Search results for: health data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30679

Search results for: health data

26929 Telemedicine for Substance-Related Disorders: A Patient Satisfaction Survey among Individuals in Argentina

Authors: Badino Manuel, Farias Maria Alejandra

Abstract:

Telemedicine (TM) has the potential to develop efficient and cost-effective means for delivering quality health care services and outcomes, showing equal or, in some cases, better results than in-person treatment. To analyze patient satisfaction with the use of TM becomes relevant because this can affect the results of treatment and the adherence to it. The aim is to assess patient satisfaction with telemedicine for treating substance-related disorders in a mental health service in Córdoba, Argentina. A descriptive cross-sectional study was conducted among patients with substance-related disorders (N=115). A patient satisfaction survey was conducted from December 2021 to March 2022. For a total of 115 participants, 59,1% were male, 38,3% were female and 2,6% non-binary. In relation to educational status, 40% finished university, 39,1% high school, and 20,9 % only primary school. Regarding age, 4,3 % were young, 92,2% were adults, and 3,5% were elderly. Regarding TM treatment, 95,7% reported being satisfied. Furthermore, 85,2% of users declared that they would continueTM treatment, and 14,8% said that they would not resume TM treatment. To conclude, high levels of patient satisfaction contributes to the continuity of TM modality.

Keywords: telemedicine, mental health, substance-related disorders, patient satisfaction

Procedia PDF Downloads 112
26928 Programming without Code: An Approach and Environment to Conditions-On-Data Programming

Authors: Philippe Larvet

Abstract:

This paper presents the concept of an object-based programming language where tests (if... then... else) and control structures (while, repeat, for...) disappear and are replaced by conditions on data. According to the object paradigm, by using this concept, data are still embedded inside objects, as variable-value couples, but object methods are expressed into the form of logical propositions (‘conditions on data’ or COD).For instance : variable1 = value1 AND variable2 > value2 => variable3 = value3. Implementing this approach, a central inference engine turns and examines objects one after another, collecting all CODs of each object. CODs are considered as rules in a rule-based system: the left part of each proposition (left side of the ‘=>‘ sign) is the premise and the right part is the conclusion. So, premises are evaluated and conclusions are fired. Conclusions modify the variable-value couples of the object and the engine goes to examine the next object. The paper develops the principles of writing CODs instead of complex algorithms. Through samples, the paper also presents several hints for implementing a simple mechanism able to process this ‘COD language’. The proposed approach can be used within the context of simulation, process control, industrial systems validation, etc. By writing simple and rigorous conditions on data, instead of using classical and long-to-learn languages, engineers and specialists can easily simulate and validate the functioning of complex systems.

Keywords: conditions on data, logical proposition, programming without code, object-oriented programming, system simulation, system validation

Procedia PDF Downloads 225
26927 Surface Water Pollution by Open Refuse Dumpsite in North Central of Nigeria

Authors: Abimbola Motunrayo Folami, Ibironke Titilayo Enitan, Feroz Mohomed Swalaha

Abstract:

Water is a vital resource that is important in ensuring the growth and development of any country. To sustain the basic human needs and the demands for agriculture, industry, conservational and ecosystem, enough quality and quantity water is needed. Contamination of water resources is now a global and public health concern. Hence, this study assessed the water quality of Ndawuse River by measuring the physicochemical parameters and heavy metals concentrations of the river using standard methods. In total, 16 surface water samples were obtained from five locations along the river, from upstream to downstream as well as samples from the dumpsite. The results obtained were compared with the standard limits set by both the World Health Organization and the Federal Environmental Protection Agency for domestic purposes. The results of the measured parameters indicated that biological oxygen demand (85.88 mg/L), turbidity (44.51 NTU), Iron (0.014 - 3.511 mg /L) and chromium (0.078 - 0.14 mg /L) were all above the standard limits. The results further showed that the quality of surface water is being significantly affected by human activities around the Ndawuse River which could pose an adverse health risk to several communities that rely on this river as their primary source of water. Therefore, there is a need for strict enforcement of environmental laws to protect the aquatic ecosystem and to avoid long term cumulative exposure risk that heavy metals may pose on human health.

Keywords: Abuja, contaminants, heavy metals, Ndawuse River, Nigeria, surface water

Procedia PDF Downloads 162
26926 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis

Authors: Carlos Huertas, Reyes Juarez-Ramirez

Abstract:

Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.

Keywords: biomarker discovery, cancer, feature selection, mass spectrometry

Procedia PDF Downloads 343
26925 An AHP Study on The Migrant and Refugee Employees Occupational Health and Safety Issues in Turkey

Authors: Cengiz Akyildiz, Ismail Ekmekci

Abstract:

In the past 15 years, many people have sought refuge and emigrated to developed countries due to the civil war in Syria, terrorism and turmoil in Iraq, Iran and Afghanistan, hunger problems in Africa and the purpose of work. Many of these people came to Turkey. By the end of the 2019, in Turkey, regular and irregular migrants, asylum seekers and foreigners under international protection are about 6 million people. The majority of these people are Syrians. Approximately 2 800 000 immigrants and refugees are in the workforce. Migrant workers in our country constitute the largest proportion among all countries in the world according to the local labor force. 2.5 million of these employees, with a high rate of about 90%, work informally and do not have legal records and valid employment contracts as a workforce; They cannot benefit from Occupational Health and Safety (OHS) services. Migrant workers generally receive less wages than local workers, working longer hours and worse conditions; they are often subjected to human rights violations, harassment, human trafficking and violence. Migrant workers face problems such as OHS practices, environmental and occupational exposures, language / cultural barriers, access to health services, and lack of documentation. Therefore, the OHS problems of these employees are becoming an increasingly problematic area. However, there is not enough research, analysis and academic studies in this field. The order of importance should be known for the radical solution of the problems, because of the problems with high severity are also at high risk. In this study, for the first time, a Search Conference was held with the participation of 45 stakeholders to reveal the OHS problems of regular and irregular migrant workers in our country. The problems arising from this workshop were compared with the problems in the literature and the problems in this field were determined and weighted for our country. Later, to determine the significance levels of these problems, AHP study, which is a Multi Criteria Decision Making Method in which 15 experts participated, was conducted and the significance levels of these problems were determined. When the data obtained are evaluated, it has been seen that the OSH risks of migrant workers arise from 58% laws and government policies, 29% from employers, 13% from personal faults of employees. An academic study has been carried out for the first time in this field regarding the OHS problems of migrant workers, and an academic study has been created to guide which of the problems should be prioritized.

Keywords: environmental conditions, migrant workers, OHS issues, workplace conditions

Procedia PDF Downloads 156
26924 On the Possibility of Real Time Characterisation of Ambient Toxicity Using Multi-Wavelength Photoacoustic Instrument

Authors: Tibor Ajtai, Máté Pintér, Noémi Utry, Gergely Kiss-Albert, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Gábor Szabó, Zoltán Bozóki

Abstract:

According to the best knowledge of the authors, here we experimentally demonstrate first, a quantified correlation between the real-time measured optical feature of the ambient and the off-line measured toxicity data. Finally, using these correlations we are presenting a novel methodology for real time characterisation of ambient toxicity based on the multi wavelength aerosol phase photoacoustic measurement. Ambient carbonaceous particulate matter is one of the most intensively studied atmospheric constituent in climate science nowadays. Beyond their climatic impact, atmospheric soot also plays an important role as an air pollutant that harms human health. Moreover, according to the latest scientific assessments ambient soot is the second most important anthropogenic emission source, while in health aspect its being one of the most harmful atmospheric constituents as well. Despite of its importance, generally accepted standard methodology for the quantitative determination of ambient toxicology is not available yet. Dominantly, ambient toxicology measurement is based on the posterior analysis of filter accumulated aerosol with limited time resolution. Most of the toxicological studies are based on operational definitions using different measurement protocols therefore the comprehensive analysis of the existing data set is really limited in many cases. The situation is further complicated by the fact that even during its relatively short residence time the physicochemical features of the aerosol can be masked significantly by the actual ambient factors. Therefore, decreasing the time resolution of the existing methodology and developing real-time methodology for air quality monitoring are really actual issues in the air pollution research. During the last decades many experimental studies have verified that there is a relation between the chemical composition and the absorption feature quantified by Absorption Angström Exponent (AAE) of the carbonaceous particulate matter. Although the scientific community are in the common platform that the PhotoAcoustic Spectroscopy (PAS) is the only methodology that can measure the light absorption by aerosol with accurate and reliable way so far, the multi-wavelength PAS which are able to selectively characterise the wavelength dependency of absorption has become only available in the last decade. In this study, the first results of the intensive measurement campaign focusing the physicochemical and toxicological characterisation of ambient particulate matter are presented. Here we demonstrate the complete microphysical characterisation of winter time urban ambient including optical absorption and scattering as well as size distribution using our recently developed state of the art multi-wavelength photoacoustic instrument (4λ-PAS), integrating nephelometer (Aurora 3000) as well as single mobility particle sizer and optical particle counter (SMPS+C). Beyond this on-line characterisation of the ambient, we also demonstrate the results of the eco-, cyto- and genotoxicity measurements of ambient aerosol based on the posterior analysis of filter accumulated aerosol with 6h time resolution. We demonstrate a diurnal variation of toxicities and AAE data deduced directly from the multi-wavelength absorption measurement results.

Keywords: photoacoustic spectroscopy, absorption Angström exponent, toxicity, Ames-test

Procedia PDF Downloads 305
26923 Social Crises and Its Impact on the Environment: Case Study of Jos, Plateau State

Authors: A. B. Benshak, M. G. Yilkangnha, V. Y. Nanle

Abstract:

Social crises and violent conflict can inflict direct (short-term) impact on the environment like poisoning water bodies, climate change, deforestation, destroying the chemical component of the soil due to the chemical and biological weapons used. It can also impact the environment indirectly (long-term), e.g., the destruction of political and economic infrastructure to manage the environmental resources and breaking down traditional conservation practices, population displacement and refugee flows which puts pressure on the already inadequate resources, infrastructure, facilities, amenities, services etc. This study therefore examines the impact of social crises on the environment in Jos Plateau State with emphasis on the long-term impact, analyze the relationship between crises and the environment and assess the perception of people on social crises because much work have concentrated on other repercussions such as the economy, health etc that are more politically expedient. The data for this research were collected mostly through interviews, questionnaire, dailies and reports on the subject matter. The data and findings were presented in tables and results showed that the environment is directly and indirectly impacted by crises and that these impacts can in turn result to a continuous cycle of violent activities if not addressed because of the inadequacies in the supply of infrastructural facilities, resources and so on caused by the inflow of displaced population. Recommendations were made on providing security to minimize conflict occurrences in Jos and its environs, minimizing the impact of social crises on the environment, provision of adequate infrastructural facilities to carter for population rise, renewal and regeneration schemes, etc. which will go a long way in mitigating the impact of crises on the environment.

Keywords: environment, impact, long-term, social crises

Procedia PDF Downloads 348
26922 Applying Theory of Self-Efficacy in Intelligent Transportation Systems by Potential Usage of Vehicle as a Sensor

Authors: Aby Nesan Raj, Sumil K. Raj, Sumesh Jayan

Abstract:

The objective of the study is to formulate a self-regulation model that shall enhance the usage of Intelligent Transportation Systems by understanding the theory of self-efficacy. The core logic of the self-regulation model shall monitor driver's behavior based on the situations related to the various sources of Self Efficacy like enactive mastery, vicarious experience, verbal persuasion and physiological arousal in addition to the vehicle data. For this study, four different vehicle data, speed, drowsiness, diagnostic data and surround camera views are considered. This data shall be given to the self-regulation model for evaluation. The oddness, which is the output of self-regulation model, shall feed to Intelligent Transportation Systems where appropriate actions are being taken. These actions include warning to the user as well as the input to the related transportation systems. It is also observed that the usage of vehicle as a sensor reduces the wastage of resource utilization or duplication. Altogether, this approach enhances the intelligence of the transportation systems especially in safety, productivity and environmental performance.

Keywords: emergency management, intelligent transportation system, self-efficacy, traffic management

Procedia PDF Downloads 249
26921 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy

Authors: Chhabi Nigam, S. Ramakrishnan

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.

Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR

Procedia PDF Downloads 218
26920 Psychological Distress Screening in Patients with Esophageal Cancer after Esophagectomy: A Scoping Review

Authors: Erietta-Christina Arnaoutaki, Stelios-Elion Bousi, Marinos Zachiotis, Simoni Zarkada, Alexandra Chrysagi, Mamdouh Fahad Alenazi, Dimitri Aristotle Raptis

Abstract:

Objective: This review aimed to evaluate the mental health status of patients with esophageal cancer following surgical treatment, as well as the role of psychological distress screening tests in this patient population. Methods: Studies reporting psychometric screening tools used in esophageal cancer patients after esophagectomy, published before January 2024 on PubMed, Scopus, and CENTRAL databases, were searched and analyzed. Results: Six non-randomized control trials were selected for inclusion in this scoping review, which involved 1059 patients undergoing esophagectomy for esophageal cancer. Among the included studies, five employed the Hospital Anxiety and Depression Scale (HADS) for anxiety and/or depression screening, while one used the MD Anderson Symptom Inventory for gastrointestinal cancer (MDASI-GI) for sadness screening. A range of time points was used to evaluate these patients: 102 patients were evaluated at 1 month, 230 patients at 3 months, 218 patients at 6 months, 653 patients at 12 months, and 154 patients at 24 months postoperatively. Analysis of data pooled from three studies employing the HADS revealed a prevalence of 19.45% for anxiety and 17.92% for depression at the 12-month follow-up and mean scores of 3.91 (3.12) and 3.56 (3.12) for the HADS anxiety (HADS-A) and depression (HADS-D) subscales respectively, at any time postoperatively. Conclusion: The findings show a neglected concern regarding the mental health of esophageal cancer survivors following surgical treatment. The use of psychometric screening tools is essential to address psychological distress and improve the quality of life of these patients.

Keywords: esophageal cancer, esophagectomy, psychological distress, anxiety, depression, psychometric tests, HADS, MDASI-GI

Procedia PDF Downloads 29
26919 The Relationship between Class Attendance and Performance of Industrial Engineering Students Enrolled for a Statistics Subject at the University of Technology

Authors: Tshaudi Motsima

Abstract:

Class attendance is key at all levels of education. At tertiary level many students develop a tendency of not attending all classes without being aware of the repercussions of not attending all classes. It is important for all students to attend all classes as they can receive first-hand information and they can benefit more. The student who attends classes is likely to perform better academically than the student who does not. The aim of this paper is to assess the relationship between class attendance and academic performance of industrial engineering students. The data for this study were collected through the attendance register of students and the other data were accessed from the Integrated Tertiary Software and the Higher Education Data Analyzer Portal. Data analysis was conducted on a sample of 93 students. The results revealed that students with medium predicate scores (OR = 3.8; p = 0.027) and students with low predicate scores (OR = 21.4, p < 0.001) were significantly likely to attend less than 80% of the classes as compared to students with high predicate scores. Students with examination performance of less than 50% were likely to attend less than 80% of classes than students with examination performance of 50% and above, but the differences were not statistically significant (OR = 1.3; p = 0.750).

Keywords: class attendance, examination performance, final outcome, logistic regression

Procedia PDF Downloads 138
26918 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm

Authors: Kristian Bautista, Ruben A. Idoy

Abstract:

A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.

Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization

Procedia PDF Downloads 237
26917 Multiphase Coexistence for Aqueous System with Hydrophilic Agent

Authors: G. B. Hong

Abstract:

Liquid-Liquid Equilibrium (LLE) data are measured for the ternary mixtures of water + 1-butanol + butyl acetate and quaternary mixtures of water + 1-butanol + butyl acetate + glycerol at atmospheric pressure at 313.15 K. In addition, isothermal Vapor–Liquid–Liquid Equilibrium (VLLE) data are determined experimentally at 333.15 K. The region of heterogeneity is found to increase as the hydrophilic agent (glycerol) is introduced into the aqueous mixtures. The experimental data are correlated with the NRTL model. The predicted results from the solution model with the model parameters determined from the constituent binaries are also compared with the experimental values.

Keywords: LLE, VLLE, hydrophilic agent, NRTL

Procedia PDF Downloads 247
26916 Timeliness of Doppler Ultrasound for Suspected DVT in Compliance with National Guidelines: 4-Hours and 24-Hour Target

Authors: Sadaf Shaikh, Aishwariya Kapoor, Mustabshira Tahir, Zille Huma

Abstract:

In accordance with national criteria, the purpose of this audit is to assess how quickly Doppler ultrasound can diagnose suspected deep vein thrombosis (DVT). In particular, it emphasizes the 4- and 24-hour ultrasound imaging targets that are advised by medical guidelines. In order to avoid consequences like pulmonary embolism or post-thrombotic syndrome, which might result from postponed treatment, it is imperative that DVT be diagnosed promptly. Data on patients who presented with suspected DVT during a certain time period were extracted from electronic health records as part of the retrospective analysis. The study's main goal is to evaluate the hospital's compliance with the deadlines for Doppler ultrasounds performed after a clinical suspicion of DVT.

Keywords: DVT, NICE compliance, Doppler ultrasound, d-dimer testing, vascular ultrasound, service delivery standards

Procedia PDF Downloads 18
26915 ISMARA: Completely Automated Inference of Gene Regulatory Networks from High-Throughput Data

Authors: Piotr J. Balwierz, Mikhail Pachkov, Phil Arnold, Andreas J. Gruber, Mihaela Zavolan, Erik van Nimwegen

Abstract:

Understanding the key players and interactions in the regulatory networks that control gene expression and chromatin state across different cell types and tissues in metazoans remains one of the central challenges in systems biology. Our laboratory has pioneered a number of methods for automatically inferring core gene regulatory networks directly from high-throughput data by modeling gene expression (RNA-seq) and chromatin state (ChIP-seq) measurements in terms of genome-wide computational predictions of regulatory sites for hundreds of transcription factors and micro-RNAs. These methods have now been completely automated in an integrated webserver called ISMARA that allows researchers to analyze their own data by simply uploading RNA-seq or ChIP-seq data sets and provides results in an integrated web interface as well as in downloadable flat form. For any data set, ISMARA infers the key regulators in the system, their activities across the input samples, the genes and pathways they target, and the core interactions between the regulators. We believe that by empowering experimental researchers to apply cutting-edge computational systems biology tools to their data in a completely automated manner, ISMARA can play an important role in developing our understanding of regulatory networks across metazoans.

Keywords: gene expression analysis, high-throughput sequencing analysis, transcription factor activity, transcription regulation

Procedia PDF Downloads 70
26914 The Power of the Proper Orthogonal Decomposition Method

Authors: Charles Lee

Abstract:

The Principal Orthogonal Decomposition (POD) technique has been used as a model reduction tool for many applications in engineering and science. In principle, one begins with an ensemble of data, called snapshots, collected from an experiment or laboratory results. The beauty of the POD technique is that when applied, the entire data set can be represented by the smallest number of orthogonal basis elements. It is the such capability that allows us to reduce the complexity and dimensions of many physical applications. Mathematical formulations and numerical schemes for the POD method will be discussed along with applications in NASA’s Deep Space Large Antenna Arrays, Satellite Image Reconstruction, Cancer Detection with DNA Microarray Data, Maximizing Stock Return, and Medical Imaging.

Keywords: reduced-order methods, principal component analysis, cancer detection, image reconstruction, stock portfolios

Procedia PDF Downloads 90
26913 A Reflection of the Contemporary Life of Urban People Through Mixed Media Art

Authors: Van Huong Mai, Kanokwan Nithiratphat, Adool Booncham

Abstract:

The Movement of Contemporary Life consisted of two purposes, which were to study the movement and development of the modern life and to create the visual arts, which were paintings expressed via the form of apartment buildings was used from mixed media (digital printing and acrylic painting on canvas) which conveyed the rapid pace of modern life leading to diverse movements in viewer’s feeling. The operation of this creation was collected field data, documentary data, and influence from creative work. The data analysis was analyzed in order to theme, form, technique, and process to satisfy of concept and special character of the pieces.

Keywords: movement, contemporary life, visual art, acrylic painting, digital art, urban space

Procedia PDF Downloads 103
26912 In the Conundrum between Tradition and Modernity: A Socio-Cultural Study to Understand Crib Death in Malda, West Bengal

Authors: Prama Mukhopadhyay, Rishika Mukhopadhyay

Abstract:

The twentieth century has seen the world getting divided into three distinct blocks, created by the proponents of the mainstream developmental discourse. India, which has now gained the label of being a ‘developing nation’, stands in between these three groups, as it constantly tries to ‘catch up’ and emulate the developmental standards of the ‘west’. In this endeavour, we find our country trying really hard to blindly replicate the health care infrastructures of the ‘first worlds’, without realizing the needs of evaluating the ground reality. In such a situation, the sudden outbreak of child death in the district of Malda, WB, poses an obvious questions towards the kind of development that our country has been engaging in, ever since its Post Colonial inception. Through this paper we thus try to understand the harsh veracity of the health care facility that exists in rural Bengal, and thereby challenge the conventional notion of ‘health-care’ as is normally discussed in the mainstream developmental discourse. Grounding our research work on detailed ethnography and through the help of questionnaire, interviews and focus group discussions with the local government officials(BDOs), health workers (ICDS, ASHA workers, ANHM and BMOHs) and members of families with experiences of child deaths, we have tried to find out the real and humane factors behind the sudden rise of reported infant deaths in the district, issues which are normally neglected and left out while discussing and evaluating IMR in the mainstream studies on health care and planning in our nation. Therefore the main aim of this paper is to try and look at child death from a ‘wider perspective’, where it is seen from an eye not bounded by the common registers of caste, class and religion. This paper, would thus be an eye opener in some sense, bringing in stories from the rural belt of the country; where the people are regularly torn between the binaries of the developing and shining modernity of ‘India’ which now gets ready to run the last lap and gain the status of becoming a ‘developed nation’ by 2020, and the staggering, dark traditional ‘ Bharat, which lags behind.

Keywords: child mortality, development discourse, health care, tradition and modernity

Procedia PDF Downloads 397
26911 Machine Learning Based Digitalization of Validated Traditional Cognitive Tests and Their Integration to Multi-User Digital Support System for Alzheimer’s Patients

Authors: Ramazan Bakir, Gizem Kayar

Abstract:

It is known that Alzheimer and Dementia are the two most common types of Neurodegenerative diseases and their visibility is getting accelerated for the last couple of years. As the population sees older ages all over the world, researchers expect to see the rate of this acceleration much higher. However, unfortunately, there is no known pharmacological cure for both, although some help to reduce the rate of cognitive decline speed. This is why we encounter with non-pharmacological treatment and tracking methods more for the last five years. Many researchers, including well-known associations and hospitals, lean towards using non-pharmacological methods to support cognitive function and improve the patient’s life quality. As the dementia symptoms related to mind, learning, memory, speaking, problem-solving, social abilities and daily activities gradually worsen over the years, many researchers know that cognitive support should start from the very beginning of the symptoms in order to slow down the decline. At this point, life of a patient and caregiver can be improved with some daily activities and applications. These activities include but not limited to basic word puzzles, daily cleaning activities, taking notes. Later, these activities and their results should be observed carefully and it is only possible during patient/caregiver and M.D. in-person meetings in hospitals. These meetings can be quite time-consuming, exhausting and financially ineffective for hospitals, medical doctors, caregivers and especially for patients. On the other hand, digital support systems are showing positive results for all stakeholders of healthcare systems. This can be observed in countries that started Telemedicine systems. The biggest potential of our system is setting the inter-user communication up in the best possible way. In our project, we propose Machine Learning based digitalization of validated traditional cognitive tests (e.g. MOCA, Afazi, left-right hemisphere), their analyses for high-quality follow-up and communication systems for all stakeholders. R. Bakir and G. Kayar are with Gefeasoft, Inc, R&D – Software Development and Health Technologies company. Emails: ramazan, gizem @ gefeasoft.com This platform has a high potential not only for patient tracking but also for making all stakeholders feel safe through all stages. As the registered hospitals assign corresponding medical doctors to the system, these MDs are able to register their own patients and assign special tasks for each patient. With our integrated machine learning support, MDs are able to track the failure and success rates of each patient and also see general averages among similarly progressed patients. In addition, our platform also supports multi-player technology which helps patients play with their caregivers so that they feel much safer at any point they are uncomfortable. By also gamifying the daily household activities, the patients will be able to repeat their social tasks and we will provide non-pharmacological reminiscence therapy (RT – life review therapy). All collected data will be mined by our data scientists and analyzed meaningfully. In addition, we will also add gamification modules for caregivers based on Naomi Feil’s Validation Therapy. Both are behaving positively to the patient and keeping yourself mentally healthy is important for caregivers. We aim to provide a therapy system based on gamification for them, too. When this project accomplishes all the above-written tasks, patients will have the chance to do many tasks at home remotely and MDs will be able to follow them up very effectively. We propose a complete platform and the whole project is both time and cost-effective for supporting all stakeholders.

Keywords: alzheimer’s, dementia, cognitive functionality, cognitive tests, serious games, machine learning, artificial intelligence, digitalization, non-pharmacological, data analysis, telemedicine, e-health, health-tech, gamification

Procedia PDF Downloads 141
26910 Mining Educational Data to Support Students’ Major Selection

Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri

Abstract:

This paper aims to create the model for student in choosing an emphasized track of student majoring in computer science at Suan Sunandha Rajabhat University. The objective of this research is to develop the suggested system using data mining technique to analyze knowledge and conduct decision rules. Such relationships can be used to demonstrate the reasonableness of student choosing a track as well as to support his/her decision and the system is verified by experts in the field. The sampling is from student of computer science based on the system and the questionnaire to see the satisfaction. The system result is found to be satisfactory by both experts and student as well.

Keywords: data mining technique, the decision support system, knowledge and decision rules, education

Procedia PDF Downloads 428
26909 Development of a Bi-National Thyroid Cancer Clinical Quality Registry

Authors: Liane J. Ioannou, Jonathan Serpell, Joanne Dean, Cino Bendinelli, Jenny Gough, Dean Lisewski, Julie Miller, Win Meyer-Rochow, Stan Sidhu, Duncan Topliss, David Walters, John Zalcberg, Susannah Ahern

Abstract:

Background: The occurrence of thyroid cancer is increasing throughout the developed world, including Australia and New Zealand, and since the 1990s has become the fastest increasing malignancy. Following the success of a number of institutional databases that monitor outcomes after thyroid surgery, the Australian and New Zealand Endocrine Surgeons (ANZES) agreed to auspice the development of a bi-national thyroid cancer registry. Objectives: To establish a bi-national population-based clinical quality registry with the aim of monitoring and improving the quality of care provided to patients diagnosed with thyroid cancer in Australia and New Zealand. Patients and Methods: The Australian and New Zealand Thyroid Cancer Registry (ANZTCR) captures clinical data for all patients, over the age of 18 years, diagnosed with thyroid cancer, confirmed by histopathology report, that have been diagnosed, assessed or treated at a contributing hospital. Data is collected by endocrine surgeons using a web-based interface, REDCap, primarily via direct data entry. Results: A multi-disciplinary Steering Committee was formed, and with operational support from Monash University the ANZTCR was established in early 2017. The pilot phase of the registry is currently operating in Victoria, New South Wales, Queensland, Western Australia and South Australia, with over 30 sites expected to come on board across Australia and New Zealand in 2018. A modified-Delphi process was undertaken to determine the key quality indicators to be reported by the registry, and a minimum dataset was developed comprising information regarding thyroid cancer diagnosis, pathology, surgery, and 30-day follow up. Conclusion: There are very few established thyroid cancer registries internationally, yet clinical quality registries have shown valuable outcomes and patient benefits in other cancers. The establishment of the ANZTCR provides the opportunity for Australia and New Zealand to further understand the current practice in the treatment of thyroid cancer and reasons for variation in outcomes. The engagement of endocrine surgeons in supporting this initiative is crucial. While the pilot registry has a focus on early clinical outcomes, it is anticipated that future collection of longer-term outcome data particularly for patients with the poor prognostic disease will add significant further value to the registry.

Keywords: thyroid cancer, clinical registry, population health, quality improvement

Procedia PDF Downloads 194
26908 SPBAC: A Semantic Policy-Based Access Control for Database Query

Authors: Aaron Zhang, Alimire Kahaer, Gerald Weber, Nalin Arachchilage

Abstract:

Access control is an essential safeguard for the security of enterprise data, which controls users’ access to information resources and ensures the confidentiality and integrity of information resources [1]. Research shows that the more common types of access control now have shortcomings [2]. In this direction, to improve the existing access control, we have studied the current technologies in the field of data security, deeply investigated the previous data access control policies and their problems, identified the existing deficiencies, and proposed a new extension structure of SPBAC. SPBAC extension proposed in this paper aims to combine Policy-Based Access Control (PBAC) with semantics to provide logically connected, real-time data access functionality by establishing associations between enterprise data through semantics. Our design combines policies with linked data through semantics to create a "Semantic link" so that access control is no longer per-database and determines that users in each role should be granted access based on the instance policy, and improves the SPBAC implementation by constructing policies and defined attributes through the XACML specification, which is designed to extend on the original XACML model. While providing relevant design solutions, this paper hopes to continue to study the feasibility and subsequent implementation of related work at a later stage.

Keywords: access control, semantic policy-based access control, semantic link, access control model, instance policy, XACML

Procedia PDF Downloads 98
26907 The Connection between Body Composition and Blood Samples Results in Aesthetic Sports

Authors: Réka Kovács, György Téglásy, Szilvia Boros

Abstract:

Introduction: Aim of the Study: Low body fat percentage frequently occurs in aesthetic sports. Because of the unrealistic expectations, their quantity and quality of nutrition intake are inadequate. This can be linked to several health issues which appear in blood samples (iron, ferritin, creatine kinase, etc.). Our retrospective study aimed to investigate the connection between body composition (InBody 770 monitor) and blood samples test results among elite adolescent (14-18 years) and adult (19-28 years) aesthetic athletes. Methods: Data collection happened between 01.08.2022. and 15.08.2022 in National Institute for Sports Medicine, Budapest. The final group consisted of 111 athletes (n=111; adolescents: n=68, adults: n=43). We used descriptive statistics, a two-sample t-test, and correlation analysis with Microsoft Office Excel 2007 software. Our results were considered significant if p<0,05. Results: In 33,3% (37/111) we found low body fat percentage (girls and women: <12%, boys and men: <8%) and in 64% (71/111) high creatine kinase levels. Differences were found mainly in the adolescent group. We found a correlation between body weight and total cholesterol, visceral fat and triglyceride, hematocrit and iron-linking capacity, moreover body fat percentage and ferritin levels. Discussion: It is important to start education about sports nutrition at an early age. The connection between low body fat percentage, serum iron, triglyceride, and ferritin levels refers to the fact that the nutrition intake of the athletes is inadequate. High blood concentrations of creatine kinase may show a lack of proper recovery, which is essential to improve health and performance.

Keywords: body fat percentage, creatine kinase, recovery, sports nutrition

Procedia PDF Downloads 132
26906 A Regression Analysis Study of the Applicability of Side Scan Sonar based Safety Inspection of Underwater Structures

Authors: Chul Park, Youngseok Kim, Sangsik Choi

Abstract:

This study developed an electric jig for underwater structure inspection in order to solve the problem of the application of side scan sonar to underwater inspection, and analyzed correlations of empirical data in order to enhance sonar data resolution. For the application of tow-typed sonar to underwater structure inspection, an electric jig was developed. In fact, it was difficult to inspect a cross-section at the time of inspection with tow-typed equipment. With the development of the electric jig for underwater structure inspection, it was possible to shorten an inspection time over 20%, compared to conventional tow-typed side scan sonar, and to inspect a proper cross-section through accurate angle control. The indoor test conducted to enhance sonar data resolution proved that a water depth, the distance from an underwater structure, and a filming angle influenced a resolution and data quality. Based on the data accumulated through field experience, multiple regression analysis was conducted on correlations between three variables. As a result, the relational equation of sonar operation according to a water depth was drawn.

Keywords: underwater structure, SONAR, safety inspection, resolution

Procedia PDF Downloads 268
26905 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data

Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh

Abstract:

Imperialist competitive algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population based algorithm which has achieved a great performance in comparison to other meta-heuristics. This study is about developing enhanced ICA approach to solve the cell formation problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.

Keywords: cell formation problem, group technology, imperialist competitive algorithm, sequence data

Procedia PDF Downloads 457
26904 Intervention To Prevent Infections And Reinfections With Intestinal Parasites In People Living With Human Immunodeficiency Virus In Some Parts Of Eastern Cape, South Africa

Authors: Ifeoma Anozie, Teka Apalata, Dominic Abaver

Abstract:

Introduction: Despite use of Anti-retroviral therapy to reduce the incidence of opportunistic infections among HIV/AIDS patients, rapid episodes of re-infection after deworming are still common occurrences because pharmaceutical intervention alone does not prevent reinfection. Unsafe water and inadequate personal hygiene and parasitic infections are widely expected to accelerate the progression of HIV infection. This is because the chronic immunosuppression of HIV infection encourages susceptibility to opportunistic (including parasitic) infections which is linked to CD4+ cell count of <200 cells/μl. Intestinal parasites such as G. intestinalis and Entamoeba spp are ubiquitous protozoa that remain infectious over a long time in an environment and show resistance to standard disinfection. To control re-infection, the social factors that underpin the prevention need to be controlled. This study aims at prevention of intestinal parasites in people living with HIV/AIDS by using a treatment, hygiene education and sanitation (THEdS) bundle approach. Methods: This study was conducted in four clinics (Ngangelizwe health centre, Tsolo gateway clinic, Idutywa health centre and Nqamakwe health centre) across the seven districts in Eastern cape, South Africa. The four clinics were divided in two: experimental and control, for the purpose of intervention. Data was collected from March 2019 to February 2020. Six hundred participants were screened for intestinal parasitic infections. Stool samples were collected and analysed twice: before (Pre-test infection screening) and after (Post-test re-infection) THEdS bundle intervention. The experimental clinics received full intervention package, which include therapeutic treatment, health education on personal hygiene and sanitation training, while the control clinics received only therapeutic treatment for those found with intestinal parasitic infections. Results: Baseline prevalence of Intestinal Parasites isolated shows 12 intestinal parasites with overall frequency of 65, with Ascaris lumbricoides having most frequency (44.6%). The intervention had a cure rate of 60%, with odd ratio of 1.42, which indicates that the intervention group is 1.42 times more likely of parasite clearing as compared to the control group. The relative risk ratio of 1.17 signifies that there is 1.17 times more likelihood to clear intestinal parasite if there no intervention. Discussion and conclusion: Infection with multiple parasites can cause health defects, especially among HIV/AIDS patients. Efficiency of some HIV vaccines in HIV/AIDS patients is affected because treatment of re-infection amplifies drug resistance, affects the efficacy of the front-line drugs, and still permits transmission. In South Africa, treatment of intestinal parasites is usually offered to clinic attending HIV/AIDS patients upon suspicion but not as a mandate for patients being initiated into Antiretroviral (ART) program. The effectiveness of THEdS bundle advocates for inclusiveness of mandatory screening for intestinal parasitic infections among attendees of HIV/Aids clinics on regular basis.

Keywords: cure rate, , HIV/AIDS patients, intestinal parasites, intervention studies, reinfection rate

Procedia PDF Downloads 78
26903 A Mixed-Method Study Exploring Expressive Writing as a Brief Intervention Targeting Mental Health and Wellbeing in Higher Education Students: A Focus on the Qualitative Findings

Authors: Deborah Bailey-Rodriguez, Maria Paula Valdivieso Rueda, Gemma Reynolds

Abstract:

In recent years, the mental health of Higher Education (HE) students has been a growing concern. This has been further exacerbated by the stresses associated with the Covid-19 pandemic, placing students at even greater risk of developing mental health issues. Support available to students in HE tends to follow an established and traditional route. The demands for counseling services have grown, not only with the increase in student numbers but with the number of students seeking support for mental health issues, with 94% of HE institutions recently reporting an increase in the need for counseling services. One way of improving the well-being and mental health of HE students is through the use of brief interventions, such as expressive writing (EW). This intervention involves encouraging individuals to write continuously for at least 15-20 minutes for three to five sessions (often on consecutive days) about their deepest thoughts and feelings to explore significant personal experiences in a meaningful way. Given the brevity, simplicity and cost-effectiveness of EW, this intervention has considerable potential as an intervention for HE populations. The current study, therefore, employed a mixed-methods design to explore the effectiveness of EW in reducing anxiety, general stress, academic stress and depression in HE students while improving well-being. HE students at MDX were randomly assigned to one of three conditions: (1) The UniExp-EW group was required to write about their emotions and thoughts about any stressors they have faced that are directly relevant to their university experience (2) The NonUniExp-EW group was required to write about their emotions and thoughts about any stressors that are NOT directly relevant to their university experience, and (3) The Control group were required to write about how they spent their weekend, with no reference to thoughts or emotions, and without thinking about university. Participants were required to carry out the EW intervention for 15 minutes per day for four consecutive days. Baseline mental health and well-being measures were taken before the intervention via a battery of standardized questionnaires. Following completion of the intervention on day four, participants were required to complete the questionnaires a second time and again one week later. Participants were also invited to attend focus groups to discuss their experience of the intervention. This will allow an in-depth investigation into students’ perceptions of EW as an effective intervention to determine whether they would choose to use this intervention in the future. Preliminary findings will be discussed at the conference as well as a discussion of the important implications of the findings. The study is fundamental because if EW is an effective intervention for improving mental health and well-being in HE students, its brevity and simplicity mean it can be easily implemented and can be freely available to students. Improving the mental health and well-being of HE students can have knock-on implications for improving academic skills and career development.

Keywords: expressive writing, higher education, psychology in education, mixed-methods, mental health, academic stress

Procedia PDF Downloads 73
26902 Establishment of Bit Selective Mode Storage Covert Channel in VANETs

Authors: Amarpreet Singh, Kimi Manchanda

Abstract:

Intended for providing the security in the VANETS (Vehicular Ad hoc Network) scenario, the covert storage channel is implemented through data transmitted between the sender and the receiver. Covert channels are the logical links which are used for the communication purpose and hiding the secure data from the intruders. This paper refers to the Establishment of bit selective mode covert storage channels in VANETS. In this scenario, the data is being transmitted with two modes i.e. the normal mode and the covert mode. During the communication between vehicles in this scenario, the controlling of bits is possible through the optional bits of IPV6 Header Format. This implementation is fulfilled with the help of Network simulator.

Keywords: covert mode, normal mode, VANET, OBU, on-board unit

Procedia PDF Downloads 370
26901 Wearable Antenna for Diagnosis of Parkinson’s Disease Using a Deep Learning Pipeline on Accelerated Hardware

Authors: Subham Ghosh, Banani Basu, Marami Das

Abstract:

Background: The development of compact, low-power antenna sensors has resulted in hardware restructuring, allowing for wireless ubiquitous sensing. The antenna sensors can create wireless body-area networks (WBAN) by linking various wireless nodes across the human body. WBAN and IoT applications, such as remote health and fitness monitoring and rehabilitation, are becoming increasingly important. In particular, Parkinson’s disease (PD), a common neurodegenerative disorder, presents clinical features that can be easily misdiagnosed. As a mobility disease, it may greatly benefit from the antenna’s nearfield approach with a variety of activities that can use WBAN and IoT technologies to increase diagnosis accuracy and patient monitoring. Methodology: This study investigates the feasibility of leveraging a single patch antenna mounted (using cloth) on the wrist dorsal to differentiate actual Parkinson's disease (PD) from false PD using a small hardware platform. The semi-flexible antenna operates at the 2.4 GHz ISM band and collects reflection coefficient (Γ) data from patients performing five exercises designed for the classification of PD and other disorders such as essential tremor (ET) or those physiological disorders caused by anxiety or stress. The obtained data is normalized and converted into 2-D representations using the Gabor wavelet transform (GWT). Data augmentation is then used to expand the dataset size. A lightweight deep-learning (DL) model is developed to run on the GPU-enabled NVIDIA Jetson Nano platform. The DL model processes the 2-D images for feature extraction and classification. Findings: The DL model was trained and tested on both the original and augmented datasets, thus doubling the dataset size. To ensure robustness, a 5-fold stratified cross-validation (5-FSCV) method was used. The proposed framework, utilizing a DL model with 1.356 million parameters on the NVIDIA Jetson Nano, achieved optimal performance in terms of accuracy of 88.64%, F1-score of 88.54, and recall of 90.46%, with a latency of 33 seconds per epoch.

Keywords: antenna, deep-learning, GPU-hardware, Parkinson’s disease

Procedia PDF Downloads 16
26900 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation

Procedia PDF Downloads 138