqO²/kg). Sensory analysis of flavored UHT milk after 90 days indicated that appearance, flavor and mouth feel score significantly decreased from the initial values recorded at 0 day. Findings of this investigation evidenced that in flavored UHT milk more pronounced changes take place in protein profile, Maillard reaction products and lipid oxidation as compared to normal UHT milk.

Keywords: UHT flavored milk , hydroxymethyl furfural, lipid oxidation, sensory properties

Procedia PDF Downloads 199
598 Humans’ Physical Strength Capacities on Different Handwheel Diameters and Angles

Authors: Saif K. Al-Qaisi, Jad R. Mansour, Aseel W. Sakka, Yousef Al-Abdallat

Abstract:

Handwheels are common to numerous industries, such as power generation plants, oil refineries, and chemical processing plants. The forces required to manually turn handwheels have been shown to exceed operators’ physical strengths, posing risks for injuries. Therefore, the objectives of this research were twofold: (1) to determine humans’ physical strengths on handwheels of different sizes and angles and (2) to subsequently propose recommended torque limits (RTLs) that accommodate the strengths of even the weaker segment of the population. Thirty male and thirty female participants were recruited from a university student population. Participants were asked to exert their maximum possible forces in a counter-clockwise direction on handwheels of different sizes (35 cm, 45 cm, 60 cm, and 70 cm) and angles (0°-horizontal, 45°-slanted, and 90°-vertical). The participant’s posture was controlled by adjusting the handwheel to be at the elbow level of each participant, requiring the participant to stand erect, and restricting the hand placements to be in the 10-11 o’clock position for the left hand and the 4-5 o’clock position for the right hand. A torque transducer (Futek TDF600) was used to measure the maximum torques generated by the human. Three repetitions were performed for each handwheel condition, and the average was computed. Results showed that, at all handwheel angles, as the handwheel diameter increased, the maximum torques generated also increased, while the underlying forces decreased. In controlling the handwheel diameter, the 0° handwheel was associated with the largest torques and forces, and the 45° handwheel was associated with the lowest torques and forces. Hence, a larger handwheel diameter –as large as 70 cm– in a 0° angle is favored for increasing the torque production capacities of users. Also, it was recognized that, regardless of the handwheel diameter size and angle, the torque demands in the field are much greater than humans’ torque production capabilities. As such, this research proposed RTLs for the different handwheel conditions by using the 25th percentile values of the females’ torque strengths. The proposed recommendations may serve future standard developers in defining torque limits that accommodate humans’ strengths.

Keywords: handwheel angle, handwheel diameter, humans’ torque production strengths, recommended torque limits

Procedia PDF Downloads 112
597 Cost-Effective Mechatronic Gaming Device for Post-Stroke Hand Rehabilitation

Authors: A. Raj Kumar, S. Bilaloglu

Abstract:

Stroke is a leading cause of adult disability worldwide. We depend on our hands for our activities of daily living(ADL). Although many patients regain the ability to walk, they continue to experience long-term hand motor impairments. As the number of individuals with young stroke is increasing, there is a critical need for effective approaches for rehabilitation of hand function post-stroke. Motor relearning for dexterity requires task-specific kinesthetic, tactile and visual feedback. However, when a stroke results in both sensory and motor impairment, it becomes difficult to ascertain when and what type of sensory substitutions can facilitate motor relearning. In an ideal situation, real-time task-specific data on the ability to learn and data-driven feedback to assist such learning will greatly assist rehabilitation for dexterity. We have found that kinesthetic and tactile information from the unaffected hand can assist patients re-learn the use of optimal fingertip forces during a grasp and lift task. Measurement of fingertip grip force (GF), load forces (LF), their corresponding rates (GFR and LFR), and other metrics can be used to gauge the impairment level and progress during learning. Currently ATI mini force-torque sensors are used in research settings to measure and compute the LF, GF, and their rates while grasping objects of different weights and textures. Use of the ATI sensor is cost prohibitive for deployment in clinical or at-home rehabilitation. A cost effective mechatronic device is developed to quantify GF, LF, and their rates for stroke rehabilitation purposes using off-the-shelf components such as load cells, flexi-force sensors, and an Arduino UNO microcontroller. A salient feature of the device is its integration with an interactive gaming environment to render a highly engaging user experience. This paper elaborates the integration of kinesthetic and tactile sensing through computation of LF, GF and their corresponding rates in real time, information processing, and interactive interfacing through augmented reality for visual feedback.

Keywords: feedback, gaming, kinesthetic, rehabilitation, tactile

Procedia PDF Downloads 240
596 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil

Authors: M. A. Stoian, D. M. Cocarta, A. Badea

Abstract:

The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6

Keywords: carcinogenic risk, heavy metals, human health risk assessment, soil pollution

Procedia PDF Downloads 422
595 Metabolically Healthy Obesity and Protective Factors of Cardiovascular Diseases as a Result from a Longitudinal Study in Tebessa (East of Algeria)

Authors: Salima Taleb, Kafila Boulaba, Ahlem Yousfi, Nada Taleb, Difallah Basma

Abstract:

Introduction: Obesity is recognized as a cardiovascular risk factor. It is associated with cardio-metabolic diseases. Its prevalence is increasing significantly in both rich and poor countries. However, there are obese people who have no metabolic disturbance. So we think obesity is not always a risk factor for an abnormal metabolic profile that increases the risk of cardiometabolic problems. However, there is no definition that allows us to identify the individual group Metabolically Healthy but Obese (MHO). Objective: The objective of this study is to evaluate the relationship between MHO and some factors associated with it. Methods: A longitudinal study is a prospective cohort study of 600 participants aged ≥18 years. Metabolic status was assessed by the following parameters: blood pressure, fasting glucose, total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides. Body Mass Index (BMI) was calculated as weight (in kg) divided by height (m2), BMI = Weight/(Height)². According to the BMI value, our population was divided into four groups: underweight subjects with BMI <18.5 kg/m2, normal weight subjects with BMI = 18.5–24.9 kg/m², overweight subjects with BMI=25–29.9 kg/m², and obese subjects who have (BMI ≥ 30 kg/m²). A value of P < 0.05 was considered significant. Statistical processing was done using the SPSS 25 software. Results: During this study, 194 (32.33%) were identified as MHO among 416 (37%) obese individuals. The prevalence of the metabolically unhealthy phenotype among normal-weight individuals was (13.83%) vs. (37%) in obese individuals. Compared with metabolically healthy normal-weight individuals (10.93%), the prevalence of diabetes was (30.60%) in MHO, (20.59%) in metabolically unhealthy normal weight, and (52.29%) for metabolically unhealthy obese (p = 0.032). Blood pressure was significantly higher in MHO individuals than in metabolically healthy normal-weight individuals and in metabolically unhealthy obese than in metabolically unhealthy normal weight (P < 0.0001). Familial coronary artery disease does not appear to have an effect on the metabolic status of obese and normal-weight patients (P = 0.544). However, waist circumference appears to have an effect on the metabolic status of individuals (P < 0.0001). Conclusion: This study showed a high prevalence of metabolic profile disruption in normal-weight subjects and a high rate of overweight and/or obese people who are metabolically healthy. To understand the physiological mechanism related to these metabolic statuses, a thorough study is needed.

Keywords: metabolically health, obesity, factors associated, cardiovascular diseases

Procedia PDF Downloads 117
594 A Method for Clinical Concept Extraction from Medical Text

Authors: Moshe Wasserblat, Jonathan Mamou, Oren Pereg

Abstract:

Natural Language Processing (NLP) has made a major leap in the last few years, in practical integration into medical solutions; for example, extracting clinical concepts from medical texts such as medical condition, medication, treatment, and symptoms. However, training and deploying those models in real environments still demands a large amount of annotated data and NLP/Machine Learning (ML) expertise, which makes this process costly and time-consuming. We present a practical and efficient method for clinical concept extraction that does not require costly labeled data nor ML expertise. The method includes three steps: Step 1- the user injects a large in-domain text corpus (e.g., PubMed). Then, the system builds a contextual model containing vector representations of concepts in the corpus, in an unsupervised manner (e.g., Phrase2Vec). Step 2- the user provides a seed set of terms representing a specific medical concept (e.g., for the concept of the symptoms, the user may provide: ‘dry mouth,’ ‘itchy skin,’ and ‘blurred vision’). Then, the system matches the seed set against the contextual model and extracts the most semantically similar terms (e.g., additional symptoms). The result is a complete set of terms related to the medical concept. Step 3 –in production, there is a need to extract medical concepts from the unseen medical text. The system extracts key-phrases from the new text, then matches them against the complete set of terms from step 2, and the most semantically similar will be annotated with the same medical concept category. As an example, the seed symptom concepts would result in the following annotation: “The patient complaints on fatigue [symptom], dry skin [symptom], and Weight loss [symptom], which can be an early sign for Diabetes.” Our evaluations show promising results for extracting concepts from medical corpora. The method allows medical analysts to easily and efficiently build taxonomies (in step 2) representing their domain-specific concepts, and automatically annotate a large number of texts (in step 3) for classification/summarization of medical reports.

Keywords: clinical concepts, concept expansion, medical records annotation, medical records summarization

Procedia PDF Downloads 135
593 Experimental and Numerical Investigation of Micro-Welding Process and Applications in Digital Manufacturing

Authors: Khaled Al-Badani, Andrew Norbury, Essam Elmshawet, Glynn Rotwell, Ian Jenkinson , James Ren

Abstract:

Micro welding procedures are widely used for joining materials, developing duplex components or functional surfaces, through various methods such as Micro Discharge Welding or Spot Welding process, which can be found in the engineering, aerospace, automotive, biochemical, biomedical and numerous other industries. The relationship between the material properties, structure and processing is very important to improve the structural integrity and the final performance of the welded joints. This includes controlling the shape and the size of the welding nugget, state of the heat affected zone, residual stress, etc. Nowadays, modern high volume productions require the welding of much versatile shapes/sizes and material systems that are suitable for various applications. Hence, an improved understanding of the micro welding process and the digital tools, which are based on computational numerical modelling linking key welding parameters, dimensional attributes and functional performance of the weldment, would directly benefit the industry in developing products that meet current and future market demands. This paper will introduce recent work on developing an integrated experimental and numerical modelling code for micro welding techniques. This includes similar and dissimilar materials for both ferrous and non-ferrous metals, at different scales. The paper will also produce a comparative study, concerning the differences between the micro discharge welding process and the spot welding technique, in regards to the size effect of the welding zone and the changes in the material structure. Numerical modelling method for the micro welding processes and its effects on the material properties, during melting and cooling progression at different scales, will also be presented. Finally, the applications of the integrated numerical modelling and the material development for the digital manufacturing of welding, is discussed with references to typical application cases such as sensors (thermocouples), energy (heat exchanger) and automotive structures (duplex steel structures).

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 255
592 Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays

Authors: Nikolaos Petropoulos, Elena Blokhina, Andrii Sokolov, Andrii Semenov, Panagiotis Giounanlis, Xutong Wu, Dmytro Mishagli, Eugene Koskin, Robert Bogdan Staszewski, Dirk Leipold

Abstract:

We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research.

Keywords: condensed matter physics, quantum computing, quantum information theory, quantum physics

Procedia PDF Downloads 99
591 Suitable Site Selection of Small Dams Using Geo-Spatial Technique: A Case Study of Dadu Tehsil, Sindh

Authors: Zahid Khalil, Saad Ul Haque, Asif Khan

Abstract:

Decision making about identifying suitable sites for any project by considering different parameters is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30-meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pairwise comparison method, also known as Analytical Hierarchy Process (AHP) is taken into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision-making about suitable sites analysis for small dams using geospatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).

Keywords: Remote sensing, GIS, AHP, RWH

Procedia PDF Downloads 389
590 Astronomical Object Classification

Authors: Alina Muradyan, Lina Babayan, Arsen Nanyan, Gohar Galstyan, Vigen Khachatryan

Abstract:

We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of ∼> 65000 color templates for comparison with observed objects. The method aims for extracting the information content of object colors in a statistically correct way, and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach based on the same probability density functions. For the redshift estimation, we employ an advanced version of the Minimum Error Variance estimator which determines the redshift error from the redshift dependent probability density function itself. The method was originally developed for the Calar Alto Deep Imaging Survey (CADIS), but is now used in a wide variety of survey projects. We checked its performance by spectroscopy of CADIS objects, where the method provides high reliability (6 errors among 151 objects with R < 24), especially for the quasar selection, and redshifts accurate within σz ≈ 0.03 for galaxies and σz ≈ 0.1 for quasars. For an optimization of future survey efforts, a few model surveys are compared, which are designed to use the same total amount of telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. If photon noise were the only error source, broad-band surveys and medium-band surveys should perform equally well, as long as they provide the same spectral coverage. In practice, medium-band surveys show superior performance due to their higher tolerance for calibration errors and cosmic variance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, which are most critical for surveys with few, broad and deeply exposed filters, but less severe for surveys with many, narrow and less deep filters.

Keywords: VO, ArVO, DFBS, FITS, image processing, data analysis

Procedia PDF Downloads 78
589 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 116
588 Exploring Polypnenolics Content and Antioxidant Activity of R. damascena Dry Extract by Spectroscopic and Chromatographic Techniques

Authors: Daniela Nedeltcheva-Antonova, Kamelia Getchovska, Vera Deneva, Stanislav Bozhanov, Liudmil Antonov

Abstract:

Rosa damascena Mill. (Damask rose) is one of the most important plants belonging to the Rosaceae family, with a long historical use in traditional medicine and as a valuable oil-bearing plant. Many pharmacological effects have been reported from this plant, including anti-inflammatory, hypnotic, analgesic, anticonvulsant, anti-depressant, antianxiety, antitussive, antidiabetic, relaxant effects on tracheal chains, laxative, prokinetic and hepatoprotective activities. Pharmacological studies have shown that the various health effects of R. damascena flowers can mainly be attributed to its large amount of polyphenolic components. Phenolics possess a wide range of pharmacological activities, such as antioxidants, free-radical scavengers, anticancer, anti-inflammatory, antimutagenic, and antidepressant, with flavonoids being the most numerous group of natural polyphenolic compounds. According to the technological process in the production of rose concrete (solvent extraction with non-polar solvents of fresh rose flowers), it can be assumed that the resulting plant residue would be as rich of polyphenolics, as the plant itself, and could be used for the development of novel products with promising health-promoting effect. Therefore, an optimisation of the extraction procedure of the by-product from the rose concrete production was carried out. An assay of the extracts in respect of their total polyphenols and total flavonoids content was performed. HPLC analysis of quercetin and kaempferol, the two main flavonoids found in R. damascena, was also carried out. The preliminary results have shown that the flavonoid content in the rose extracts is comparable to that of the green tea or Gingko biloba, and they could be used for the development of various products (food supplements, natural cosmetics and phyto-pharmaceutical formulation, etc.). The fact that they are derived from the by-product of industrial plant processing could add the marketing value of the final products in addition to the well-known reputation of the products obtained from Bulgarian roses (R. damascena Mill.).

Keywords: gas chromatography-mass-spectromrtry, dry extract, flavonoids, Rosa damascena Mill

Procedia PDF Downloads 152
587 Effect of Perceived Importance of a Task in the Prospective Memory Task

Authors: Kazushige Wada, Mayuko Ueda

Abstract:

In the present study, we reanalyzed lapse errors in the last phase of a job, by re-counting near lapse errors and increasing the number of participants. We also examined the results of this study from the perspective of prospective memory (PM), which concerns future actions. This study was designed to investigate whether perceiving the importance of PM tasks caused lapse errors in the last phase of a job and to determine if such errors could be explained from the perspective of PM processing. Participants (N = 34) conducted a computerized clicking task, in which they clicked on 10 figures that they had learned in advance in 8 blocks of 10 trials. Participants were requested to click the check box in the start display of a block and to click the checking off box in the finishing display. This task was a PM task. As a measure of PM performance, we counted the number of omission errors caused by forgetting to check off in the finishing display, which was defined as a lapse error. The perceived importance was manipulated by different instructions. Half the participants in the highly important task condition were instructed that checking off was very important, because equipment would be overloaded if it were not done. The other half in the not important task condition was instructed only about the location and procedure for checking off. Furthermore, we controlled workload and the emotion of surprise to confirm the effect of demand capacity and attention. To manipulate emotions during the clicking task, we suddenly presented a photo of a traffic accident and the sound of a skidding car followed by an explosion. Workload was manipulated by requesting participants to press the 0 key in response to a beep. Results indicated too few forgetting induced lapse errors to be analyzed. However, there was a weak main effect of the perceived importance of the check task, in which the mouse moved to the “END” button before moving to the check box in the finishing display. Especially, the highly important task group showed more such near lapse errors, than the not important task group. Neither surprise, nor workload affected the occurrence of near lapse errors. These results imply that high perceived importance of PM tasks impair task performance. On the basis of the multiprocess framework of PM theory, we have suggested that PM task performance in this experiment relied not on monitoring PM tasks, but on spontaneous retrieving.

Keywords: prospective memory, perceived importance, lapse errors, multi process framework of prospective memory.

Procedia PDF Downloads 446
586 Effects of Sensory Integration Techniques in Science Education of Autistic Students

Authors: Joanna Estkowska

Abstract:

Sensory integration methods are very useful and improve daily functioning autistic and mentally disabled children. Autism is a neurobiological disorder that impairs one's ability to communicate with and relate to others as well as their sensory system. Children with autism, even highly functioning kids, can find it difficult to process language with surrounding noise or smells. They are hypersensitive to things we can ignore such as sight, sounds and touch. Adolescents with highly functioning autism or Asperger Syndrome can study Science and Math but the social aspect is difficult for them. Nature science is an area of study that attracts many of these kids. It is a systematic field in which the children can focus on a small aspect. If you follow these rules you can come up with an expected result. Sensory integration program and systematic classroom observation are quantitative methods of measuring classroom functioning and behaviors from direct observations. These methods specify both the events and behaviors that are to be observed and how they are to be recorded. Our students with and without autism attended the lessons in the classroom of nature science in the school and in the laboratory of University of Science and Technology in Bydgoszcz. The aim of this study is investigation the effects of sensory integration methods in teaching to students with autism. They were observed during experimental lessons in the classroom and in the laboratory. Their physical characteristics, sensory dysfunction, and behavior in class were taken into consideration by comparing their similarities and differences. In the chemistry classroom, every autistic student is paired with a mentor from their school. In the laboratory, the children are expected to wear goggles, gloves and a lab coat. The chemistry classes in the laboratory were held for four hours with a lunch break, and according to the assistants, the children were engaged the whole time. In classroom of nature science, the students are encouraged to use the interactive exhibition of chemical, physical and mathematical models constructed by the author of this paper. Our students with and without autism attended the lessons in those laboratories. The teacher's goals are: to assist the child in inhibiting and modulating sensory information and support the child in processing a response to sensory stimulation.

Keywords: autism spectrum disorder, science education, sensory integration techniques, student with special educational needs

Procedia PDF Downloads 192
585 Development and Characterization of Expandable TPEs Compounds for Footwear Applications

Authors: Ana Elisa Ribeiro Costa, Sónia Daniela Ferreira Miranda, João Pedro De Carvalho Pereira, João Carlos Simões Bernardo

Abstract:

Elastomeric thermoplastics (TPEs) have been widely used in the footwear industry over the years. Recently this industry has been requesting materials that can combine lightweight and high abrasion resistance. Although there are blowing agents on the market to improve the lightweight, when these are incorporated into molten polymers during the extrusion or injection molding, it is necessary to have some specific processing conditions (e.g. effect of temperature and hydrodynamic stresses) to obtain good properties and acceptable surface appearance on the final products. Therefore, it is a great advantage for the compounder industry to acquire compounds that already include the blowing agents. In this way, they can be handled and processed under the same conditions as a conventional raw material. In this work, the expandable TPEs compounds, namely a TPU and a SEBS, with the incorporation of blowing agents, have been developed through a co-rotating modular twin-screw parallel extruder. Different blowing agents such as thermo-expandable microspheres and an azodicarbonamide were selected and different screw configurations and temperature profiles were evaluated since these parameters have a particular influence on the expansion inhibition of the blowing agents. Furthermore, percentages of incorporation were varied in order to investigate their influence on the final product properties. After the extrusion of these compounds, expansion was tested by the injection process. The mechanical and physical properties were characterized by different analytical methods like tensile, flexural and abrasive tests, determination of hardness and density measurement. Also, scanning electron microscopy (SEM) was performed. It was observed that it is possible to incorporate the blowing agents on the TPEs without their expansion on the extrusion process. Only with reprocessing (injection molding) did the expansion of the agents occur. These results are corroborated by SEM micrographs, which show a good distribution of blowing agents in the polymeric matrices. The other experimental results showed a good mechanical performance and its density decrease (30% for SEBS and 35% for TPU). This study suggested that it is possible to develop optimized compounds for footwear applications (e.g., sole shoes), which only will be able to expand during the injection process.

Keywords: blowing agents, expandable thermoplastic elastomeric compounds, low density, footwear applications

Procedia PDF Downloads 207
584 12 Real Forensic Caseworks Solved by the DNA STR-Typing of Skeletal Remains Exposed to Extremely Environment Conditions without the Conventional Bone Pulverization Step

Authors: Chiara Della Rocca, Gavino Piras, Andrea Berti, Alessandro Mameli

Abstract:

DNA identification of human skeletal remains plays a valuable role in the forensic field, especially in missing persons and mass disaster investigations. Hard tissues, such as bones and teeth, represent a very common kind of samples analyzed in forensic laboratories because they are often the only biological materials remaining. However, the major limitation of using these compact samples relies on the extremely time–consuming and labor–intensive treatment of grinding them into powder before proceeding with the conventional DNA purification and extraction step. In this context, a DNA extraction assay called the TBone Ex kit (DNA Chip Research Inc.) was developed to digest bone chips without powdering. Here, we simultaneously analyzed bone and tooth samples that arrived at our police laboratory and belonged to 15 different forensic casework that occurred in Sardinia (Italy). A total of 27 samples were recovered from different scenarios and were exposed to extreme environmental factors, including sunlight, seawater, soil, fauna, vegetation, and high temperature and humidity. The TBone Ex kit was used prior to the EZ2 DNA extraction kit on the EZ2 Connect Fx instrument (Qiagen), and high-quality autosomal and Y-chromosome STRs profiles were obtained for the 80% of the caseworks in an extremely short time frame. This study provides additional support for the use of the TBone Ex kit for digesting bone fragments/whole teeth as an effective alternative to pulverization protocols. We empirically demonstrated the effectiveness of the kit in processing multiple bone samples simultaneously, largely simplifying the DNA extraction procedure and the good yield of recovered DNA for downstream genetic typing in highly compromised forensic real specimens. In conclusion, this study turns out to be extremely useful for forensic laboratories, to which the various actors of the criminal justice system – such as potential jury members, judges, defense attorneys, and prosecutors – required immediate feedback.

Keywords: DNA, skeletal remains, bones, tbone ex kit, extreme conditions

Procedia PDF Downloads 45
583 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 33
582 The Role of Artificial Intelligence in Patent Claim Interpretation: Legal Challenges and Opportunities

Authors: Mandeep Saini

Abstract:

The rapid advancement of Artificial Intelligence (AI) is transforming various fields, including intellectual property law. This paper explores the emerging role of AI in interpreting patent claims, a critical and highly specialized area within intellectual property rights. Patent claims define the scope of legal protection granted to an invention, and their precise interpretation is crucial in determining the boundaries of the patent holder's rights. Traditionally, this interpretation has relied heavily on the expertise of patent examiners, legal professionals, and judges. However, the increasing complexity of modern inventions, especially in fields like biotechnology, software, and electronics, poses significant challenges to human interpretation. Introducing AI into patent claim interpretation raises several legal and ethical concerns. This paper addresses critical issues such as the reliability of AI-driven interpretations, the potential for algorithmic bias, and the lack of transparency in AI decision-making processes. It considers the legal implications of relying on AI, particularly regarding accountability for errors and the potential challenges to AI interpretations in court. The paper includes a comparative study of AI-driven patent claim interpretations versus human interpretations across different jurisdictions to provide a comprehensive analysis. This comparison highlights the variations in legal standards and practices, offering insights into how AI could impact the harmonization of international patent laws. The paper proposes policy recommendations for the responsible use of AI in patent law. It suggests legal frameworks that ensure AI tools complement, rather than replace, human expertise in patent claim interpretation. These recommendations aim to balance the benefits of AI with the need for maintaining trust, transparency, and fairness in the legal process. By addressing these critical issues, this research contributes to the ongoing discourse on integrating AI into the legal field, specifically within intellectual property rights. It provides a forward-looking perspective on how AI could reshape patent law, offering both opportunities for innovation and challenges that must be carefully managed to protect the integrity of the legal system.

Keywords: artificial intelligence (ai), patent claim interpretation, intellectual property rights, algorithmic bias, natural language processing, patent law harmonization, legal ethics

Procedia PDF Downloads 21
581 The Impact of Electrospinning Parameters on Surface Morphology and Chemistry of PHBV Fibers

Authors: Lukasz Kaniuk, Mateusz M. Marzec, Andrzej Bernasik, Urszula Stachewicz

Abstract:

Electrospinning is one of the commonly used methods to produce micro- or nano-fibers. The properties of electrospun fibers allow them to be used to produce tissue scaffolds, biodegradable bandages, or purification membranes. The morphology of the obtained fibers depends on the composition of the polymer solution as well as the processing parameters. Interesting properties such as high fiber porosity can be achieved by changing humidity during electrospinning. Moreover, by changing voltage polarity in electrospinning, we are able to alternate functional groups at the surface of fibers. In this study, electrospun fibers were made of natural, thermoplastic polyester – PHBV (poly(3-hydroxybutyric acid-co-3-hydrovaleric acid). The fibrous mats were obtained using both positive and negative voltage polarities, and their surface was characterized using X-ray photoelectron spectroscopy (XPS, Ulvac-Phi, Chigasaki, Japan). Furthermore, the effect of the humidity on surface morphology was investigated using scanning electron microscopy (SEM, Merlin Gemini II, Zeiss, Germany). Electrospun PHBV fibers produced with positive and negative voltage polarity had similar morphology and the average fiber diameter, 2.47 ± 0.21 µm and 2.44 ± 0.15 µm, respectively. The change of the voltage polarity had a significant impact on the reorientation of the carbonyl groups what consequently changed the surface potential of the electrospun PHBV fibers. The increase of humidity during electrospinning causes porosity in the surface structure of the fibers. In conclusion, we showed within our studies that the process parameters such as humidity and voltage polarity have a great influence on fiber morphology and chemistry, changing their functionality. Surface properties of polymer fiber have a significant impact on cell integration and attachment, which is very important in tissue engineering. The possibility of changing surface porosity allows the use of fibers in various tissue engineering and drug delivery systems. Acknowledgment: This study was conducted within 'Nanofiber-based sponges for atopic skin treatment' project., carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00.

Keywords: cells integration, electrospun fiber, PHBV, surface characterization

Procedia PDF Downloads 118