Search results for: electrical measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4557

Search results for: electrical measurement

717 Feasibility Study of Tidal Current of the Bay of Bengal to Generate Electricity as a Renewable Energy

Authors: Myisha Ahmad, G. M. Jahid Hasan

Abstract:

Electricity is the pinnacle of human civilization. At present, the growing concerns over significant climate change have intensified the importance of the use of renewable energy technologies for electricity generation. The interest is primarily due to better energy security, smaller environmental impact and providing a sustainable alternative compared to the conventional energy sources. Solar power, wind, biomass, tidal power, and wave power are some of the most reliable sources of renewable energy. Ocean approximately holds 2×10³ TW of energy and has the largest renewable energy resource on the planet. Ocean energy has many forms namely, encompassing tides, ocean circulation, surface waves, salinity and thermal gradients. Ocean tide in particular, associates both potential and kinetic energy. The study is focused on the latter concept that deals with tidal current energy conversion technologies. Tidal streams or marine currents generate kinetic energy that can be extracted by marine current energy devices and converted into transmittable energy form. The principle of technology development is very comparable to that of wind turbines. Conversion of marine tidal resources into substantial electrical power offers immense opportunities to countries endowed with such resources and this work is aimed at addressing such prospects of Bangladesh. The study analyzed the extracted current velocities from numerical model works at several locations in the Bay of Bengal. Based on current magnitudes, directions and available technologies the most fitted locations were adopted and possible annual generation capacity was estimated. The paper also examines the future prospects of tidal current energy along the Bay of Bengal and establishes a constructive approach that could be adopted in future project developments.

Keywords: bay of Bengal, energy potential, renewable energy, tidal current

Procedia PDF Downloads 375
716 Electric Field-Induced Deformation of Particle-Laden Drops and Structuring of Surface Particles

Authors: Alexander Mikkelsen, Khobaib Khobaib, Zbigniew Rozynek

Abstract:

Drops covered by particles have found important uses in various fields, ranging from stabilization of emulsions to production of new advanced materials. Particles at drop interfaces can be interlocked to form solid capsules with properties tailored for a myriad of applications. Despite the huge potential of particle-laden drops and capsules, the knowledge of their deformation and stability are limited. In this regard, we contribute with experimental studies on the deformation and manipulation of silicone oil drops covered with micrometer-sized particles subjected to electric fields. A mixture of silicone oil and particles were immersed in castor oil using a mechanical pipette, forming millimeter sized drops. The particles moved and adsorbed at the drop interfaces by sedimentation, and were structured at the interface by electric field-induced electrohydrodynamic flows. When applying a direct current electric field, free charges accumulated at the drop interfaces, yielding electric stress that deformed the drops. In our experiments, we investigated how particle properties affected drop deformation, break-up, and particle structuring. We found that by increasing the size of weakly-conductive clay particles, the drop shape can go from compressed to stretched out in the direction of the electric field. Increasing the particle size and electrical properties were also found to weaken electrohydrodynamic flows, induce break-up of drops at weaker electric field strengths and structure particles in chains. These particle parameters determine the dipolar force between the interfacial particles, which can yield particle chaining. We conclude that the balance between particle chaining and electrohydrodynamic flows governs the observed drop mechanics.

Keywords: drop deformation, electric field induced stress, electrohydrodynamic flows, particle structuring at drop interfaces

Procedia PDF Downloads 209
715 A Multicriteria Analysis of Energy Poverty Index: A Case Study of Non-interconnected Zones in Colombia

Authors: Angelica Gonzalez O, Leonardo Rivera Cadavid, Diego Fernando Manotas

Abstract:

Energy poverty considers a population that does not have access to modern energy service. In particular, an area of a country that is not connected to the national electricity grid is known as a Non-Interconnected Zone (NIZ). Access to electricity has a significant impact on the welfare and development opportunities of the population. Different studies have shown that most health problems have an empirical cause and effect relationship with multidimensional energy poverty. Likewise, research has been carried out to review the consequences of not having access to electricity, and its results have concluded a statistically significant relationship between energy poverty and sources of drinking water, access to clean water, risks of mosquito bites, obesity, sterilization, marital status, occupation, and residence. Therefore, extensive research has been conducted in the construction of an energy poverty measure based on an index. Some of these studies introduce a Multidimensional Energy Poverty Index (MEPI), Compose Energy Poverty Index (CEPI), Low Income High Costs indicator (LIHC), among others. For this purpose, this study analyzes the energy poverty index using a multicriteria analysis determining the set of feasible alternatives - for which Colombia's ZNI will be used as a case study - to be considered in the problem and the set of relevant criteria in the characterization of the ZNI, from which the prioritization is obtained to determine the level of adjustment of each alternative with respect to the performance in each criterion. Additionally, this study considers the installation of Micro-Grids (MG). This is considered a straightforward solution to this problem because an MG is a local electrical grid, able to operate in grid-connected and island mode. Drawing on those insights, this study compares an energy poverty index considering an MG installation and calculates the impacts of different criterias in an energy poverty index in NIZ.

Keywords: multicirteria, energy poverty, rural, microgrids, non-interconnect zones

Procedia PDF Downloads 117
714 Greenhouse Controlled with Graphical Plotting in Matlab

Authors: Bruno R. A. Oliveira, Italo V. V. Braga, Jonas P. Reges, Luiz P. O. Santos, Sidney C. Duarte, Emilson R. R. Melo, Auzuir R. Alexandria

Abstract:

This project aims to building a controlled greenhouse, or for better understanding, a structure where one can maintain a given range of temperature values (°C) coming from radiation emitted by an incandescent light, as previously defined, characterizing as a kind of on-off control and a differential, which is the plotting of temperature versus time graphs assisted by MATLAB software via serial communication. That way it is possible to connect the stove with a computer and monitor parameters. In the control, it was performed using a PIC 16F877A microprocessor which enabled convert analog signals to digital, perform serial communication with the IC MAX232 and enable signal transistors. The language used in the PIC's management is Basic. There are also a cooling system realized by two coolers 12V distributed in lateral structure, being used for venting and the other for exhaust air. To find out existing temperature inside is used LM35DZ sensor. Other mechanism used in the greenhouse construction was comprised of a reed switch and a magnet; their function is in recognition of the door position where a signal is sent to a buzzer when the door is open. Beyond it exist LEDs that help to identify the operation which the stove is located. To facilitate human-machine communication is employed an LCD display that tells real-time temperature and other information. The average range of design operating without any major problems, taking into account the limitations of the construction material and structure of electrical current conduction, is approximately 65 to 70 ° C. The project is efficient in these conditions, that is, when you wish to get information from a given material to be tested at temperatures not as high. With the implementation of the greenhouse automation, facilitating the temperature control and the development of a structure that encourages correct environment for the most diverse applications.

Keywords: greenhouse, microcontroller, temperature, control, MATLAB

Procedia PDF Downloads 402
713 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes

Authors: H. Ishii, S. Araki, H. Yamamoto

Abstract:

In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.

Keywords: membrane, perovskite structure, dual-phase, carbonate

Procedia PDF Downloads 367
712 Wireless Integrated Switched Oscillator Impulse Generator with Application in Wireless Passive Electric Field Sensors

Authors: S. Mohammadzamani, B. Kordi

Abstract:

Wireless electric field sensors are in high demand in the number of applications that requires measuring electric field such as investigations of high power systems and testing the high voltage apparatus. Passive wireless electric field sensors are most desired since they do not require a source of power and are interrogated wirelessly. A passive wireless electric field sensor has been designed and fabricated by our research group. In the wireless interrogation system of the sensor, a wireless radio frequency impulse generator needs to be employed. A compact wireless impulse generator composed of an integrated resonant switched oscillator (SWO) and a pulse-radiating antenna has been designed and fabricated in this research. The fundamental of Switched Oscillators was introduced by C.E.Baum. A Switched Oscillator consists of a low impedance transmission line charged by a DC source, through large impedance at desired frequencies and terminated to a high impedance antenna at one end and a fast closing switch at the other end. Once the line is charged, the switch will close and short-circuit the transmission line. Therefore, a fast transient wave will be generated and travels along the transmission line. Because of the mismatch between the antenna and the transmission line, only a part of fast transient wave will be radiated, and a portion of the fast-transient wave will reflect back. At the other end of the transmission line, there is a closed switch. Consequently, a second reflection with a reversed sign will propagate towards the antenna and the wave continues back and forth. hence, at the terminal of the antenna, there will be a series of positive and negative pulses with descending amplitude. In this research a single ended quarter wavelength Switched Oscillator has been designed and simulated at 800MHz. The simulation results show that the designed Switched Oscillator generates pulses with decreasing amplitude at the frequency of 800MHz with the maximum amplitude of 10V and bandwidth of about 10MHz at the antenna end. The switched oscillator has been fabricated using a 6cm long coaxial cable transmission line which is charged by a DC source and an 8cm monopole antenna as the pulse radiating antenna. A 90V gas discharge switch has been employed as the fast closing switch. The Switched oscillator sends a series of pulses with decreasing amplitude at the frequency of 790MHz with the maximum amplitude of 0.3V in the distance of 30 cm.

Keywords: electric field measurement, impulse radiating antenna, switched oscillator, wireless impulse generator

Procedia PDF Downloads 181
711 Experimental Research of High Pressure Jet Interaction with Supersonic Crossflow

Authors: Bartosz Olszanski, Zbigniew Nosal, Jacek Rokicki

Abstract:

An experimental study of cold-jet (nitrogen) reaction control jet system has been carried out to investigate the flow control efficiency for low to moderate jet pressure ratios (total jet pressure p0jet over free stream static pressure in the wind tunnel p∞) and different angles of attack for infinite Mach number equal to 2. An investigation of jet influence was conducted on a flat plate geometry placed in the test section of intermittent supersonic wind tunnel of Department of Aerodynamics, WUT. Various convergent jet nozzle geometries to obtain different jet momentum ratios were tested on the same test model geometry. Surface static pressure measurements, Schlieren flow visualizations (using continuous and photoflash light source), load cell measurements gave insight into the supersonic crossflow interaction for different jet pressure and jet momentum ratios and their influence on the efficiency of side jet control as described by the amplification factor (actual to theoretical net force generated by the control nozzle). Moreover, the quasi-steady numerical simulations of flow through the same wind tunnel geometry (convergent-divergent nozzle plus test section) were performed using ANSYS Fluent basing on Reynolds-Averaged Navier-Stokes (RANS) solver incorporated with k-ω Shear Stress Transport (SST) turbulence model to assess the possible spurious influence of test section walls over the jet exit near field area of interest. The strong bow shock, barrel shock, and Mach disk as well as lambda separation region in front of nozzle were observed as images taken by high-speed camera examine the interaction of the jet and the free stream. In addition, the development of large-scale vortex structures (counter-rotating vortex pair) was detected. The history of complex static pressure pattern on the plate was recorded and compared to the force measurement data as well as numerical simulation data. The analysis of the obtained results, especially in the wake of the jet showed important features of the interaction mechanisms between the lateral jet and the flow field.

Keywords: flow visualization techniques, pressure measurements, reaction control jet, supersonic cross flow

Procedia PDF Downloads 299
710 LAMOS - Layered Amorphous Metal Oxide Gas Sensors: New Interfaces for Gas Sensing Applications

Authors: Valentina Paolucci, Jessica De Santis, Vittorio Ricci, Giacomo Giorgi, Carlo Cantalini

Abstract:

Despite their potential in gas sensing applications, the major drawback of 2D exfoliated metal dichalcogenides (MDs) is that they suffer from spontaneous oxidation in air, showing poor chemical stability under dry/wet conditions even at room temperature, limiting their practical exploitation. The aim of this work is to validate a synthesis strategy allowing microstructural and electrical stabilization of the oxides that inevitably form on the surface of 2D dichalcogenides. Taking advantage of spontaneous oxidation of MDs in air, we report on liquid phase exfoliated 2D-SnSe2 flakes annealed in static air at a temperature below the crystallization temperature of the native a-SnO2 oxide. This process yields a new class of 2D Layered Amorphous Metal Oxides Sensors (LAMOS), specifically few-layered amorphous a-SnO2, showing excellent gas sensing properties. Sensing tests were carried out at low operating temperature (i.e. 100°C) by exposing a-SnO2 to both oxidizing and reducing gases (i.e. NO2, H2S and H2) and different relative humidities ranging from 40% to 80% RH. The formation of stable nanosheets of amorphous a-SnO2 guarantees excellent reproducibility and stability of the response over one year. These results pave the way to new interesting research perspectives out considering the opportunity to synthesize homogeneous amorphous textures with no grain boundaries, no grains, no crystalline planes with different orientations, etc., following gas sensing mechanisms that likely differ from that of traditional crystalline metal oxide sensors. Moreover, the controlled annealing process could likely be extended to a large variety of Transition Metal Dichalcogenides (TMDs) and Metal Chalcogenides (MCs), where sulfur, selenium, or tellurium atoms can be easily displaced by O2 atoms (ΔG < 0), enabling the synthesis of a new family of amorphous interfaces.

Keywords: layered 2D materials, exfoliation, lamos, amorphous metal oxide sensors

Procedia PDF Downloads 124
709 ABET Accreditation Process for Engineering and Technology Programs: Detailed Process Flow from Criteria 1 to Criteria 8

Authors: Amit Kumar, Rajdeep Chakrabarty, Ganesh Gupta

Abstract:

This paper illustrates the detailed accreditation process of Accreditation Board of Engineering and Technology (ABET) for accrediting engineering and Technology programs. ABET is a non-governmental agency that accredits engineering and technology, applied and natural sciences, and computing sciences programs. ABET was founded on 10th May 1932 and was founded by Institute of Electrical and Electronics Engineering. International industries accept ABET accredited institutes having the highest standards in their academic programs. In this accreditation, there are eight criteria in general; criterion 1 describes the student outcome evaluations, criteria 2 measures the program's educational objectives, criteria 3 is the student outcome calculated from the marks obtained by students, criteria 4 establishes continuous improvement, criteria 5 focus on curriculum of the institute, criteria 6 is about faculties of this institute, criteria 7 measures the facilities provided by the institute and finally, criteria 8 focus on institutional support towards staff of the institute. In this paper, we focused on the calculative part of each criterion with equations and suitable examples, the files and documentation required for each criterion, and the total workflow of the process. The references and the values used to illustrate the calculations are all taken from the samples provided at ABET's official website. In the final section, we also discuss the criterion-wise score weightage followed by evaluation with timeframe and deadlines.

Keywords: Engineering Accreditation Committee, Computing Accreditation Committee, performance indicator, Program Educational Objective, ABET Criterion 1 to 7, IEEE, National Board of Accreditation, MOOCS, Board of Studies, stakeholders, course objective, program outcome, articulation, attainment, CO-PO mapping, CO-PO-SO mapping, PDCA cycle, degree certificates, course files, course catalogue

Procedia PDF Downloads 59
708 Comprehensive Risk Analysis of Decommissioning Activities with Multifaceted Hazard Factors

Authors: Hyeon-Kyo Lim, Hyunjung Kim, Kune-Woo Lee

Abstract:

Decommissioning process of nuclear facilities can be said to consist of a sequence of problem solving activities, partly because there may exist working environments contaminated by radiological exposure, and partly because there may also exist industrial hazards such as fire, explosions, toxic materials, and electrical and physical hazards. As for an individual hazard factor, risk assessment techniques are getting known to industrial workers with advance of safety technology, but the way how to integrate those results is not. Furthermore, there are few workers who experienced decommissioning operations a lot in the past. Therefore, not a few countries in the world have been trying to develop appropriate counter techniques in order to guarantee safety and efficiency of the process. In spite of that, there still exists neither domestic nor international standard since nuclear facilities are too diverse and unique. In the consequence, it is quite inevitable to imagine and assess the whole risk in the situation anticipated one by one. This paper aimed to find out an appropriate technique to integrate individual risk assessment results from the viewpoint of experts. Thus, on one hand the whole risk assessment activity for decommissioning operations was modeled as a sequence of individual risk assessment steps, and on the other, a hierarchical risk structure was developed. Then, risk assessment procedure that can elicit individual hazard factors one by one were introduced with reference to the standard operation procedure (SOP) and hierarchical task analysis (HTA). With an assumption of quantification and normalization of individual risks, a technique to estimate relative weight factors was tried by using the conventional Analytic Hierarchical Process (AHP) and its result was reviewed with reference to judgment of experts. Besides, taking the ambiguity of human judgment into consideration, debates based upon fuzzy inference was added with a mathematical case study.

Keywords: decommissioning, risk assessment, analytic hierarchical process (AHP), fuzzy inference

Procedia PDF Downloads 424
707 Economics of Milled Rice Marketing in Gombe Metropolis, Gombe State, Nigeria

Authors: Suleh Yusufu Godi, Ado Makama Adamu

Abstract:

Marketing involves all the legal, physical, and economic services which are necessary in moving products from producer to consumers. The more efficient the marketing functions are performed the better the marketing system for the farmers, marketing agents, and the society at large. Rice marketing ensures the flow of product from producers to consumers in the form, time and place of need. Therefore, this study examined profitability of milled rice marketing in Gombe metropolis, Gombe State. Data were collected using structured questionnaires from ninety randomly selected rice marketers in Gombe metropolis. The data were analyzed using descriptive statistics, farm budget technique and regression analysis. The study revealed the total rice marketing cost incurred by rice marketers to be N6, 610,214.70. This gave an average of N73, 446.83 per marketer and N37.30 per Kilogram of rice. The Gross Income for rice marketers in Gombe metropolis was N15, 064,600.00. This value gave an average of N167, 384.44 per rice marketer or N85.00 per kilogram of rice. The study also revealed net income for all rice marketers to be N8, 454,385.30. This gave an average of N93, 937.61 per rice marketer or N47.70 per Kilogram of rice. The study further revealed a marketing margin, marketing efficiency and return per naira invested on rice marketing to be 39.30%, 150.16% and N0.56, respectively. The result of regression analysis shows that age, sex and cost of transportation are positive and significantly affect marketing margin of rice marketers in Gombe Metropolis. However, the main constraints to rice marketing in Gombe metropolis include inadequate electricity, capital, high transportation cost, instability of prices and low patronage among others. The study recommends provision of adequate electrical power supply in the State especially the State capital and also encouraging rice marketers in Gombe metropolis to form cooperative societies so as to have easy access to credit facilities especially from the formal sources.

Keywords: rice marketers, milled rice, cost and return, marketing margin, efficiency, profitability

Procedia PDF Downloads 79
706 Analyzing the Contamination of Some Food Crops Due to Mineral Deposits in Ondo State, Nigeria

Authors: Alexander Chinyere Nwankpa, Nneka Ngozi Nwankpa

Abstract:

In Nigeria, the Federal government is trying to make sure that everyone has access to enough food that is nutritiously adequate and safe. But in the southwest of Nigeria, notably in Ondo State, the most valuable minerals such as oil and gas, bitumen, kaolin, limestone talc, columbite, tin, gold, coal, and phosphate are abundant. Therefore, some regions of Ondo State are now linked to large quantities of natural radioactivity as a result of the mineral presence. In this work, the baseline radioactivity levels in some of the most important food crops in Ondo State were analyzed, allowing for the prediction of probable radiological health impacts. To this effect, maize (Zea mays), yam (Dioscorea alata) and cassava (Manihot esculenta) tubers were collected from the farmlands in the State because they make up the majority of food's nutritional needs. Ondo State was divided into eight zones in order to provide comprehensive coverage of the research region. At room temperature, the maize (Zea mays), yam (Dioscorea alata), and cassava (Manihot esculenta) samples were dried until they reached a consistent weight. They were pulverized, homogenized, and 250 g packed in a 1-liter Marinelli beaker and kept for 28 days to achieve secular equilibrium. The activity concentrations of Radium-226 (Ra-226), Thorium-232 (Th-232), and Potassium-40 (K-40) were determined in the food samples using Gamma-ray spectrometry. Firstly, the Hyper Pure Germanium detector was calibrated using standard radioactive sources. The gamma counting, which lasted for 36000s for each sample, was carried out in the Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Nigeria. The mean activity concentration of Ra-226, Th-232 and K-40 for yam were 1.91 ± 0.10 Bq/kg, 2.34 ± 0.21 Bq/kg and 48.84 ± 3.14 Bq/kg, respectively. The content of the radionuclides in maize gave a mean value of 2.83 ± 0.21 Bq/kg for Ra-226, 2.19 ± 0.07 Bq/kg for Th-232 and 41.11 ± 2.16 Bq/kg for K-40. The mean activity concentrations in cassava were 2.52 ± 0.31 Bq/kg for Ra-226, 1.94 ± 0.21 Bq/kg for Th-232 and 45.12 ± 3.31 Bq/kg for K-40. The average committed effective doses in zones 6-8 were 0.55 µSv/y for the consumption of yam, 0.39 µSv/y for maize, and 0.49 µSv/y for cassava. These values are higher than the annual dose guideline of 0.35 µSv/y for the general public. Therefore, the values obtained in this work show that there is radiological contamination of some foodstuffs consumed in some parts of Ondo State. However, we recommend that systematic and appropriate methods also need to be established for the measurement of gamma-emitting radionuclides since these constitute important contributors to the internal exposure of man through ingestion, inhalation, or wound on the body.

Keywords: contamination, environment, radioactivity, radionuclides

Procedia PDF Downloads 104
705 The Extension of the Kano Model by the Concept of Over-Service

Authors: Lou-Hon Sun, Yu-Ming Chiu, Chen-Wei Tao, Chia-Yun Tsai

Abstract:

It is common practice for many companies to ask employees to provide heart-touching service for customers and to emphasize the attitude of 'customer first'. However, services may not necessarily gain praise, and may actually be considered excessive, if customers do not appreciate such behaviors. In reality, many restaurant businesses try to provide as much service as possible without taking into account whether over-provision may lead to negative customer reception. A survey of 894 people in Britain revealed that 49 percent of respondents consider over-attentive waiters the most annoying aspect of dining out. It can be seen that merely aiming to exceed customers’ expectations without actually addressing their needs, only further distances and dissociates the standard of services from the goals of customer satisfaction itself. Over-service is defined, as 'service provided that exceeds customer expectations, or simply that customers deemed redundant, resulting in negative perception'. It was found that customers’ reactions and complaints concerning over-service are not as intense as those against service failures caused by the inability to meet expectations; consequently, it is more difficult for managers to become aware of the existence of over-service. Thus the ability to manage over-service behaviors is a significant topic for consideration. The Kano model classifies customer preferences into five categories: attractive quality attribute, one-dimensional quality attribute, must-be quality attribute, indifferent quality attribute and reverse quality attributes. The model is still very popular for researchers to explore the quality aspects and customer satisfaction. Nevertheless, several studies indicated that Kano’s model could not fully capture the nature of service quality. The concept of over-service can be used to restructure the model and provide a better understanding of the service quality construct. In this research, the structure of Kano's two-dimensional questionnaire will be used to classify the factors into different dimensions. The same questions will be used in the second questionnaire for identifying the over-service experienced of the respondents. The finding of these two questionnaires will be used to analyze the relevance between service quality classification and over-service behaviors. The subjects of this research are customers of fine dining chain restaurants. Three hundred questionnaires will be issued based on the stratified random sampling method. Items for measurement will be derived from DINESERV scale. The tangible dimension of the questionnaire will be eliminated due to this research is focused on the employee behaviors. Quality attributes of the Kano model are often regarded as an instrument for improving customer satisfaction. The concept of over-service can be used to restructure the model and provide a better understanding of service quality construct. The extension of the Kano model will not only develop a better understanding of customer needs and expectations but also enhance the management of service quality.

Keywords: consumer satisfaction, DINESERV, kano model, over-service

Procedia PDF Downloads 161
704 An Analysis of the Recent Flood Scenario (2017) of the Southern Districts of the State of West Bengal, India

Authors: Soumita Banerjee

Abstract:

The State of West Bengal is mostly watered by innumerable rivers, and they are different in nature in both the northern and the southern part of the state. The southern part of West Bengal is mainly drained with the river Bhagirathi-Hooghly, and its major distributaries and tributaries have divided this major river basin into many subparts like the Ichamati-Bidyadhari, Pagla-Bansloi, Mayurakshi-Babla, Ajay, Damodar, Kangsabati Sub-basin to name a few. These rivers basically drain the Districts of Bankura, Burdwan, Hooghly, Nadia and Purulia, Birbhum, Midnapore, Murshidabad, North 24-Parganas, Kolkata, Howrah and South 24-Parganas. West Bengal has a huge number of flood-prone blocks in the southern part of the state of West Bengal, the responsible factors for flood situation are the shape and size of the catchment area, its steep gradient starting from plateau to flat terrain, the river bank erosion and its siltation, tidal condition especially in the lower Ganga Basin and very low maintenance of the embankments which are mostly used as communication links. Along with these factors, DVC (Damodar Valley Corporation) plays an important role in the generation (with the release of water) and controlling the flood situation. This year the whole Gangetic West Bengal is being flooded due to high intensity and long duration rainfall, and the release of water from the Durgapur Barrage As most of the rivers are interstate in nature at times floods also take place with release of water from the dams of the neighbouring states like Jharkhand. Other than Embankments, there is no such structural measures for combatting flood in West Bengal. This paper tries to analyse the reasons behind the flood situation this year especially with the help of climatic data collected from the Indian Metrological Department, flood related data from the Irrigation and Waterways Department, West Bengal and GPM (General Precipitation Measurement) data for rainfall analysis. Based on the threshold value derived from the calculation of the past available flood data, it is possible to predict the flood events which may occur in the near future and with the help of social media it can be spread out within a very short span of time to aware the mass. On a larger or a governmental scale, heightening the settlements situated on the either banks of the river can yield a better result than building up embankments.

Keywords: dam failure, embankments, flood, rainfall

Procedia PDF Downloads 225
703 Environmental Drivers of Ichthyofauna Species Diversity and Richness in the Lower Reaches of Warri River, a Typical Mangrove Ecosystem in the Niger Delta, Nigeria

Authors: F. O. Arimoro, F. N. Okonkwo, R. B. Ikomi

Abstract:

The environmental determinants structuring species richness has been generating interest recently but we still lack an understanding of these patterns in various regions (e.g. Afrotropical), and how seasons help to structure these patterns. Our aim was to assessed the environmental drivers importance in regulating species richness and community structure of fish species. The lchthyofauna assemblage of Warri River, Niger Delta area of Nigeria was studied between August 2013 and July 2014. A total of 1152 individuals representing 43 species in 23 families and 30 genera were caught. Of the 43 species recorded, 67.4%, 53.5% and 67.4% of the species occurred in Stations 1, 2 and 3 respectively. Eight taxa representing 18.6% of the total abundance were ubiquitous. The claroteid, Chrysichthys walkeri and the cichlid, Chromidotilapia guentheri were the most dominant species accounting for 19.2% and 6.0% respectively of the total catch. The species richness and general diversity were relatively higher in station 1 although Jaccard similarity index revealed that stations 1 and 3 were significantly similar while station 2 showed complete dissimilarity with stations 1 and 3. Canonical correspondence analysis indicated that dissolved oxygen, electrical conductivity, total nitrogen, Biochemical Oxygen demand and temperature were important variables structuring the overall fish assemblages. The presence of appreciable number of juveniles in this water body suggests that the Warri River is a breeding and nursery ground for fish species particularly those of brackish origin. These findings indicate that the water body is still useful as a good fishing ground for the rural communities and every effort should be put in place to ensure its protection and conservation for the production of healthy fish.

Keywords: Chrysichthys walkeri, fish communities, mangrove ecosystem, physicochemical parameters, Warri River

Procedia PDF Downloads 489
702 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal

Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.

Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity

Procedia PDF Downloads 577
701 Dynamic Conformal Arc versus Intensity Modulated Radiotherapy for Image Guided Stereotactic Radiotherapy of Cranial Lesion

Authors: Chor Yi Ng, Christine Kong, Loretta Teo, Stephen Yau, FC Cheung, TL Poon, Francis Lee

Abstract:

Purpose: Dynamic conformal arc (DCA) and intensity modulated radiotherapy (IMRT) are two treatment techniques commonly used for stereotactic radiosurgery/radiotherapy of cranial lesions. IMRT plans usually give better dose conformity while DCA plans have better dose fall off. Rapid dose fall off is preferred for radiotherapy of cranial lesions, but dose conformity is also important. For certain lesions, DCA plans have good conformity, while for some lesions, the conformity is just unacceptable with DCA plans, and IMRT has to be used. The choice between the two may not be apparent until each plan is prepared and dose indices compared. We described a deviation index (DI) which is a measurement of the deviation of the target shape from a sphere, and test its functionality to choose between the two techniques. Method and Materials: From May 2015 to May 2017, our institute has performed stereotactic radiotherapy for 105 patients treating a total of 115 lesions (64 DCA plans and 51 IMRT plans). Patients were treated with the Varian Clinac iX with HDMLC. Brainlab Exactrac system was used for patient setup. Treatment planning was done with Brainlab iPlan RT Dose (Version 4.5.4). DCA plans were found to give better dose fall off in terms of R50% (R50% (DCA) = 4.75 Vs R50% (IMRT) = 5.242) while IMRT plans have better conformity in terms of treatment volume ratio (TVR) (TVR(DCA) = 1.273 Vs TVR(IMRT) = 1.222). Deviation Index (DI) is proposed to better facilitate the choice between the two techniques. DI is the ratio of the volume of a 1 mm shell of the PTV and the volume of a 1 mm shell of a sphere of identical volume. DI will be close to 1 for a near spherical PTV while a large DI will imply a more irregular PTV. To study the functionality of DI, 23 cases were chosen with PTV volume ranged from 1.149 cc to 29.83 cc, and DI ranged from 1.059 to 3.202. For each case, we did a nine field IMRT plan with one pass optimization and a five arc DCA plan. Then the TVR and R50% of each case were compared and correlated with the DI. Results: For the 23 cases, TVRs and R50% of the DCA and IMRT plans were examined. The conformity for IMRT plans are better than DCA plans, with majority of the TVR(DCA)/TVR(IMRT) ratios > 1, values ranging from 0.877 to1.538. While the dose fall off is better for DCA plans, with majority of the R50%(DCA)/ R50%(IMRT) ratios < 1. Their correlations with DI were also studied. A strong positive correlation was found between the ratio of TVRs and DI (correlation coefficient = 0.839), while the correlation between the ratio of R50%s and DI was insignificant (correlation coefficient = -0.190). Conclusion: The results suggest DI can be used as a guide for choosing the planning technique. For DI greater than a certain value, we can expect the conformity for DCA plans to become unacceptably great, and IMRT will be the technique of choice.

Keywords: cranial lesions, dynamic conformal arc, IMRT, image guided radiotherapy, stereotactic radiotherapy

Procedia PDF Downloads 241
700 Proton Irradiation Testing on Commercial Enhancement Mode GaN Power Transistor

Authors: L. Boyaci

Abstract:

Two basic equipment of electrical power subsystem of space satellites are Power Conditioning Unit (PCU) and Power Distribution Unit (PDU). Today, the main switching element used in power equipment in satellites is silicon (Si) based radiation-hardened MOSFET. GaNFETs have superior performances over MOSFETs in terms of their conduction and switching characteristics. GaNFET has started to take MOSFET’s place in many applications in industry especially by virtue of its switching performances. If GaNFET can also be used in equipment for space applications, this would be great revolution for future space power subsystem designs. In this study, the effect of proton irradiation on Gallium Nitride based power transistors was investigated. Four commercial enhancement mode GaN power transistors from Efficient Power Conversion Corporation (EPC) are irradiated with 30MeV protons while devices are switching. Flux of 8.2x10⁹ protons/cm²/s is applied for 12.5 seconds to reach ultimate fluence of 10¹¹ protons/cm². Vgs-Ids characteristics are measured and recorded for each device before, during and after irradiation. It was observed that if there would be destructive events. Proton induced permanent damage on devices is not observed. All the devices remained healthy and continued to operate. For two of these devices, further irradiation is applied with same flux for 30 minutes up to a total fluence level of 1.476x10¹³ protons/cm². We observed that GaNFETs are fully functional under this high level of radiation and no destructive events and irreversible failures took place for transistors. Results reveal that irradiated GaNFET in this experiment has radiation tolerance under proton testing and very important candidate for being one of the future power switching element in space.

Keywords: enhancement mode GaN power transistors, proton irradiation effects, radiation tolerance

Procedia PDF Downloads 152
699 An EBSD Investigation of Ti-6Al-4Nb Alloy Processed by Plan Strain Compression Test

Authors: Anna Jastrzebska, K. S. Suresh, T. Kitashima, Y. Yamabe-Mitarai, Z. Pakiela

Abstract:

Near α titanium alloys are important materials for aerospace applications, especially in high temperature applications such as jet engine. Mechanical properties of Ti alloys strongly depends on their processing route, then it is very important to understand micro-structure change by different processing. In our previous study, Nb was found to improve oxidation resistance of Ti alloys. In this study, micro-structure evolution of Ti-6Al-4Nb (wt %) alloy was investigated after plain strain compression test in hot working temperatures in the α and β phase region. High-resolution EBSD was successfully used for precise phase and texture characterization of this alloy. 1.1 kg of Ti-6Al-4Nb ingot was prepared using cold crucible levitation melting. The ingot was subsequently homogenized in 1050 deg.C for 1h followed by cooling in the air. Plate like specimens measuring 10×20×50 mm3 were cut from an ingot by electrical discharge machining (EDM). The plain strain compression test using an anvil with 10 x 35 mm in size was performed with 3 different strain rates: 0.1s-1, 1s-1and 10s-1 in 700 deg.C and 1050 deg.C to obtain 75% of deformation. The micro-structure was investigated by scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) detector. The α/β phase ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over the middle and the edge of sample areas. The deformation mechanism in each working temperature was discussed. The evolution of texture changes with strain rate was investigated. The micro-structure obtained by plain strain compression test was heterogeneous with a wide range of grain sizes. This is because deformation and dynamic recrystallization occurred during deformation at temperature in the α and β phase. It was strongly influenced by strain rate.

Keywords: EBSD, plain strain compression test, Ti alloys

Procedia PDF Downloads 381
698 Fundamental Study on Reconstruction of 3D Image Using Camera and Ultrasound

Authors: Takaaki Miyabe, Hideharu Takahashi, Hiroshige Kikura

Abstract:

The Government of Japan and Tokyo Electric Power Company Holdings, Incorporated (TEPCO) are struggling with the decommissioning of Fukushima Daiichi Nuclear Power Plants, especially fuel debris retrieval. In fuel debris retrieval, amount of fuel debris, location, characteristics, and distribution information are important. Recently, a survey was conducted using a robot with a small camera. Progress report in remote robot and camera research has speculated that fuel debris is present both at the bottom of the Pressure Containment Vessel (PCV) and inside the Reactor Pressure Vessel (RPV). The investigation found a 'tie plate' at the bottom of the containment, this is handles on the fuel rod. As a result, it is assumed that a hole large enough to allow the tie plate to fall is opened at the bottom of the reactor pressure vessel. Therefore, exploring the existence of holes that lead to inside the RCV is also an issue. Investigations of the lower part of the RPV are currently underway, but no investigations have been made inside or above the PCV. Therefore, a survey must be conducted for future fuel debris retrieval. The environment inside of the RPV cannot be imagined due to the effect of the melted fuel. To do this, we need a way to accurately check the internal situation. What we propose here is the adaptation of a technology called 'Structure from Motion' that reconstructs a 3D image from multiple photos taken by a single camera. The plan is to mount a monocular camera on the tip of long-arm robot, reach it to the upper part of the PCV, and to taking video. Now, we are making long-arm robot that has long-arm and used at high level radiation environment. However, the environment above the pressure vessel is not known exactly. Also, fog may be generated by the cooling water of fuel debris, and the radiation level in the environment may be high. Since camera alone cannot provide sufficient sensing in these environments, we will further propose using ultrasonic measurement technology in addition to cameras. Ultrasonic sensor can be resistant to environmental changes such as fog, and environments with high radiation dose. these systems can be used for a long time. The purpose is to develop a system adapted to the inside of the containment vessel by combining a camera and an ultrasound. Therefore, in this research, we performed a basic experiment on 3D image reconstruction using a camera and ultrasound. In this report, we select the good and bad condition of each sensing, and propose the reconstruction and detection method. The results revealed the strengths and weaknesses of each approach.

Keywords: camera, image processing, reconstruction, ultrasound

Procedia PDF Downloads 104
697 Analyzing Electromagnetic and Geometric Characterization of Building Insulation Materials Using the Transient Radar Method (TRM)

Authors: Ali Pourkazemi

Abstract:

The transient radar method (TRM) is one of the non-destructive methods that was introduced by authors a few years ago. The transient radar method can be classified as a wave-based non destructive testing (NDT) method that can be used in a wide frequency range. Nevertheless, it requires a narrow band, ranging from a few GHz to a few THz, depending on the application. As a time-of-flight and real-time method, TRM can measure the electromagnetic properties of the sample under test not only quickly and accurately, but also blindly. This means that it requires no prior knowledge of the sample under test. For multi-layer structures, TRM is not only able to detect changes related to any parameter within the multi-layer structure but can also measure the electromagnetic properties of each layer and its thickness individually. Although the temperature, humidity, and general environmental conditions may affect the sample under test, they do not affect the accuracy of the Blind TRM algorithm. In this paper, the electromagnetic properties as well as the thickness of the individual building insulation materials - as a single-layer structure - are measured experimentally. Finally, the correlation between the reflection coefficients and some other technical parameters such as sound insulation, thermal resistance, thermal conductivity, compressive strength, and density is investigated. The sample to be studied is 30 cm x 50 cm and the thickness of the samples varies from a few millimeters to 6 centimeters. This experiment is performed with both biostatic and differential hardware at 10 GHz. Since it is a narrow-band system, high-speed computation for analysis, free-space application, and real-time sensor, it has a wide range of potential applications, e.g., in the construction industry, rubber industry, piping industry, wind energy industry, automotive industry, biotechnology, food industry, pharmaceuticals, etc. Detection of metallic, plastic pipes wires, etc. through or behind the walls are specific applications for the construction industry.

Keywords: transient radar method, blind electromagnetic geometrical parameter extraction technique, ultrafast nondestructive multilayer dielectric structure characterization, electronic measurement systems, illumination, data acquisition performance, submillimeter depth resolution, time-dependent reflected electromagnetic signal blind analysis method, EM signal blind analysis method, time domain reflectometer, microwave, milimeter wave frequencies

Procedia PDF Downloads 69
696 Virtual Metrology for Copper Clad Laminate Manufacturing

Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho

Abstract:

In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.

Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology

Procedia PDF Downloads 350
695 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India

Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi

Abstract:

River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.

Keywords: cluster analysis, multivariate statistical techniques, river Hindon, water quality

Procedia PDF Downloads 467
694 Land Suitability Analysis Based on Ecosystems Service Approach for Wind Farm Location in South-Central Chile: Net Primary Production as Proxy

Authors: Yenisleidy Martínez-Martínez, Yannay Casas-Ledón, Jo Dewulf

Abstract:

Wind power constitutes a cleaner energy source with smaller unfavorable impacts on the environment than fossil fuels. Its development could be an alternative to fight climate change while meeting energy demands. However, wind energy development requires first determining the existing potential and areas with aptitude. Also, potential socio-economic and environmental impacts should be analyzed to prevent social rejection of this technology. In this context, this work performs a suitability assessment on a GIS environment to locate suitable areas for wind energy expansion in South-Central Chile. In addition, suitable areas were characterized in terms of potential goods and services to be produced as a proxy for analyzing potential impacts and trade-offs. First, layers of annual wind speed were generated as they represent the resource potential, and layer representing previously defined territorial constraints were created. Zones depicting territorial constraints were removed from resource measurement layers to identify suitable sites. Then, the appropriation of the primary production in suitable sites was determined to measure potential ecosystem services derived from human interventions in those areas. Results show that approximately 52% of the total surface of the study area has a good aptitude to install wind farms. In this area, provisioning services like food crops production, timber, and other forest resources like firewood play a key role in the regional economy and thus are the main cause of human interventions. This is reflected by human appropriation of the primary production values of 0.71 KgC/m².yr, 0.36 KgC/m².yr, and 0.14 KgC/m².yr, respectively. In this sense, wind energy development could be compatible with croplands, which is the predominant land use in suitable areas, and provide farmers with cheaper energy and extra income. Also, studies have reported changes in local temperature associated with wind turbines, which could be beneficial to crop growth. The results obtained in this study prove to be useful for identifying available areas for wind development, which could be very useful in decision-making processes related to energy planning.

Keywords: net primary productivity, provisioning services, suitability assessment, wind energy

Procedia PDF Downloads 155
693 Domestic Violence against Women and the Nutritional Status of Their Under-5 Children: A Cross Sectional Survey in Urban Slums of Chittagong, Bangladesh

Authors: Mohiuddin Ahsanul Kabir Chowdhury, Ahmed Ehsanur Rahman, Nazia Binte Ali, Abdullah Nurus Salam Khan, Afrin Iqbal, Mohammad Mehedi Hasan, Salma Morium, Afsana Bhuiyan, Shams El Arifeen

Abstract:

Violence against women has been treated as a global epidemic which is as fatal as any serious disease or accidents. Like many other low-income countries it is also common in Bangladesh. In spite of existence of a few documented evidences in some other countries, in Bangladesh, domestic violence against women (DVAW) is not considered as a factor for malnutrition in children yet. Hence, the aim of the study was to investigate the association between DVAW and the nutritional status of their under-5 children in the context of slum areas of Chittagong, Bangladesh. A Cross-sectional survey was conducted among 87 women of reproductive age having at least one child under-5 years of age and staying with husband for at least last 1 year in selected slums under Chittagong City Corporation area. Data collection tools were structured questionnaire for the study participants and mid-upper arm circumference (MUAC) to measure the nutritional status of the under-5 children. The data underwent descriptive and regression analysis. Out of 87 respondents, 50 (57.5%) reported to suffer from domestic violence by their husband during last one year. Physical violence was found to be significantly associated with age (p=0.02), age at marriage (p=0.043), wealth score (p=0.000), and with knowledge regarding law (p=0.017). According to the measurement of mid-upper arm circumference (MUAC) 21% children were suffering from severe acute malnutrition (SAM) and the same percentage of children were suffering from moderate acute malnutrition (MAM). However, unadjusted odds ratio suggested that there was negative association with domestic violence and nutritional status. But, the logistic regression confounding for other variable showed significant association with total family income (p=0.006), wealth score (p=0.031), age at marriage (p=0.029) and number of child (p=0.006). Domestic violence against women and under nutrition of the children, both are highly prevalent in Bangladesh. More extensive research should be performed to identify the factors contributing to the high prevalence of domestic violence and malnutrition in urban slums of Bangladesh. Household-based intervention is needed to limit this burning problem. In a nutshell, effective community participation, education and counseling are essential to create awareness among the community.

Keywords: Bangladesh, cross sectional survey, domestic violence against women, nutritional status, under-5 children, urban slums

Procedia PDF Downloads 196
692 The Effect of Recycling on Price Volatility of Critical Metals in the EU (2010-2019): An Application of Multivariate GARCH Family Models

Authors: Marc Evenst Jn Jacques, Sophie Bernard

Abstract:

Electrical and electronic applications, as well as rechargeable batteries, are common in any economy. They also contain a number of important and valuable metals. It is critical to investigate the impact of these new materials or volume sources on the metal market dynamics. This paper investigates the impact of responsible recycling within the European region on metal price volatility. As far as we know, no empirical studies have been conducted to assess the role of metal recycling in metal market price volatility. The goal of this paper is to test the claim that metal recycling helps to cushion price volatility. A set of circular economy indicators/variables, namely, 1) annual total trade values of recycled metals, 2) annual volume of scrap traded and 3) circular material use rate, and 4) information about recycling, are used to estimate the volatility of monthly spot prices of regular metals. A combination of the GARCH-MIDAS model for mixed frequency data sampling and a simple GARCH (1,1) model for the same frequency variables was adopted to examine the potential links between each variable and price volatility. We discovered that from 2010 to 2019, except for Nickel, scrap consumption (Millions of tons), Scrap Trade Values, and Recycled Material use rate had no significant impact on the price volatility of standard metals (Aluminum, Lead) and precious metals (Gold and Platinum). Worldwide interest in recycling has no impact on returns or volatility. Specific interest in metal recycling did have a link to the mean return equation for Aluminum, Gold and to the volatility equation for lead and Nickel.

Keywords: recycling, circular economy, price volatility, GARCH, mixed data sampling

Procedia PDF Downloads 57
691 Changing Behaviour in the Digital Era: A Concrete Use Case from the Domain of Health

Authors: Francesca Spagnoli, Shenja van der Graaf, Pieter Ballon

Abstract:

Humans do not behave rationally. We are emotional, easily influenced by others, as well as by our context. The study of human behaviour became a supreme endeavour within many academic disciplines, including economics, sociology, and clinical and social psychology. Understanding what motivates humans and triggers them to perform certain activities, and what it takes to change their behaviour, is central both for researchers and companies, as well as policy makers to implement efficient public policies. While numerous theoretical approaches for diverse domains such as health, retail, environment have been developed, the methodological models guiding the evaluation of such research have reached for a long time their limits. Within this context, digitisation, the Information and communication technologies (ICT) and wearable, the Internet of Things (IoT) connecting networks of devices, and new possibilities to collect and analyse massive amounts of data made it possible to study behaviour from a realistic perspective, as never before. Digital technologies make it possible to (1) capture data in real-life settings, (2) regain control over data by capturing the context of behaviour, and (3) analyse huge set of information through continuous measurement. Within this complex context, this paper describes a new framework for initiating behavioural change, capitalising on the digital developments in applied research projects and applicable both to academia, enterprises and policy makers. By applying this model, behavioural research can be conducted to address the issues of different domains, such as mobility, environment, health or media. The Modular Behavioural Analysis Approach (MBAA) is here described and firstly validated through a concrete use case within the domain of health. The results gathered have proven that disclosing information about health in connection with the use of digital apps for health, can be a leverage for changing behaviour, but it is only a first component requiring further follow-up actions. To this end, a clear definition of different 'behavioural profiles', towards which addressing several typologies of interventions, it is essential to effectively enable behavioural change. In the refined version of the MBAA a strong focus will rely on defining a methodology for shaping 'behavioural profiles' and related interventions, as well as the evaluation of side-effects on the creation of new business models and sustainability plans.

Keywords: behavioural change, framework, health, nudging, sustainability

Procedia PDF Downloads 221
690 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor

Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles

Procedia PDF Downloads 315
689 Ultra-High Voltage Energization of Electrostatic Precipitators for Coal Fired Boilers

Authors: Mads Kirk Larsen

Abstract:

Strict air pollution control is today high on the agenda world-wide. By reducing the particular emission, not only the mg/Nm3 will be reduced – also parts of mercury and other hazardous matters attached to the particles will be reduced. Furthermore, it is possible to catch the fine particles (PM2.5). For particulate control, the precipitators are still the preferred choice and much efforts have been done to improve the efficiencies. Many ESP’s have seen electrical upgrading by changing the traditional 1 phase power system into either 3 phase or SMPS (High Frequency) units. However, there exist a 4th type of power supply – the pulse type. This is unfortunately widely unknown, but may be of great benefit to power plants. The FLSmidth type is called COROMAX® and it is a high voltage pulse generator for precipitators using a semiconductor switch operating at medium potential. The generated high voltage pulses have rated amplitude of 80 kV and duration of 75 μs and are superimposed on a variable base voltage of 60 kV rated voltage. Hereby, achieving a peak voltage of 140 kV. COROMAX® has the ability to increase the voltage beyond the natural spark limit inside the precipitator. Voltage levels may often be twice as high after installation of COROMAX®. Hereby also the migration velocity increases and thereby the efficiency. As the collection efficiency is proportional to the voltage peak and mean values, this also increases the collection efficiency of the fine particles where test has shown 80% removal of particles less than 0.07 micron. Another great advantage is the indifference to back-corona. Simultaneously with emission reduction, the power consumption will also be reduced. Another great advantage of the COROMAX® system is that the emission can be improved without the need to change the internal parts or enlarge the ESP. Recently, more than 150 units have been installed in China, where emissions have been reduced to ultra-low levels.

Keywords: eleectrostatic precipitator, high resistivity dust, micropulse energization, particulate removal

Procedia PDF Downloads 300
688 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples

Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann

Abstract:

Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.

Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing

Procedia PDF Downloads 283