Search results for: care networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6481

Search results for: care networks

2731 The Use of STIMULAN Resorbable Antibiotic Beads in Conjunction with Autologous Tissue Transfer to Treat Recalcitrant Infections and Osteomyelitis in Diabetic Foot Wounds

Authors: Hayden R Schott, John M Felder III

Abstract:

Introduction: Chronic lower extremity wounds in the diabetic and vasculopathic populations are associated with a high degree of morbidity.When wounds require more extensive treatment than can be offered by wound care centers, more aggressive solutions involve local tissue transfer and microsurgical free tissue transfer for achieving definitive soft tissue coverage. These procedures of autologous tissue transfer (ATT) offer resilient, soft tissue coverage of limb-threatening wounds and confer promising limb salvage rates. However, chronic osteomyelitis and recalcitrant soft tissue infections are common in severe diabetic foot wounds and serve to significantly complicate ATT procedures. Stimulan is a resorbable calcium sulfate antibiotic carrier. The use of stimulan antibiotic beads to treat chronic osteomyelitis is well established in the orthopedic and plastic surgery literature. In these procedures, the beads are placed beneath the skin flap to directly deliver antibiotics to the infection site. The purpose of this study was to quantify the success of Stimulan antibiotic beads in treating recalcitrant infections in patients with diabetic foot wounds receiving ATT. Methods: A retrospective review of clinical and demographic information was performed on patients who underwent ATT with the placement of Stimulan antibiotic beads for attempted limb salvage from 2018-21. Patients were analyzed for preoperative wound characteristics, demographics, infection recurrence, and adverse outcomes as a result of product use. The primary endpoint was 90 day infection recurrence, with secondary endpoints including 90 day complications. Outcomes were compared using basic statistics and Fisher’s exact tests. Results: In this time span, 14 patients were identified. At the time of surgery, all patients exhibited clinical signs of active infection, including positive cultures and erythema. 57% of patients (n=8) exhibited chronic osteomyelitis prior to surgery, and 71% (n=10) had exposed bone at the wound base. In 57% of patients (n=8), Stimulan beads were placed beneath a free tissue flap and beneath a pedicle tissue flap in 42% of patients (n=6). In all patients, Stimulan beads were only applied once. Recurrent infections were observed in 28% of patients (n=4) at 90 days post-op, and flap nonadherence was observed in 7% (n=1). These were the only Stimulan related complications observed. Ultimately, lower limb salvage was successful in 85% of patients (n=12). Notably, there was no significant association between the preoperative presence of osteomyelitis and recurrent infections. Conclusions: The use of Stimulanantiobiotic beads to treat recalcitrant infections in patients receiving definitive skin coverage of diabetic foot wounds does not appear to demonstrate unnecessary risk. Furthermore, the lack of significance between the preoperative presence of osteomyelitis and recurrent infections indicates the successful use of Stimulan to dampen infection in patients with osteomyelitis, as is consistent with the literature. Further research is needed to identify Stimulan as the significant contributor to infection treatment using future cohort and case control studies with more patients. Nonetheless, the use of Stimulan antibiotic beads in patients with diabetic foot wounds demonstrates successful infection suppression and maintenance of definitive soft tissue coverage.

Keywords: wound care, stimulan antibiotic beads, free tissue transfer, plastic surgery, wound, infection

Procedia PDF Downloads 91
2730 Communication Layer Security in Smart Farming: A Survey on Wireless Technologies

Authors: Hossein Mohammadi Rouzbahani, Hadis Karimipour, Evan Fraser, Ali Dehghantanha, Emily Duncan, Arthur Green, Conchobhair Russell

Abstract:

Human population growth has driven rising demand for food that has, in turn, imposed huge impacts on the environment. In an effort to reconcile our need to produce more sustenance while also protecting the world’s ecosystems, farming is becoming more reliant on smart tools and communication technologies. Developing a smart farming framework allows farmers to make more efficient use of inputs, thus protecting water quality and biodiversity habitat. Internet of Things (IoT), which has revolutionized every sphere of the economy, is being applied to agriculture by connecting on-farm devices and providing real-time monitoring of everything from environmental conditions to market signals through to animal health data. However, utilizing IoT means farming networks are now vulnerable to malicious activities, mostly when wireless communications are highly employed. With that in mind, this research aims to review different utilized communication technologies in smart farming. Moreover, possible cyber-attacks are investigated to discover the vulnerabilities of communication technologies considering the most frequent cyber-attacks that have been happened.

Keywords: smart farming, Internet of Things, communication layer, cyber-attack

Procedia PDF Downloads 245
2729 An Efficient Encryption Scheme Using DWT and Arnold Transforms

Authors: Ali Abdrhman M. Ukasha

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. The color image is decomposed into red, green, and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using a key image that has same original size and is generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours of color image recovery can be obtained with accepted level of distortion using Canny edge detector. Experiments have demonstrated that proposed algorithm can fully encrypt 2D color image and completely reconstructed without any distortion. It has shown that the color image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: color image, wavelet transform, edge detector, Arnold transform, lossy image encryption

Procedia PDF Downloads 487
2728 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

Authors: Jong Han Joo, Jung Hoon Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi

Abstract:

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Keywords: acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector

Procedia PDF Downloads 375
2727 Social and Political Economy of Paid and Unpaid Work: Work of Women Home Based Workers in National Capital Region (NCR), India

Authors: Sudeshna Sengupta

Abstract:

Women’s work lives weave a complex fabric of myriad work relations and complex structures. Lives, when seen from the lens of work, is a saga of conjugated oppression by intertwined structures that are vertically and horizontally interwoven in a very complex manner. Women interact with multiple institutions through their work. The interactions and interplay of institutions shape their organization of work. They intersperse productive work with reproductive work, unpaid economic activities with unpaid care work, and all kinds of activities with leisure and self-care. The proposed paper intends to understand how women working as home-based workers in the National Capital Region (NCR) of India are organizing their everyday work, and how the organization of work is influenced by the interplay of structures. Situating itself in a multidisciplinary theoretical framework, this paper brings out how the gendering of work is playing out in the political, economic and social domain and shaping the work-life within the family, and in the paid workspace. The paper will use a primary data source, which is qualitative in nature. It will comprise 15 qualitative interviews of women home-based workers from the National Capital Region. The research uses a life history approach. The sampling was purposive using snowballing as a method. The dataset is part of the primary data (qualitative) collected for the ongoing Ph.D. work in Gender Studies at Ambedkar University Delhi. The home-based workers interviewed were in “non-factory” wage relations based on piece rates with flexible working hours. Their workplaces were their own homes with no spatial divide between living spaces and workspaces. Home-based workers were recognized as a group in the domain of labor economics in the 1980s. When menial work was cheaper than machine work, the capital owners preferred to outsource work as home-based work to women. These production spaces are fragmented and the identity of gender is created within labor processes to favor material accumulation. Both the employers and employees acknowledged the material gain of the capital owner when work was subcontracted to women at home. Simultaneously the market reinforced women’s reproductive role by conforming to patriarchal ideology. The contractors played an important role in implementing localized control on workers and also in finding workers for fragmented, gendered production processes. Their presence helped the employers in bringing together multiple forms of oppression that ranged from creating a structure to flout laws by creating shadow employers. It created an intertwined social and economic structure as well as a workspace where the line between productive and reproductive work gets blurred. The state invisibilized itself either by keeping the sector out of the domain of laws or by not implementing its own laws regulating working conditions or social security. It allowed the local hierarchy to function and define localized working conditions. The productive reproductive continuum reveals a labor control that influenced both the productive and reproductive work of women.

Keywords: informal sector, paid work, women workers, labor processes

Procedia PDF Downloads 165
2726 Genesis of Entrepreneur Business Models in New Ventures

Authors: Arash Najmaei, Jo Rhodes, Peter Lok, Zahra Sadeghinejad

Abstract:

In this article, we endeavor to explore how a new business model comes into existence in the Australian cloud-computing eco-system. Findings from multiple case study methodology reveal that to develop a business model new ventures adopt a three-phase approach. In the first phase, labelled as business model ideation (BMID) various ideas for a viable business model are generated from both internal and external networks of the entrepreneurial team and the most viable one is chosen. Strategic consensus and commitment are generated in the second phase. This phase is a business modelling strategic action phase. We labelled this phase as business model strategic commitment (BMSC) because through commitment and the subsequent actions of executives resources are pooled, coordinated and allocated to the business model. Three complementary sets of resources shape the business model: managerial (MnRs), marketing (MRs) and technological resources (TRs). The third phase is the market-test phase where the business model is reified through the delivery of the intended value to customers and conversion of revenue into profit. We labelled this phase business model actualization (BMAC). Theoretical and managerial implications of these findings will be discussed and several directions for future research will be illuminated.

Keywords: entrepreneur business model, high-tech venture, resources, conversion of revenue

Procedia PDF Downloads 448
2725 Mentoring in Translation: A Tool for Future Translators

Authors: Ana Sofia Saldanha

Abstract:

The globalization is changing the translation world day after day, year after year. The need to know more about new technologies, clients, companies and social networks is becoming more and more demanding and competitive. The recently graduated translators usually do not know where to go, what to do or even who to contact to start their careers in translation. It is well known that there are innumerous webinars, books, blogs, webpages and even Facebook pages indicating what to do, what not to do, rates, how your CV should look like, etc. but are these pieces of advice of real translators? Translators, who work daily with clients, who understand their demands, requests, questions? As far as today`s trends, the answer is NO. Most of these pieces of advice are just theoretical and far away from the real translation world. Therefore, mentoring is becoming a very important tool to help and guide new translators starting their career. An effective and well-oriented mentoring is a powerful way to orient these translators on how to create their CVs, where to send CVs, how to approach clients, how to answer emails and how to negotiate rates in an efficient way. Mentoring is crucial when properly delivered by professional and experienced translators, to help developing careers. The advice and orientation sessions are almost a 'weapon' to destroy the barriers created by opinions, by influences or even by universities. This new trend is the future path of new translators and is the future of the translation industry and professionals, however minds and spirits need to be opened and engaged in this new way of developing skills.

Keywords: mentoring, translation, translators, orientation, professional path

Procedia PDF Downloads 180
2724 Gender and Advertisements: A Content Analysis of Pakistani Prime Time Advertisements

Authors: Aaminah Hassan

Abstract:

Advertisements carry a great potential to influence our lives because they are crafted to meet particular ends. Stereotypical representation in advertisements is capable of forming unconscious attitudes among people towards any gender and their abilities. This study focuses on gender representation in Pakistani prime time advertisements. For this purpose, 13 advertisements were selected from three different categories of foods and beverages, cosmetics, cell phones and cellular networks from the prime time slots of one of the leading Pakistani entertainment channel, ‘Urdu 1’. Both quantitative and qualitative analyses are carried out for range of variables like gender, age, roles, activities, setting, appearance and voice overs. The results revealed that gender representation in advertisements is stereotypical. Moreover, in few instances, the portrayal of women is not only culturally inappropriate but is demeaning to the image of women as well. Their bodily charm is used to promote products. Comparing different entertainment channels for their prime time advertisements and broadening the scope of this research will yield greater implications for the researchers who want to carry out the similar research. It is hoped that the current study would help in the promotion of media literacy among the viewers and media authorities in Pakistan.

Keywords: Advertisements, Content Analysis, Gender, Prime time

Procedia PDF Downloads 215
2723 [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function

Authors: Ahmed Noor Al-Qayyim

Abstract:

During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge.

Keywords: bridge assessment, health monitoring, damage detection, frequency response function (FRF), signal processing, structure identification

Procedia PDF Downloads 350
2722 Geoecological Problems of Karst Waters in Chiatura Municipality, Georgia

Authors: Liana Khandolishvili, Giorgi Dvalashvili

Abstract:

Karst waters in the world play an important role in the water supply. Among them, the Vaucluse in Chiatura municipality (Georgia) is used as drinking water and is irreplaceable for the local population. Accordingly, it is important to assess their geo-ecological conditions and take care to maintain sustainability. The aim of the paper is to identify the hazards of pollution of underground waters in the karst environment and to develop a scheme for their protection, which will take into consideration both the hydrogeological characteristics and the role of humans. To achieve this goal, the EPIK method was selected using which an epikarst zone of the study area was studied in detail, as well as the protective cover, infiltration conditions and frequency of karst network development, after which the conditions of karst waters in Chiatura municipality was assessed, their main pollutants were identified and the recommendations were prepared for their protection. The results of the study showed that the karst water pollution rate in Chiatura municipality is highest, where karst-fissured layers are represented and intensive extraction works are underway. The EPIK method is innovative in Georgia and was first introduced on the example of karst waters of Chiatura municipality.

Keywords: cave, EPIK method, pollution, Karst waters, geology, geography, ecology

Procedia PDF Downloads 95
2721 Social Media Impact on Startup Entrepreneurial Intention: Evidence from Greece

Authors: Panagiotis I. Mallios, Vassilis S. Moustakis

Abstract:

The research reported herein presents a conceptual model that explores the relationship between social media factors and entrepreneurial intention, with a focus on the Greek startup ecosystem. The significance of the study is that social media have gained importance in explaining the entrepreneurial process, and through them, nascent and potential entrepreneurs seem to get inspired and motivated to initiate their businesses. The research methodology employed in this study included a qualitative research approach, utilizing in-depth interviews with a sample of 15 startup entrepreneurs providing valuable retrospective information. The data collected were analyzed using the content analysis method. The major findings of the study are that social media factors such as usefulness, influence, and credibility have a significant impact on entrepreneurial intention. We also found that social media can be a powerful tool for entrepreneurs to access resources, knowledge and networks that can help them in their venture creation. Overall, this research contributes to the entrepreneurship literature by uncovering the relationship between social media factors and entrepreneurial intention and has implications for entrepreneurial education, policymakers, and official partners, highlighting the potential of social media to enhance the startup ecosystem.

Keywords: entrepreneurial intention, social media, start up ecosystem, entrepreneurship

Procedia PDF Downloads 171
2720 Multi-Objective Four-Dimensional Traveling Salesman Problem in an IoT-Based Transport System

Authors: Arindam Roy, Madhushree Das, Apurba Manna, Samir Maity

Abstract:

In this research paper, an algorithmic approach is developed to solve a novel multi-objective four-dimensional traveling salesman problem (MO4DTSP) where different paths with various numbers of conveyances are available to travel between two cities. NSGA-II and Decomposition algorithms are modified to solve MO4DTSP in an IoT-based transport system. This IoT-based transport system can be widely observed, analyzed, and controlled by an extensive distribution of traffic networks consisting of various types of sensors and actuators. Due to urbanization, most of the cities are connected using an intelligent traffic management system. Practically, for a traveler, multiple routes and vehicles are available to travel between any two cities. Thus, the classical TSP is reformulated as multi-route and multi-vehicle i.e., 4DTSP. The proposed MO4DTSP is designed with traveling cost, time, and customer satisfaction as objectives. In reality, customer satisfaction is an important parameter that depends on travel costs and time reflects in the present model.

Keywords: multi-objective four-dimensional traveling salesman problem (MO4DTSP), decomposition, NSGA-II, IoT-based transport system, customer satisfaction

Procedia PDF Downloads 112
2719 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: disentanglement, face detection, generative adversarial networks, video surveillance

Procedia PDF Downloads 130
2718 Transformation of Industrial Policy towards Industry 4.0 and Its Impact on Firms' Competition

Authors: Arūnas Burinskas

Abstract:

Although Europe is on the threshold of a new industrial revolution called Industry 4.0, many believe that this will increase the flexibility of production, the mass adaptation of products to consumers and the speed of their service; it will also improve product quality and dramatically increase productivity. However, as expected, all the benefits of Industry 4.0 face many of the inevitable changes and challenges they pose. One of them is the inevitable transformation of current competition and business models. This article examines the possible results of competitive conversion from the classic Bertrand and Cournot models to qualitatively new competition based on innovation. Ability to deliver a new product quickly and the possibility to produce the individual design (through flexible and quickly configurable factories) by reducing equipment failures and increasing process automation and control is highly important. This study shows that the ongoing transformation of the competition model is changing the game. This, together with the creation of complex value networks, means huge investments that make it particularly difficult for small and medium-sized enterprises. In addition, the ongoing digitalization of data raises new concerns regarding legal obligations, intellectual property, and security.

Keywords: Bertrand and Cournot Competition, competition model, industry 4.0, industrial organisation, monopolistic competition

Procedia PDF Downloads 141
2717 Study on the Transition to Pacemaker of Two Coupled Neurons

Authors: Sun Zhe, Ruggero Micheletto

Abstract:

The research of neural network is very important for the development of advanced next generation intelligent devices and the medical treatment. The most important part of the neural network research is the learning. The process of learning in our brain is essentially several adjustment processes of connection strength between neurons. It is very difficult to figure out how this mechanism works in the complex network and how the connection strength influences brain functions. For this reason, we made a model with only two coupled neurons and studied the influence of connection strength between them. To emulate the neuronal activity of realistic neurons, we prefer to use the Izhikevich neuron model. This model can simulate the neuron variables accurately and it’s simplicity is very suitable to implement on computers. In this research, the parameter ρ is used to estimate the correlation coefficient between spike train of two coupling neurons.We think the results is very important for figuring out the mechanism between synchronization of coupling neurons and synaptic plasticity. The result also presented the importance of the spike frequency adaptation in complex systems.

Keywords: neural networks, noise, stochastic processes, coupled neurons, correlation coefficient, synchronization, pacemaker, synaptic plasticity

Procedia PDF Downloads 286
2716 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 176
2715 The Right to State Lands: A Case Study of a Squatter Community in Egypt

Authors: Salwa Salman

Abstract:

On February 2016, Egypt’s President Abdel Fattah Al-Sisi ordered the former Prime Minister, Ibrahim Mehleb, to establish a committee responsible for retrieving looted state lands or providing squatters with land titles according to their individual cases. The specificity of desert lands emerges from its unique position in both Islamic law and Egypt’s Civil Code. In Egypt, desert lands can be transferred to private ownership through peaceful occupation and cultivation. This study explores the (re-) conceptualization of land rights, state territoriality, and sovereignty as a part of an emerging narrative on informal land tenure. Through the lens of an informal settlement, the study employs methodological insights from studies in the anthropology of development and their interpretation of Foucauldian discourse analysis to examine official representations on squatting over state lands and put them in conversation with individual narratives on land ownership and dispossession. It also employs Bruno Latour’s actor-network theory to explore the development of social networks through primary land contracts and informal local resource management.

Keywords: State lands, squatter community, Islamic law, Egypt’s Civil Code

Procedia PDF Downloads 173
2714 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach

Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak

Abstract:

Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.

Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity

Procedia PDF Downloads 162
2713 Health Equity in Hard-to-Reach Rural Communities in Abia State, Nigeria: An Asset-Based Community Development Intervention to Influence Community Norms and Address the Social Determinants of Health in Hard-to-Reach Rural Communities

Authors: Chinasa U. Imo, Queen Chikwendu, Jonathan Ajuma, Mario Banuelos

Abstract:

Background: Sociocultural norms primarily influence the health-seeking behavior of populations in rural communities. In the Nkporo community, Abia State, Nigeria, their sociocultural perception of diseases runs counter to biomedical definitions, wherein they rely heavily on traditional medicine and practices. In a state where birth asphyxia and sepsis account for the significant causes of death for neonates, malaria leads to the causes of other mortalities, followed by common preventable diseases such as diarrhea, pneumonia, acute respiratory tract infection, malnutrition, and HIV/AIDS. Most local mothers attribute their health conditions and that of their children to witchcraft attacks, the hand of God, and ancestral underlining. This influences how they see antenatal and postnatal care, choice of place of accessing care and birth delivery, response to children's illnesses, immunization, and nutrition. Method: To implement a community health improvement program, we adopted an asset-based community development model to address health's normative and social determinants. The first step was to use a qualitative approach to conduct a community health needs baseline assessment, involving focus group discussions with twenty-five (25) youths aged 18-25, semi-structured interviews with ten (10) officers-in-charge of primary health centers, eight (8) ward health committee members, and nine (9) community leaders. Secondly, we designed an intervention program. Going forward, we will proceed with implementing and evaluating this program. Result: The priority needs identified by the communities were malaria, lack of clean drinking water, and the need for behavioral change information. The study also highlighted the significant influence of youths on their peers, family, and community as caregivers and information interpreters. Based on the findings, the NGO SieDi-Hub collaborated with the Abia State Ministry of Health, the State Primary Healthcare Agency, and Empower Next Generations to design a one-year "Community Health Youth Champions Pilot Program." Twenty (20) youths in the community were trained and equipped to champion a participatory approach to bridging the gap between access and delivery of primary healthcare, to adjust sociocultural norms to improve health equity for people in Nkporo community – with limited education, lack of access to health information, and quality healthcare facilities using an innovative community-led improvement approach. Conclusion: Youths play a vital role in achieving health equity, being a vulnerable population with significant influence. To ensure effective primary healthcare, strategies must include cultural humility. The asset-based community development model offers valuable tools, and this article will share ongoing lessons from the intervention's behavioral change strategies with young people.

Keywords: asset-based community development, community health, primary health systems strengthening, youth empowerment

Procedia PDF Downloads 95
2712 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion

Authors: Swarna Pundir, Prabuddha Hans

Abstract:

As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved.

Keywords: AI, ML, DL, ANN

Procedia PDF Downloads 99
2711 A Survey on Requirements and Challenges of Internet Protocol Television Service over Software Defined Networking

Authors: Esmeralda Hysenbelliu

Abstract:

Over the last years, the demand for high bandwidth services, such as live (IPTV Service) and on-demand video streaming, steadily and rapidly increased. It has been predicted that video traffic (IPTV, VoD, and WEB TV) will account more than 90% of global Internet Protocol traffic that will cross the globe in 2016. Consequently, the importance and consideration on requirements and challenges of service providers faced today in supporting user’s requests for entertainment video across the various IPTV services through virtualization over Software Defined Networks (SDN), is tremendous in the highest stage of attention. What is necessarily required, is to deliver optimized live and on-demand services like Internet Protocol Service (IPTV Service) with low cost and good quality by strictly fulfill the essential requirements of Clients and ISP’s (Internet Service Provider’s) in the same time. The aim of this study is to present an overview of the important requirements and challenges of IPTV service with two network trends on solving challenges through virtualization (SDN and Network Function Virtualization). This paper provides an overview of researches published in the last five years.

Keywords: challenges, IPTV service, requirements, software defined networking (SDN)

Procedia PDF Downloads 272
2710 Utilizing Street Medicine to Reduce Communicable Disease Prevalence in a Cost-Effective Way

Authors: Bailey Hall, Athena Hoppe, Tevyn Kagele, Anna Nichols, Breeanna Messner

Abstract:

The Spokane Street Medicine (SSM) Program aims to deliver medical care to people experiencing homelessness in Spokane, Washington. Street medicine is designed to function in a non-traditional setting to help deliver healthcare to a largely underserved population. In this analysis, the SSM Program’s medical charts from street and shelter encounters in early 2021 were reviewed in order to identify illness and diseases in people experiencing homelessness in Spokane. More than half of the prescriptions written during these encounters were for either an antibacterial, an antibiotic, or an antifungal. Estimates of the cost to the local healthcare system are included. Initiating treatment for communicable diseases in people experiencing homelessness via street medicine efforts greatly reduces economic costs while improving health outcomes.

Keywords: ethical issues in public health, equity issues in public health, health economics, health disparities, healthcare costs, medical public health, public health ethics, street medicine

Procedia PDF Downloads 191
2709 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG

Procedia PDF Downloads 183
2708 The Hubs of Transformation Dictated by the Innovation Wave: Boston as a Case Study. Exploring How Design is Emerging as an Essential Feature in the Process of Laboratorisation of Cities

Authors: Luana Parisi, Sohrab Donyavi

Abstract:

Cities have become the nodes of global networks, standing at the intersection points of the flows of capital, goods, workers, businesses and travellers, making them the spots where innovation, progress and economic development occur. The primary challenge for them is to create the most fertile ecosystems for triggering innovation activities. Design emerges as an essential feature in this process of laboratorisation of cities. This paper aims at exploring the spatial hubs of transformation within the knowledge economy, providing an overview of the current models of innovation spaces, before focusing on the innovation district of one of the cities that are riding the innovation wave, namely, Boston, USA. Useful lessons will be drawn from the case study of the innovation district in Boston, allowing to define precious tools for policymakers, in the form of a range of factors that define the broad strategy able to implement the model successfully. A mixed methodology is implemented, including information from observations, exploratory interviews to key stakeholders and on-desk data.

Keywords: Innovation District, innovation ecosystem, economic development, urban regeneration

Procedia PDF Downloads 127
2707 A Comparison of Methods for Neural Network Aggregation

Authors: John Pomerat, Aviv Segev

Abstract:

Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.

Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning

Procedia PDF Downloads 163
2706 Assessment of Dose: Area Product of Common Radiographic Examinations in Selected Southern Nigerian Hospitals

Authors: Lateef Bamidele

Abstract:

Over the years, radiographic examinations are the most used diagnostic tools in the Nigerian health care system, but most diagnostic examinations carried out do not have records of patient doses. Lack of adequate information on patient doses has been a major hindrance in quantifying the radiological risk associated with radiographic examinations. This study aimed at estimating dose–area product (DAP) of patient examined in X-Ray units in selected hospitals in Southern Nigeria. The standard projections selected are chest posterior-anterior (PA), abdomen anterior-posterior (AP), pelvis AP, pelvis lateral (LAT), skull AP/PA, skull LAT, lumbar spine AP, lumbar spine, LAT. Measurement of entrance surface dose (ESD) was carried out using thermoluminescent dosimeter (TLD). Measured ESDs were converted into DAP using the beam area of patients. The results show that the mean DAP ranged from 0.17 to 18.35 Gycm². The results obtained in this study when compared with those of NRPB-HPE were found to be higher. These are an indication of non optimization of operational conditions.

Keywords: dose–area product, radiographic examinations, patient doses, optimization

Procedia PDF Downloads 177
2705 Aggregate Fluctuations and the Global Network of Input-Output Linkages

Authors: Alexander Hempfing

Abstract:

The desire to understand business cycle fluctuations, trade interdependencies and co-movement has a long tradition in economic thinking. From input-output economics to business cycle theory, researchers aimed to find appropriate answers from an empirical as well as a theoretical perspective. This paper empirically analyses how the production structure of the global economy and several states developed over time, what their distributional properties are and if there are network specific metrics that allow identifying structurally important nodes, on a global, national and sectoral scale. For this, the World Input-Output Database was used, and different statistical methods were applied. Empirical evidence is provided that the importance of the Eastern hemisphere in the global production network has increased significantly between 2000 and 2014. Moreover, it was possible to show that the sectoral eigenvector centrality indices on a global level are power-law distributed, providing evidence that specific national sectors exist which are more critical to the world economy than others while serving as a hub within the global production network. However, further findings suggest, that global production cannot be characterized as a scale-free network.

Keywords: economic integration, industrial organization, input-output economics, network economics, production networks

Procedia PDF Downloads 279
2704 Weight Gain After Total Thyroidectomy

Authors: Yong Seong Kim, Seongbin Hong, So Hun Kim, Moonsuk Nam

Abstract:

Background: Patients who undergo thyroidectomy due to thyroid cancer often complain weight gain, although they are on suppressive thyroid hormone treatment. The aim of this study is to know whether thyroid cancer patients gain the weight after thyroidectomy and weight change is dependent on estrogen state or use of rhTSH. Material and Method: We performed a retrospective chart review of subjects receiving medical care at an academic medical center. Two hundred two patients who underwent total thyroidectomy were included. As a control group, patients with thyroid nodule and euthyroidism were matched for age, gender, menopausal status. The weight changes occurring over first one year and thyroid function were assessed. Results: Mean age was 51±12 years and patients was composed with 38% of premenopausal, 15 % perimenopausal women, 37% of postmenopausal women and 20% of men. Patients with thyroid cancer gained 2.2 kg during the first year. It’ was not significantly different with control. However, weigh change in perimenopausal and post menopausal women gained more weight than control (P <0.05). Age, baseline body weight and weight gain were not correlated. Discussion: Patient who had undergone thyroidectomy gained more weight than their control, especially in peri- and postmenopausal women. Patients in this age should be monitored for their weight carefully.

Keywords: weight gain, thyroidectomy, thyroid cancer, weight chance

Procedia PDF Downloads 417
2703 Analyzing the Effectiveness of Elderly Design and the Impact on Sustainable Built Environment

Authors: Tristance Kee

Abstract:

With an unprecedented increase in elderly population around the world, the severe lack of quality housing and health-and-safety provisions to serve this cohort cannot be ignored any longer. Many elderly citizens, especially singletons, live in unsafe housing conditions with poorly executed planning and design. Some suffer from deteriorating mobility, sight and general alertness and their sub-standard living conditions further hinder their daily existence. This research explains how concepts such as Universal Design and Co-Design operate in a high density city such as Hong Kong, China where innovative design can become an alternative solution where government and the private sector fail to provide quality elderly friendly facilities to promote a sustainable urban development. Unlike other elderly research which focuses more on housing policies, nursing care and theories, this research takes a more progressive approach by providing an in-depth impact assessment on how innovative design can be practical solutions for creating a more sustainable built environment. The research objectives are to: 1) explain the relationship between innovative design for elderly and a healthier and sustainable environment; 2) evaluate the impact of human ergonomics with the use of universal design; and 3) explain how innovation can enhance the sustainability of a city in improving citizen’s sight, sound, walkability and safety within the ageing population. The research adopts both qualitative and quantitative methodologies to examine ways to improve elderly population’s relationship to our built environment. In particular, the research utilizes collected data from questionnaire survey and focus group discussions to obtain inputs from various stakeholders, including designers, operators and managers related to public housing, community facilities and overall urban development. In addition to feedbacks from end-users and stakeholders, a thorough analysis on existing elderly housing facilities and Universal Design provisions are examined to evaluate their adequacy. To echo the theme of this conference on Innovation and Sustainable Development, this research examines the effectiveness of innovative design in a risk-benefit factor assessment. To test the hypothesis that innovation can cater for a sustainable development, the research evaluated the health improvement of a sample size of 150 elderly in a period of eight months. Their health performances, including mobility, speech and memory are monitored and recorded on a regular basis to assess if the use of innovation does trigger impact on improving health and home safety for an elderly cohort. This study was supported by district community centers under the auspices of Home Affairs Bureau to provide respondents for questionnaire survey, a standardized evaluation mechanism, and professional health care staff for evaluating the performance impact. The research findings will be integrated to formulate design solutions such as innovative home products to improve elderly daily experience and safety with a particular focus on the enhancement on sight, sound and mobility safety. Some policy recommendations and architectural planning recommendations related to Universal Design will also be incorporated into the research output for future planning of elderly housing and amenity provisions.

Keywords: elderly population, innovative design, sustainable built environment, universal design

Procedia PDF Downloads 232
2702 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset

Authors: Gabriele Borg, Alexei Debono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.

Keywords: graph neural networks, traffic management, big data, mobile data patterns

Procedia PDF Downloads 133