Search results for: interpolation accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3852

Search results for: interpolation accuracy

42 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials

Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries

Abstract:

Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.

Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring

Procedia PDF Downloads 103
41 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 129
40 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World

Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber

Abstract:

Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.

Keywords: semantic segmentation, urban environment, deep learning, urban building, classification

Procedia PDF Downloads 188
39 Optimizing Solids Control and Cuttings Dewatering for Water-Powered Percussive Drilling in Mineral Exploration

Authors: S. J. Addinell, A. F. Grabsch, P. D. Fawell, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising down-hole water-powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barren cover. This system has shown superior rates of penetration in water-rich, hard rock formations at depths exceeding 500 metres. With fluid flow rates of up to 120 litres per minute at 200 bar operating pressure to energise the bottom hole tooling, excessive quantities of high quality drilling fluid (water) would be required for a prolonged drilling campaign. As a result, drilling fluid recovery and recycling has been identified as a necessary option to minimise costs and logistical effort. While the majority of the cuttings report as coarse particles, a significant fines fraction will typically also be present. To maximise tool life longevity, the percussive bottom hole assembly requires high quality fluid with minimal solids loading and any recycled fluid needs to have a solids cut point below 40 microns and a concentration less than 400 ppm before it can be used to reenergise the system. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process shows a strong power law relationship for particle size distributions. This data is critical in optimising solids control strategies and cuttings dewatering techniques. Optimisation of deployable solids control equipment is discussed and how the required centrate clarity was achieved in the presence of pyrite-rich metasediment cuttings. Key results were the successful pre-aggregation of fines through the selection and use of high molecular weight anionic polyacrylamide flocculants and the techniques developed for optimal dosing prior to scroll decanter centrifugation, thus keeping sub 40 micron solids loading within prescribed limits. Experiments on maximising fines capture in the presence of thixotropic drilling fluid additives (e.g. Xanthan gum and other biopolymers) are also discussed. As no core is produced during the drilling process, it is intended that the particle laden returned drilling fluid is used for top-of-hole geochemical and mineralogical assessment. A discussion is therefore presented on the biasing and latency of cuttings representivity by dewatering techniques, as well as the resulting detrimental effects on depth fidelity and accuracy. Data pertaining to the sample biasing with respect to geochemical signatures due to particle size distributions is presented and shows that, depending on the solids control and dewatering techniques used, it can have unwanted influence on top-of-hole analysis. Strategies are proposed to overcome these effects, improving sample quality. Successful solids control and cuttings dewatering for water-powered percussive drilling is presented, contributing towards the successful advancement of coiled tubing based greenfields mineral exploration.

Keywords: cuttings, dewatering, flocculation, percussive drilling, solids control

Procedia PDF Downloads 248
38 Improvements and Implementation Solutions to Reduce the Computational Load for Traffic Situational Awareness with Alerts (TSAA)

Authors: Salvatore Luongo, Carlo Luongo

Abstract:

This paper discusses the implementation solutions to reduce the computational load for the Traffic Situational Awareness with Alerts (TSAA) application, based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, there were 23 total mid-air collisions involving general aviation fixed-wing aircraft, 6 of which were fatal leading to 21 fatalities. These collisions occurred during visual meteorological conditions, indicating the limitations of the see-and-avoid concept for mid-air collision avoidance as defined in the Federal Aviation Administration’s (FAA). The commercial aviation aircraft are already equipped with collision avoidance system called TCAS, which is based on classic transponder technology. This system dramatically reduced the number of mid-air collisions involving air transport aircraft. In general aviation, the same reduction in mid-air collisions has not occurred, so this reduction is the main objective of the TSAA application. The major difference between the original conflict detection application and the TSAA application is that the conflict detection is focused on preventing loss of separation in en-route environments. Instead TSAA is devoted to reducing the probability of mid-air collision in all phases of flight. The TSAA application increases the flight crew traffic situation awareness providing alerts of traffic that are detected in conflict with ownship in support of the see-and-avoid responsibility. The relevant effort has been spent in the design process and the code generation in order to maximize the efficiency and performances in terms of computational load and memory consumption reduction. The TSAA architecture is divided into two high-level systems: the “Threats database” and the “Conflict detector”. The first one receives the traffic data from ADS-B device and provides the memorization of the target’s data history. Conflict detector module estimates ownship and targets trajectories in order to perform the detection of possible future loss of separation between ownship and each target. Finally, the alerts are verified by additional conflict verification logic, in order to prevent possible undesirable behaviors of the alert flag. In order to reduce the computational load, a pre-check evaluation module is used. This pre-check is only a computational optimization, so the performances of the conflict detector system are not modified in terms of number of alerts detected. The pre-check module uses analytical trajectories propagation for both target and ownship. This allows major accuracy and avoids the step-by-step propagation, which requests major computational load. Furthermore, the pre-check permits to exclude the target that is certainly not a threat, using an analytical and efficient geometrical approach, in order to decrease the computational load for the following modules. This software improvement is not suggested by FAA documents, and so it is the main innovation of this work. The efficiency and efficacy of this enhancement are verified using fast-time and real-time simulations and by the execution on a real device in several FAA scenarios. The final implementation also permits the FAA software certification in compliance with DO-178B standard. The computational load reduction allows the installation of TSAA application also on devices with multiple applications and/or low capacity in terms of available memory and computational capabilities

Keywords: traffic situation awareness, general aviation, aircraft conflict detection, computational load reduction, implementation solutions, software certification

Procedia PDF Downloads 282
37 Modeling and Performance Evaluation of an Urban Corridor under Mixed Traffic Flow Condition

Authors: Kavitha Madhu, Karthik K. Srinivasan, R. Sivanandan

Abstract:

Indian traffic can be considered as mixed and heterogeneous due to the presence of various types of vehicles that operate with weak lane discipline. Consequently, vehicles can position themselves anywhere in the traffic stream depending on availability of gaps. The choice of lateral positioning is an important component in representing and characterizing mixed traffic. The field data provides evidence that the trajectory of vehicles in Indian urban roads have significantly varying longitudinal and lateral components. Further, the notion of headway which is widely used for homogeneous traffic simulation is not well defined in conditions lacking lane discipline. From field data it is clear that following is not strict as in homogeneous and lane disciplined conditions and neighbouring vehicles ahead of a given vehicle and those adjacent to it could also influence the subject vehicles choice of position, speed and acceleration. Given these empirical features, the suitability of using headway distributions to characterize mixed traffic in Indian cities is questionable, and needs to be modified appropriately. To address these issues, this paper attempts to analyze the time gap distribution between consecutive vehicles (in a time-sense) crossing a section of roadway. More specifically, to characterize the complex interactions noted above, the influence of composition, manoeuvre types, and lateral placement characteristics on time gap distribution is quantified in this paper. The developed model is used for evaluating various performance measures such as link speed, midblock delay and intersection delay which further helps to characterise the vehicular fuel consumption and emission on urban roads of India. Identifying and analyzing exact interactions between various classes of vehicles in the traffic stream is essential for increasing the accuracy and realism of microscopic traffic flow modelling. In this regard, this study aims to develop and analyze time gap distribution models and quantify it by lead lag pair, manoeuvre type and lateral position characteristics in heterogeneous non-lane based traffic. Once the modelling scheme is developed, this can be used for estimating the vehicle kilometres travelled for the entire traffic system which helps to determine the vehicular fuel consumption and emission. The approach to this objective involves: data collection, statistical modelling and parameter estimation, simulation using calibrated time-gap distribution and its validation, empirical analysis of simulation result and associated traffic flow parameters, and application to analyze illustrative traffic policies. In particular, video graphic methods are used for data extraction from urban mid-block sections in Chennai, where the data comprises of vehicle type, vehicle position (both longitudinal and lateral), speed and time gap. Statistical tests are carried out to compare the simulated data with the actual data and the model performance is evaluated. The effect of integration of above mentioned factors in vehicle generation is studied by comparing the performance measures like density, speed, flow, capacity, area occupancy etc under various traffic conditions and policies. The implications of the quantified distributions and simulation model for estimating the PCU (Passenger Car Units), capacity and level of service of the system are also discussed.

Keywords: lateral movement, mixed traffic condition, simulation modeling, vehicle following models

Procedia PDF Downloads 340
36 A Study on the Relation among Primary Care Professionals Serving Disadvantaged Community, Socioeconomic Status, and Adverse Health Outcome

Authors: Chau-Kuang Chen, Juanita Buford, Colette Davis, Raisha Allen, John Hughes, James Tyus, Dexter Samuels

Abstract:

During the post-Civil War era, the city of Nashville, Tennessee, had the highest mortality rate in the country. The elevated death and disease among ex-slaves were attributable to the unavailability of healthcare. To address the paucity of healthcare services, the College, an institution with the mission of educating minority professionals and serving the under served population, was established in 1876. This study was designed to assess if the College has accomplished its mission of serving under served communities and contributed to the elimination of health disparities in the United States. The study objective was to quantify the impact of socioeconomic status and adverse health outcomes on primary care professionals serving disadvantaged communities, which, in turn, was significantly associated with a health professional shortage score partly designated by the U.S. Department of Health and Human Services. Various statistical methods were used to analyze the alumni data in years 1975 – 2013. K-means cluster analysis was utilized to identify individual medical and dental graduates into the cluster groups of the practice communities (Disadvantaged or Non-disadvantaged Communities). Discriminant analysis was implemented to verify the classification accuracy of cluster analysis. The independent t test was performed to detect the significant mean differences for clustering and criterion variables between Disadvantaged and Non-disadvantaged Communities, which confirms the “content” validity of cluster analysis model. Chi-square test was used to assess if the proportion of cluster groups (Disadvantaged vs Non-disadvantaged Communities) were consistent with that of practicing specialties (primary care vs. non-primary care). Finally, the partial least squares (PLS) path model was constructed to explore the “construct” validity of analytics model by providing the magnitude effects of socioeconomic status and adverse health outcome on primary care professionals serving disadvantaged community. The social ecological theory along with statistical models mentioned was used to establish the relationship between medical and dental graduates (primary care professionals serving disadvantaged communities) and their social environments (socioeconomic status, adverse health outcome, health professional shortage score). Based on social ecological framework, it was hypothesized that the impact of socioeconomic status and adverse health outcomes on primary care professionals serving disadvantaged communities could be quantified. Also, primary care professionals serving disadvantaged communities related to a health professional shortage score can be measured. Adverse health outcome (adult obesity rate, age-adjusted premature mortality rate, and percent of people diagnosed with diabetes) could be affected by the latent variable, namely socioeconomic status (unemployment rate, poverty rate, percent of children who were in free lunch programs, and percent of uninsured adults). The study results indicated that approximately 83% (3,192/3,864) of the College’s medical and dental graduates from 1975 to 2013 were practicing in disadvantaged communities. In addition, the PLS path modeling demonstrated that primary care professionals serving disadvantaged community was significantly associated with socioeconomic status and adverse health outcome (p < .001). In summary, the majority of medical and dental graduates from the College provide primary care services to disadvantaged communities with low socioeconomic status and high adverse health outcomes, which demonstrate that the College has fulfilled its mission.

Keywords: disadvantaged community, K-means cluster analysis, PLS path modeling, primary care

Procedia PDF Downloads 548
35 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 135
34 Deciphering Information Quality: Unraveling the Impact of Information Distortion in the UK Aerospace Supply Chains

Authors: Jing Jin

Abstract:

The incorporation of artificial intelligence (AI) and machine learning (ML) in aircraft manufacturing and aerospace supply chains leads to the generation of a substantial amount of data among various tiers of suppliers and OEMs. Identifying the high-quality information challenges decision-makers. The application of AI/ML models necessitates access to 'high-quality' information to yield desired outputs. However, the process of information sharing introduces complexities, including distortion through various communication channels and biases introduced by both human and AI entities. This phenomenon significantly influences the quality of information, impacting decision-makers engaged in configuring supply chain systems. Traditionally, distorted information is categorized as 'low-quality'; however, this study challenges this perception, positing that distorted information, contributing to stakeholder goals, can be deemed high-quality within supply chains. The main aim of this study is to identify and evaluate the dimensions of information quality crucial to the UK aerospace supply chain. Guided by a central research question, "What information quality dimensions are considered when defining information quality in the UK aerospace supply chain?" the study delves into the intricate dynamics of information quality in the aerospace industry. Additionally, the research explores the nuanced impact of information distortion on stakeholders' decision-making processes, addressing the question, "How does the information distortion phenomenon influence stakeholders’ decisions regarding information quality in the UK aerospace supply chain system?" This study employs deductive methodologies rooted in positivism, utilizing a cross-sectional approach and a mono-quantitative method -a questionnaire survey. Data is systematically collected from diverse tiers of supply chain stakeholders, encompassing end-customers, OEMs, Tier 0.5, Tier 1, and Tier 2 suppliers. Employing robust statistical data analysis methods, including mean values, mode values, standard deviation, one-way analysis of variance (ANOVA), and Pearson’s correlation analysis, the study interprets and extracts meaningful insights from the gathered data. Initial analyses challenge conventional notions, revealing that information distortion positively influences the definition of information quality, disrupting the established perception of distorted information as inherently low-quality. Further exploration through correlation analysis unveils the varied perspectives of different stakeholder tiers on the impact of information distortion on specific information quality dimensions. For instance, Tier 2 suppliers demonstrate strong positive correlations between information distortion and dimensions like access security, accuracy, interpretability, and timeliness. Conversely, Tier 1 suppliers emphasise strong negative influences on the security of accessing information and negligible impact on information timeliness. Tier 0.5 suppliers showcase very strong positive correlations with dimensions like conciseness and completeness, while OEMs exhibit limited interest in considering information distortion within the supply chain. Introducing social network analysis (SNA) provides a structural understanding of the relationships between information distortion and quality dimensions. The moderately high density of ‘information distortion-by-information quality’ underscores the interconnected nature of these factors. In conclusion, this study offers a nuanced exploration of information quality dimensions in the UK aerospace supply chain, highlighting the significance of individual perspectives across different tiers. The positive influence of information distortion challenges prevailing assumptions, fostering a more nuanced understanding of information's role in the Industry 4.0 landscape.

Keywords: information distortion, information quality, supply chain configuration, UK aerospace industry

Procedia PDF Downloads 63
33 A Microwave Heating Model for Endothermic Reaction in the Cement Industry

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.

Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing

Procedia PDF Downloads 139
32 Moodle-Based E-Learning Course Development for Medical Interpreters

Authors: Naoko Ono, Junko Kato

Abstract:

According to the Ministry of Justice, 9,044,000 foreigners visited Japan in 2010. The number of foreign residents in Japan was over 2,134,000 at the end of 2010. Further, medical tourism has emerged as a new area of business. Against this background, language barriers put the health of foreigners in Japan at risk, because they have difficulty in accessing health care and communicating with medical professionals. Medical interpreting training is urgently needed in response to language problems resulting from the rapid increase in the number of foreign workers in Japan over recent decades. Especially, there is a growing need in medical settings in Japan to speak international languages for communication, with Tokyo selected as the host city of the 2020 Summer Olympics. Due to the limited number of practical activities on medical interpreting, it is difficult for learners to acquire the interpreting skills. In order to eliminate the shortcoming, a web-based English-Japanese medical interpreting training system was developed. We conducted a literature review to identify learning contents, core competencies for medical interpreters by using Pubmed, PsycINFO, Cochrane Library, and Google Scholar. Selected papers were investigated to find core competencies in medical interpreting. Eleven papers were selected through literature review indicating core competencies for medical interpreters. Core competencies in medical interpreting abstracted from the literature review, showed consistency in previous research whilst the content of the programs varied in domestic and international training programs for medical interpreters. Results of the systematic review indicated five core competencies: (a) maintaining accuracy and completeness; (b) medical terminology and understanding the human body; (c) behaving ethically and making ethical decisions; (d) nonverbal communication skills; and (e) cross-cultural communication skills. We developed an e-leaning program for training medical interpreters. A Web-based Medical Interpreter Training Program which cover these competencies was developed. The program included the following : online word list (Quizlet), allowing student to study online and on their smartphones; self-study tool (Quizlet) for help with dictation and spelling; word quiz (Quizlet); test-generating system (Quizlet); Interactive body game (BBC);Online resource for understanding code of ethics in medical interpreting; Webinar about non-verbal communication; and Webinar about incompetent vs. competent cultural care. The design of a virtual environment allows the execution of complementary experimental exercises for learners of medical interpreting and introduction to theoretical background of medical interpreting. Since this system adopts a self-learning style, it might improve the time and lack of teaching material restrictions of the classroom method. In addition, as a teaching aid, virtual medical interpreting is a powerful resource for the understanding how actual medical interpreting can be carried out. The developed e-learning system allows remote access, enabling students to perform experiments at their own place, without being physically in the actual laboratory. The web-based virtual environment empowers students by granting them access to laboratories during their free time. A practical example will be presented in order to show capabilities of the system. The developed web-based training program for medical interpreters could bridge the gap between medical professionals and patients with limited English proficiency.

Keywords: e-learning, language education, moodle, medical interpreting

Procedia PDF Downloads 364
31 Optimizing Productivity and Quality through the Establishment of a Learning Management System for an Agency-Based Graduate School

Authors: Maria Corazon Tapang-Lopez, Alyn Joy Dela Cruz Baltazar, Bobby Jones Villanueva Domdom

Abstract:

The requisite for an organization implementing quality management system to sustain its compliance to the requirements and commitment for continuous improvement is even higher. It is expected that the offices and units has high and consistent compliance to the established processes and procedures. The Development Academy of the Philippines has been operating under project management to which is has a quality management certification. To further realize its mandate as a think-tank and capacity builder of the government, DAP expanded its operation and started to grant graduate degree through its Graduate School of Public and Development Management (GSPDM). As the academic arm of the Academy, GSPDM offers graduate degree programs on public management and productivity & quality aligned to the institutional trusts. For a time, the documented procedures and processes of a project management seem to fit the Graduate School. However, there has been a significant growth in the operations of the GSPDM in terms of the graduate programs offered that directly increase the number of students. There is an apparent necessity to align the project management system into a more educational system otherwise it will no longer be responsive to the development that are taking place. The strongly advocate and encourage its students to pursue internal and external improvement to cope up with the challenges of providing quality service to their own clients and to our country. If innovation will not take roots in the grounds of GSPDM, then how will it serve the purpose of “walking the talk”? This research was conducted to assess the diverse flow of the existing internal operations and processes of the DAP’s project management and GSPDM’s school management that will serve as basis to develop a system that will harmonize into one, the Learning Management System. The study documented the existing process of GSPDM following the project management phases of conceptualization & development, negotiation & contracting, mobilization, implementation, and closure into different flow charts of the key activities. The primary source of information as respondents were the different groups involved into the delivery of graduate programs - the executive, learning management team and administrative support offices. The Learning Management System (LMS) shall capture the unique and critical processes of the GSPDM as a degree-granting unit of the Academy. The LMS is the harmonized project management and school management system that shall serve as the standard system and procedure for all the programs within the GSPDM. The unique processes cover the three important areas of school management – student, curriculum, and faculty. The required processes of these main areas such as enrolment, course syllabus development, and faculty evaluation were appropriately placed within the phases of the project management system. Further, the research shall identify critical reports and generate manageable documents and records to ensure accuracy, consistency and reliable information. The researchers had an in-depth review of the DAP-GSDPM’s mandate, analyze the various documents, and conducted series of focused group discussions. A comprehensive review on flow chart system prior and various models of school management systems were made. Subsequently, the final output of the research is a work instructions manual that will be presented to the Academy’s Quality Management Council and eventually an additional scope for ISO certification. The manual shall include documented forms, iterative flow charts and program Gantt chart that will have a parallel development of automated systems.

Keywords: productivity, quality, learning management system, agency-based graduate school

Procedia PDF Downloads 318
30 Well Inventory Data Entry: Utilization of Developed Technologies to Progress the Integrated Asset Plan

Authors: Danah Al-Selahi, Sulaiman Al-Ghunaim, Bashayer Sadiq, Fatma Al-Otaibi, Ali Ameen

Abstract:

In light of recent changes affecting the Oil & Gas Industry, optimization measures have become imperative for all companies globally, including Kuwait Oil Company (KOC). To keep abreast of the dynamic market, a detailed Integrated Asset Plan (IAP) was developed to drive optimization across the organization, which was facilitated through the in-house developed software “Well Inventory Data Entry” (WIDE). This comprehensive and integrated approach enabled centralization of all planned asset components for better well planning, enhancement of performance, and to facilitate continuous improvement through performance tracking and midterm forecasting. Traditionally, this was hard to achieve as, in the past, various legacy methods were used. This paper briefly describes the methods successfully adopted to meet the company’s objective. IAPs were initially designed using computerized spreadsheets. However, as data captured became more complex and the number of stakeholders requiring and updating this information grew, the need to automate the conventional spreadsheets became apparent. WIDE, existing in other aspects of the company (namely, the Workover Optimization project), was utilized to meet the dynamic requirements of the IAP cycle. With the growth of extensive features to enhance the planning process, the tool evolved into a centralized data-hub for all asset-groups and technical support functions to analyze and infer from, leading WIDE to become the reference two-year operational plan for the entire company. To achieve WIDE’s goal of operational efficiency, asset-groups continuously add their parameters in a series of predefined workflows that enable the creation of a structured process which allows risk factors to be flagged and helps mitigation of the same. This tool dictates assigned responsibilities for all stakeholders in a method that enables continuous updates for daily performance measures and operational use. The reliable availability of WIDE, combined with its user-friendliness and easy accessibility, created a platform of cross-functionality amongst all asset-groups and technical support groups to update contents of their respective planning parameters. The home-grown entity was implemented across the entire company and tailored to feed in internal processes of several stakeholders across the company. Furthermore, the implementation of change management and root cause analysis techniques captured the dysfunctionality of previous plans, which in turn resulted in the improvement of already existing mechanisms of planning within the IAP. The detailed elucidation of the 2 year plan flagged any upcoming risks and shortfalls foreseen in the plan. All results were translated into a series of developments that propelled the tool’s capabilities beyond planning and into operations (such as Asset Production Forecasts, setting KPIs, and estimating operational needs). This process exemplifies the ability and reach of applying advanced development techniques to seamlessly integrated the planning parameters of various assets and technical support groups. These techniques enables the enhancement of integrating planning data workflows that ultimately lay the founding plans towards an epoch of accuracy and reliability. As such, benchmarks of establishing a set of standard goals are created to ensure the constant improvement of the efficiency of the entire planning and operational structure.

Keywords: automation, integration, value, communication

Procedia PDF Downloads 145
29 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence

Authors: Hoora Beheshti Haradasht, Abooali Golzary

Abstract:

Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.

Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability

Procedia PDF Downloads 80
28 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques

Authors: Stefan K. Behfar

Abstract:

The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.

Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing

Procedia PDF Downloads 75
27 Understanding the Impact of Spatial Light Distribution on Object Identification in Low Vision: A Pilot Psychophysical Study

Authors: Alexandre Faure, Yoko Mizokami, éRic Dinet

Abstract:

These recent years, the potential of light in assisting visually impaired people in their indoor mobility has been demonstrated by different studies. Implementing smart lighting systems for selective visual enhancement, especially designed for low-vision people, is an approach that breaks with the existing visual aids. The appearance of the surface of an object is significantly influenced by the lighting conditions and the constituent materials of the objects. Appearance of objects may appear to be different from expectation. Therefore, lighting conditions lead to an important part of accurate material recognition. The main objective of this work was to investigate the effect of the spatial distribution of light on object identification in the context of low vision. The purpose was to determine whether and what specific lighting approaches should be preferred for visually impaired people. A psychophysical experiment was designed to study the ability of individuals to identify the smallest cube of a pair under different lighting diffusion conditions. Participants were divided into two distinct groups: a reference group of observers with normal or corrected-to-normal visual acuity and a test group, in which observers were required to wear visual impairment simulation glasses. All participants were presented with pairs of cubes in a "miniature room" and were instructed to estimate the relative size of the two cubes. The miniature room replicates real-life settings, adorned with decorations and separated from external light sources by black curtains. The correlated color temperature was set to 6000 K, and the horizontal illuminance at the object level at approximately 240 lux. The objects presented for comparison consisted of 11 white cubes and 11 black cubes of different sizes manufactured with a 3D printer. Participants were seated 60 cm away from the objects. Two different levels of light diffuseness were implemented. After receiving instructions, participants were asked to judge whether the two presented cubes were the same size or if one was smaller. They provided one of five possible answers: "Left one is smaller," "Left one is smaller but unsure," "Same size," "Right one is smaller," or "Right one is smaller but unsure.". The method of constant stimuli was used, presenting stimulus pairs in a random order to prevent learning and expectation biases. Each pair consisted of a comparison stimulus and a reference cube. A psychometric function was constructed to link stimulus value with the frequency of correct detection, aiming to determine the 50% correct detection threshold. Collected data were analyzed through graphs illustrating participants' responses to stimuli, with accuracy increasing as the size difference between cubes grew. Statistical analyses, including 2-way ANOVA tests, showed that light diffuseness had no significant impact on the difference threshold, whereas object color had a significant influence in low vision scenarios. The first results and trends derived from this pilot experiment clearly and strongly suggest that future investigations could explore extreme diffusion conditions to comprehensively assess the impact of diffusion on object identification. For example, the first findings related to light diffuseness may be attributed to the range of manipulation, emphasizing the need to explore how other lighting-related factors interact with diffuseness.

Keywords: Lighting, Low Vision, Visual Aid, Object Identification, Psychophysical Experiment

Procedia PDF Downloads 63
26 Simulation of Multistage Extraction Process of Co-Ni Separation Using Ionic Liquids

Authors: Hongyan Chen, Megan Jobson, Andrew J. Masters, Maria Gonzalez-Miquel, Simon Halstead, Mayri Diaz de Rienzo

Abstract:

Ionic liquids offer excellent advantages over conventional solvents for industrial extraction of metals from aqueous solutions, where such extraction processes bring opportunities for recovery, reuse, and recycling of valuable resources and more sustainable production pathways. Recent research on the use of ionic liquids for extraction confirms their high selectivity and low volatility, but there is relatively little focus on how their properties can be best exploited in practice. This work addresses gaps in research on process modelling and simulation, to support development, design, and optimisation of these processes, focusing on the separation of the highly similar transition metals, cobalt, and nickel. The study exploits published experimental results, as well as new experimental results, relating to the separation of Co and Ni using trihexyl (tetradecyl) phosphonium chloride. This extraction agent is attractive because it is cheaper, more stable and less toxic than fluorinated hydrophobic ionic liquids. This process modelling work concerns selection and/or development of suitable models for the physical properties, distribution coefficients, for mass transfer phenomena, of the extractor unit and of the multi-stage extraction flowsheet. The distribution coefficient model for cobalt and HCl represents an anion exchange mechanism, supported by the literature and COSMO-RS calculations. Parameters of the distribution coefficient models are estimated by fitting the model to published experimental extraction equilibrium results. The mass transfer model applies Newman’s hard sphere model. Diffusion coefficients in the aqueous phase are obtained from the literature, while diffusion coefficients in the ionic liquid phase are fitted to dynamic experimental results. The mass transfer area is calculated from the surface to mean diameter of liquid droplets of the dispersed phase, estimated from the Weber number inside the extractor. New experiments measure the interfacial tension between the aqueous and ionic phases. The empirical models for predicting the density and viscosity of solutions under different metal loadings are also fitted to new experimental data. The extractor is modelled as a continuous stirred tank reactor with mass transfer between the two phases and perfect phase separation of the outlet flows. A multistage separation flowsheet simulation is set up to replicate a published experiment and compare model predictions with the experimental results. This simulation model is implemented in gPROMS software for dynamic process simulation. The results of single stage and multi-stage flowsheet simulations are shown to be in good agreement with the published experimental results. The estimated diffusion coefficient of cobalt in the ionic liquid phase is in reasonable agreement with published data for the diffusion coefficients of various metals in this ionic liquid. A sensitivity study with this simulation model demonstrates the usefulness of the models for process design. The simulation approach has potential to be extended to account for other metals, acids, and solvents for process development, design, and optimisation of extraction processes applying ionic liquids for metals separations, although a lack of experimental data is currently limiting the accuracy of models within the whole framework. Future work will focus on process development more generally and on extractive separation of rare earths using ionic liquids.

Keywords: distribution coefficient, mass transfer, COSMO-RS, flowsheet simulation, phosphonium

Procedia PDF Downloads 187
25 Detection of Mustard Traces in Food by an Official Food Safety Laboratory

Authors: Clara Tramuta, Lucia Decastelli, Elisa Barcucci, Sandra Fragassi, Samantha Lupi, Enrico Arletti, Melissa Bizzarri, Daniela Manila Bianchi

Abstract:

Introdution: Food allergies occurs, in the Western World, 2% of adults and up to 8% of children. The protection of allergic consumers is guaranted, in Eurrope, by Regulation (EU) No 1169/2011 of the European Parliament which governs the consumer's right to information and identifies 14 food allergens to be mandatory indicated on the label. Among these, mustard is a popular spice added to enhance the flavour and taste of foods. It is frequently present as an ingredient in spice blends, marinades, salad dressings, sausages, and other products. Hypersensitivity to mustard is a public health problem since the ingestion of even low amounts can trigger severe allergic reactions. In order to protect the allergic consumer, high performance methods are required for the detection of allergenic ingredients. Food safety laboratories rely on validated methods that detect hidden allergens in food to ensure the safety and health of allergic consumers. Here we present the test results for the validation and accreditation of a Real time PCR assay (RT-PCR: SPECIALfinder MC Mustard, Generon), for the detection of mustard traces in food. Materials and Methods. The method was tested on five classes of food matrices: bakery and pastry products (chocolate cookies), meats (ragù), ready-to-eat (mixed salad), dairy products (yogurt), grains, and milling products (rice and barley flour). Blank samples were spiked starting with the mustard samples (Sinapis Alba), lyophilized and stored at -18 °C, at a concentration of 1000 ppm. Serial dilutions were then prepared to a final concentration of 0.5 ppm, using the DNA extracted by ION Force FAST (Generon) from the blank samples. The Real Time PCR reaction was performed by RT-PCR SPECIALfinder MC Mustard (Generon), using CFX96 System (BioRad). Results. Real Time PCR showed a limit of detection (LOD) of 0.5 ppm in grains and milling products, ready-to-eat, meats, bakery, pastry products, and dairy products (range Ct 25-34). To determine the exclusivity parameter of the method, the ragù matrix was contaminated with Prunus dulcis (almonds), peanut (Arachis hypogaea), Glycine max (soy), Apium graveolens (celery), Allium cepa (onion), Pisum sativum (peas), Daucus carota (carrots), and Theobroma cacao (cocoa) and no cross-reactions were observed. Discussion. In terms of sensitivity, the Real Time PCR confirmed, even in complex matrix, a LOD of 0.5 ppm in five classes of food matrices tested; these values are compatible with the current regulatory situation that does not consider, at international level, to establish a quantitative criterion for the allergen considered in this study. The Real Time PCR SPECIALfinder kit for the detection of mustard proved to be easy to use and particularly appreciated for the rapid response times considering that the amplification and detection phase has a duration of less than 50 minutes. Method accuracy was rated satisfactory for sensitivity (100%) and specificity (100%) and was fully validated and accreditated. It was found adequate for the needs of the laboratory as it met the purpose for which it was applied. This study was funded in part within a project of the Italian Ministry of Health (IZS PLV 02/19 RC).

Keywords: allergens, food, mustard, real time PCR

Procedia PDF Downloads 166
24 A Digital Clone of an Irrigation Network Based on Hardware/Software Simulation

Authors: Pierre-Andre Mudry, Jean Decaix, Jeremy Schmid, Cesar Papilloud, Cecile Munch-Alligne

Abstract:

In most of the Swiss Alpine regions, the availability of water resources is usually adequate even in times of drought, as evidenced by the 2003 and 2018 summers. Indeed, important natural stocks are for the moment available in the form of snow and ice, but the situation is likely to change in the future due to global and regional climate change. In addition, alpine mountain regions are areas where climate change will be felt very rapidly and with high intensity. For instance, the ice regime of these regions has already been affected in recent years with a modification of the monthly availability and extreme events of precipitations. The current research, focusing on the municipality of Val de Bagnes, located in the canton of Valais, Switzerland, is part of a project led by the Altis company and achieved in collaboration with WSL, BlueArk Entremont, and HES-SO Valais-Wallis. In this region, water occupies a key position notably for winter and summer tourism. Thus, multiple actors want to apprehend the future needs and availabilities of water, on both the 2050 and 2100 horizons, in order to plan the modifications to the water supply and distribution networks. For those changes to be salient and efficient, a good knowledge of the current water distribution networks is of most importance. In the current case, the water drinking network is well documented, but this is not the case for the irrigation one. Since the water consumption for irrigation is ten times higher than for drinking water, data acquisition on the irrigation network is a major point to determine future scenarios. This paper first presents the instrumentation and simulation of the irrigation network using custom-designed IoT devices, which are coupled with a digital clone simulated to reduce the number of measuring locations. The developed IoT ad-hoc devices are energy-autonomous and can measure flows and pressures using industrial sensors such as calorimetric water flow meters. Measurements are periodically transmitted using the LoRaWAN protocol over a dedicated infrastructure deployed in the municipality. The gathered values can then be visualized in real-time on a dashboard, which also provides historical data for analysis. In a second phase, a digital clone of the irrigation network was modeled using EPANET, a software for water distribution systems that performs extended-period simulations of flows and pressures in pressurized networks composed of reservoirs, pipes, junctions, and sinks. As a preliminary work, only a part of the irrigation network was modelled and validated by comparisons with the measurements. The simulations are carried out by imposing the consumption of water at several locations. The validation is performed by comparing the simulated pressures are different nodes with the measured ones. An accuracy of +/- 15% is observed on most of the nodes, which is acceptable for the operator of the network and demonstrates the validity of the approach. Future steps will focus on the deployment of the measurement devices on the whole network and the complete modelling of the network. Then, scenarios of future consumption will be investigated. Acknowledgment— The authors would like to thank the Swiss Federal Office for Environment (FOEN), the Swiss Federal Office for Agriculture (OFAG) for their financial supports, and ALTIS for the technical support, this project being part of the Swiss Pilot program 'Adaptation aux changements climatiques'.

Keywords: hydraulic digital clone, IoT water monitoring, LoRaWAN water measurements, EPANET, irrigation network

Procedia PDF Downloads 145
23 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 95
22 Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces

Authors: Martin Alexander Eder, Sergei Semenov

Abstract:

Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories.

Keywords: adhesive, fatigue, interface, multiaxial stress

Procedia PDF Downloads 168
21 Identification of a Panel of Epigenetic Biomarkers for Early Detection of Hepatocellular Carcinoma in Blood of Individuals with Liver Cirrhosis

Authors: Katarzyna Lubecka, Kirsty Flower, Megan Beetch, Lucinda Kurzava, Hannah Buvala, Samer Gawrieh, Suthat Liangpunsakul, Tracy Gonzalez, George McCabe, Naga Chalasani, James M. Flanagan, Barbara Stefanska

Abstract:

Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, is the second leading cause of cancer death worldwide. Late onset of clinical symptoms in HCC results in late diagnosis and poor disease outcome. Approximately 85% of individuals with HCC have underlying liver cirrhosis. However, not all cirrhotic patients develop cancer. Reliable early detection biomarkers that can distinguish cirrhotic patients who will develop cancer from those who will not are urgently needed and could increase the cure rate from 5% to 80%. We used Illumina-450K microarray to test whether blood DNA, an easily accessible source of DNA, bear site-specific changes in DNA methylation in response to HCC before diagnosis with conventional tools (pre-diagnostic). Top 11 differentially methylated sites were selected for validation by pyrosequencing. The diagnostic potential of the 11 pyrosequenced probes was tested in blood samples from a prospective cohort of cirrhotic patients. We identified 971 differentially methylated CpG sites in pre-diagnostic HCC cases as compared with healthy controls (P < 0.05, paired Wilcoxon test, ICC ≥ 0.5). Nearly 76% of differentially methylated CpG sites showed lower levels of methylation in cases vs. controls (P = 2.973E-11, Wilcoxon test). Classification of the CpG sites according to their location relative to CpG islands and transcription start site revealed that those hypomethylated loci are located in regulatory regions important for gene transcription such as CpG island shores, promoters, and 5’UTR at higher frequency than hypermethylated sites. Among 735 CpG sites hypomethylated in cases vs. controls, 482 sites were assigned to gene coding regions whereas 236 hypermethylated sites corresponded to 160 genes. Bioinformatics analysis using GO, KEGG and DAVID knowledgebase indicate that differentially methylated CpG sites are located in genes associated with functions that are essential for gene transcription, cell adhesion, cell migration, and regulation of signal transduction pathways. Taking into account the magnitude of the difference, statistical significance, location, and consistency across the majority of matched pairs case-control, we selected 11 CpG loci corresponding to 10 genes for further validation by pyrosequencing. We established that methylation of CpG sites within 5 out of those 10 genes distinguish cirrhotic patients who subsequently developed HCC from those who stayed cancer free (cirrhotic controls), demonstrating potential as biomarkers of early detection in populations at risk. The best predictive value was detected for CpGs located within BARD1 (AUC=0.70, asymptotic significance ˂0.01). Using an additive logistic regression model, we further showed that 9 CpG loci within those 5 genes, that were covered in pyrosequenced probes, constitute a panel with high diagnostic accuracy (AUC=0.887; 95% CI:0.80-0.98). The panel was able to distinguish pre-diagnostic cases from cirrhotic controls free of cancer with 88% sensitivity at 70% specificity. Using blood as a minimally invasive material and pyrosequencing as a straightforward quantitative method, the established biomarker panel has high potential to be developed into a routine clinical test after validation in larger cohorts. This study was supported by Showalter Trust, American Cancer Society (IRG#14-190-56), and Purdue Center for Cancer Research (P30 CA023168) granted to BS.

Keywords: biomarker, DNA methylation, early detection, hepatocellular carcinoma

Procedia PDF Downloads 303
20 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 89
19 Removing Maturational Influences from Female Youth Swimming: The Application of Corrective Adjustment Procedures

Authors: Clorinda Hogan, Shaun Abbott, Mark Halaki, Marcela Torres Catiglioni, Goshi Yamauchi, Lachlan Mitchell, James Salter, Michael Romann, Stephen Cobley

Abstract:

Introduction: Common annual age-group competition structures unintentionally introduce participation inequalities, performance (dis)advantages and selection biases due to the effect of maturational variation between youth swimmers. On this basis, there are implications for improving performance evaluation strategies. Therefore the aim was to: (1) To determine maturity timing distributions in female youth swimming; (2) quantify the relationship between maturation status and 100-m FC performance; (3) apply Maturational-based Corrective Adjustment Procedures (Mat-CAPs) for removal of maturational status performance influences. Methods: (1) Cross-sectional analysis of 663 female (10-15 years) swimmers who underwent assessment of anthropometrics (mass, height and sitting height) and estimations of maturity timing and offset. (2) 100-m front-crawl performance (seconds) was assessed at Australian regional, state, and national-level competitions between 2016-2020. To determine the relationship between maturation status and 100-m front-crawl performance, MO was plotted against 100-m FC performance time. The expected maturity status - performance relationship for females aged 10-15 years of age was obtained through a quadratic function (y = ax2 + bx + c) from unstandardized coefficients. The regression equation was subsequently used for Mat-CAPs. (3) Participants aged 10-13 years were categorised into maturity-offset categories. Maturity offset distributions for Raw (‘All’, ‘Top 50%’ & ‘Top 25%’) and Correctively Adjusted swim times were examined. Chi-square, Cramer’s V and ORs determined the occurrence of maturation biases for each age group and selection level. Results—: (1) Maturity timing distributions illustrated overrepresentation of ‘normative’ maturing swimmers (11.82 ± 0.40 years), with a descriptive shift toward the early maturing relative to the normative population. (2) A curvilinear relationship between maturity-offset and swim performance was identified (R2 = 0.53, P < 0.001) and subsequently utilised for Mat-CAPs. (3) Raw maturity offset categories identified partial maturation status skewing towards biologically older swimmers at 10/11 and 12 years, with effect magnitudes increasing in the ‘Top 50%’ and ‘25%’ of performance times. Following Mat-CAPs application, maturity offset biases were removed in similar age groups and selection levels. When adjusting performance times for maturity offset, Mat-CAPs was successful in mitigating against maturational biases until approximately 1-year post Peak Height Velocity. The overrepresentation of ‘normative’ maturing female swimmers contrasted with the substantial overrepresentation of ‘early’ maturing male swimmers found previously in 100-m front-crawl. These findings suggest early maturational timing is not advantageous in females, but findings associated with Aim 2, highlight how advanced maturational status remained beneficial to performance. Observed differences between female and male maturational biases may relate to the differential impact of physiological development during pubertal years. Females experience greater increases of fat mass and potentially differing changes in body shape which can negatively affect swim performance. Conclusions: Transient maturation status-based participation and performance advantages were apparent within a large sample of Australian female youth 100-m FC swimmers. By removing maturity status performance biases within female youth swimming, Mat-CAPs could help improve participation experiences and the accuracy of identifying genuinely skilled female youth swimmers.

Keywords: athlete development, long-term sport participation, performance evaluation, talent identification, youth competition

Procedia PDF Downloads 182
18 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering  

Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi

Abstract:

In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.

Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering

Procedia PDF Downloads 148
17 Artificial Intelligence Impact on the Australian Government Public Sector

Authors: Jessica Ho

Abstract:

AI has helped government, businesses and industries transform the way they do things. AI is used in automating tasks to improve decision-making and efficiency. AI is embedded in sensors and used in automation to help save time and eliminate human errors in repetitive tasks. Today, we saw the growth in AI using the collection of vast amounts of data to forecast with greater accuracy, inform decision-making, adapt to changing market conditions and offer more personalised service based on consumer habits and preferences. Government around the world share the opportunity to leverage these disruptive technologies to improve productivity while reducing costs. In addition, these intelligent solutions can also help streamline government processes to deliver more seamless and intuitive user experiences for employees and citizens. This is a critical challenge for NSW Government as we are unable to determine the risk that is brought by the unprecedented pace of adoption of AI solutions in government. Government agencies must ensure that their use of AI complies with relevant laws and regulatory requirements, including those related to data privacy and security. Furthermore, there will always be ethical concerns surrounding the use of AI, such as the potential for bias, intellectual property rights and its impact on job security. Within NSW’s public sector, agencies are already testing AI for crowd control, infrastructure management, fraud compliance, public safety, transport, and police surveillance. Citizens are also attracted to the ease of use and accessibility of AI solutions without requiring specialised technical skills. This increased accessibility also comes with balancing a higher risk and exposure to the health and safety of citizens. On the other side, public agencies struggle with keeping up with this pace while minimising risks, but the low entry cost and open-source nature of generative AI led to a rapid increase in the development of AI powered apps organically – “There is an AI for That” in Government. Other challenges include the fact that there appeared to be no legislative provisions that expressly authorise the NSW Government to use an AI to make decision. On the global stage, there were too many actors in the regulatory space, and a sovereign response is needed to minimise multiplicity and regulatory burden. Therefore, traditional corporate risk and governance framework and regulation and legislation frameworks will need to be evaluated for AI unique challenges due to their rapidly evolving nature, ethical considerations, and heightened regulatory scrutiny impacting the safety of consumers and increased risks for Government. Creating an effective, efficient NSW Government’s governance regime, adapted to the range of different approaches to the applications of AI, is not a mere matter of overcoming technical challenges. Technologies have a wide range of social effects on our surroundings and behaviours. There is compelling evidence to show that Australia's sustained social and economic advancement depends on AI's ability to spur economic growth, boost productivity, and address a wide range of societal and political issues. AI may also inflict significant damage. If such harm is not addressed, the public's confidence in this kind of innovation will be weakened. This paper suggests several AI regulatory approaches for consideration that is forward-looking and agile while simultaneously fostering innovation and human rights. The anticipated outcome is to ensure that NSW Government matches the rising levels of innovation in AI technologies with the appropriate and balanced innovation in AI governance.

Keywords: artificial inteligence, machine learning, rules, governance, government

Procedia PDF Downloads 70
16 Experimental Proof of Concept for Piezoelectric Flow Harvesting for In-Pipe Metering Systems

Authors: Sherif Keddis, Rafik Mitry, Norbert Schwesinger

Abstract:

Intelligent networking of devices has rapidly been gaining importance over the past years and with recent advances in the fields of microcontrollers, integrated circuits and wireless communication, low power applications have emerged, enabling this trend even more. Connected devices provide a much larger database thus enabling highly intelligent and accurate systems. Ensuring safe drinking water is one of the fields that require constant monitoring and can benefit from an increased accuracy. Monitoring is mainly achieved either through complex measures, such as collecting samples from the points of use, or through metering systems typically distant to the points of use which deliver less accurate assessments of the quality of water. Constant metering near the points of use is complicated due to their inaccessibility; e.g. buried water pipes, locked spaces, which makes system maintenance extremely difficult and often unviable. The research presented here attempts to overcome this challenge by providing these systems with enough energy through a flow harvester inside the pipe thus eliminating the maintenance requirements in terms of battery replacements or containment of leakage resulting from wiring such systems. The proposed flow harvester exploits the piezoelectric properties of polyvinylidene difluoride (PVDF) films to convert turbulence induced oscillations into electrical energy. It is intended to be used in standard water pipes with diameters between 0.5 and 1 inch. The working principle of the harvester uses a ring shaped bluff body inside the pipe to induce pressure fluctuations. Additionally the bluff body houses electronic components such as storage, circuitry and RF-unit. Placing the piezoelectric films downstream of that bluff body causes their oscillation which generates electrical charge. The PVDF-film is placed as a multilayered wrap fixed to the pipe wall leaving the top part to oscillate freely inside the flow. The warp, which allows for a larger active, consists of two layers of 30µm thick and 12mm wide PVDF layered alternately with two centered 6µm thick and 8mm wide aluminum foil electrodes. The length of the layers depends on the number of windings and is part of the investigation. Sealing the harvester against liquid penetration is achieved by wrapping it in a ring-shaped LDPE-film and welding the open ends. The fabrication of the PVDF-wraps is done by hand. After validating the working principle using a wind tunnel, experiments have been conducted in water, placing the harvester inside a 1 inch pipe at water velocities of 0.74m/s. To find a suitable placement of the wrap inside the pipe, two forms of fixation were compared regarding their power output. Further investigations regarding the number of windings required for efficient transduction were made. Best results were achieved using a wrap with 3 windings of the active layers which delivers a constant power output of 0.53µW at a 2.3MΩ load and an effective voltage of 1.1V. Considering the extremely low power requirements of sensor applications, these initial results are promising. For further investigations and optimization, machine designs are currently being developed to automate the fabrication and decrease tolerance of the prototypes.

Keywords: maintenance-free sensors, measurements at point of use, piezoelectric flow harvesting, universal micro generator, wireless metering systems

Procedia PDF Downloads 192
15 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System

Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes

Abstract:

The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.

Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models

Procedia PDF Downloads 80
14 ARGO: An Open Designed Unmanned Surface Vehicle Mapping Autonomous Platform

Authors: Papakonstantinou Apostolos, Argyrios Moustakas, Panagiotis Zervos, Dimitrios Stefanakis, Manolis Tsapakis, Nektarios Spyridakis, Mary Paspaliari, Christos Kontos, Antonis Legakis, Sarantis Houzouris, Konstantinos Topouzelis

Abstract:

For years unmanned and remotely operated robots have been used as tools in industry research and education. The rapid development and miniaturization of sensors that can be attached to remotely operated vehicles in recent years allowed industry leaders and researchers to utilize them as an affordable means for data acquisition in air, land, and sea. Despite the recent developments in the ground and unmanned airborne vehicles, a small number of Unmanned Surface Vehicle (USV) platforms are targeted for mapping and monitoring environmental parameters for research and industry purposes. The ARGO project is developed an open-design USV equipped with multi-level control hardware architecture and state-of-the-art sensors and payloads for the autonomous monitoring of environmental parameters in large sea areas. The proposed USV is a catamaran-type USV controlled over a wireless radio link (5G) for long-range mapping capabilities and control for a ground-based control station. The ARGO USV has a propulsion control using 2x fully redundant electric trolling motors with active vector thrust for omnidirectional movement, navigation with opensource autopilot system with high accuracy GNSS device, and communication with the 2.4Ghz digital link able to provide 20km of Line of Sight (Los) range distance. The 3-meter dual hull design and composite structure offer well above 80kg of usable payload capacity. Furthermore, sun and friction energy harvesting methods provide clean energy to the propulsion system. The design is highly modular, where each component or payload can be replaced or modified according to the desired task (industrial or research). The system can be equipped with Multiparameter Sonde, measuring up to 20 water parameters simultaneously, such as conductivity, salinity, turbidity, dissolved oxygen, etc. Furthermore, a high-end multibeam echo sounder can be installed in a specific boat datum for shallow water high-resolution seabed mapping. The system is designed to operate in the Aegean Sea. The developed USV is planned to be utilized as a system for autonomous data acquisition, mapping, and monitoring bathymetry and various environmental parameters. ARGO USV can operate in small or large ports with high maneuverability and endurance to map large geographical extends at sea. The system presents state of the art solutions in the following areas i) the on-board/real-time data processing/analysis capabilities, ii) the energy-independent and environmentally friendly platform entirely made using the latest aeronautical and marine materials, iii) the integration of advanced technology sensors, all in one system (photogrammetric and radiometric footprint, as well as its connection with various environmental and inertial sensors) and iv) the information management application. The ARGO web-based application enables the system to depict the results of the data acquisition process in near real-time. All the recorded environmental variables and indices are presented, allowing users to remotely access all the raw and processed information using the implemented web-based GIS application.

Keywords: monitor marine environment, unmanned surface vehicle, mapping bythometry, sea environmental monitoring

Procedia PDF Downloads 138
13 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 69