Search results for: Deep learning based segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33298

Search results for: Deep learning based segmentation

29548 The Construction of Research-Oriented/Practice-Oriented Engineering Testing and Measurement Technology Course under the Condition of New Technology

Authors: He Lingsong, Wang Junfeng, Tan Qiong, Xu Jiang

Abstract:

The paper describes efforts on reconstruction methods of engineering testing and measurement technology course by applying new techniques and applications. Firstly, flipped classroom was introduced. In-class time was used for in-depth discussions and interactions while theory concept teaching was done by self-study course outside of class. Secondly, two hands-on practices of technique applications, including the program design of MATLAB Signal Analysis and the measurement application of Arduino sensor, have been covered in class. Class was transformed from an instructor-centered teaching process into an active student-centered learning process, consisting of the pre-class massive open online course (MOOC), in-class discussion and after-class practice. The third is to change sole written homework to the research-oriented application practice assignments, so as to enhance the breadth and depth of the course.

Keywords: testing and measurement, flipped classroom, MOOC, research-oriented learning, practice-oriented learning

Procedia PDF Downloads 152
29547 School Based Assessment Issues in Selected Malaysian Primary Schools

Authors: Nur Amalina Dayana Abd Aziz

Abstract:

Assessment is an integral part of teaching and learning in any syllabus in the world. Recently, a new assessment system, School-Based Assessment (SBA) was introduced and implemented in the Malaysian education system to promote a more holistic, integrated and balanced assessment system. This effort is part of the reformation made in the Government Transformation Plan (GTP) to produce a world-class human capital as we are reaching and achieving the Vision 2020 in the near future. However, this new change has raised awareness and concerns from teachers, students, parents and non-profit organizations on how the new assessment is to be implemented and how it is affecting the students and teachers particularly. Therefore, this paper aims to investigate the issues that teachers face in implementing SBA in primary schools, the measures taken to address the issues and to propose ways of managing school-based assessment. Five national primary schools focusing in the urban areas in the Selangor state are chosen for this study to carry out. Data for the study will be gathered from interviews with teachers from each school, surveys and classrooms observation will be conducted in each school, and relevant documents are collected from the selected schools. The findings of this study will present the current issues that teachers from various types of national primary schools are facing and what actions they took to overcome the problems in carrying out SBA. Suggestions on how to better manage school-based assessment for teachers are also provided in this paper.

Keywords: community of practice, curriculum, managing change, school-based assessment

Procedia PDF Downloads 429
29546 Hard and Soft Skills in Marketing Education: Using Serious Games to Engage Higher Order Processing

Authors: Ann Devitt, Mairead Brady, Markus Lamest, Stephen Gomez

Abstract:

This study set out to explore the use of an online collaborative serious game for student learning in a postgraduate introductory marketing module. The simulation game aimed to bridge the theory-practice divide in marketing by allowing students to apply theory in a safe, simulated marketplace. This study addresses the following research questions: Does an online marketing simulation game engage students higher order cognitive skills? Does collaborative activity required develop students’ “soft” skills, such as communication and negotiation? What specific affordances of the online simulation promote learning? This qualitative case study took place in 2014 with 40 postgraduate students on a Business Masters Programme. The two-week intensive module combined lectures with collaborative activity on a marketing simulation game, MMX from Pearsons. The game requires student teams to compete against other teams in a marketplace and design a marketing plan to maximize key performance indicators. The data for this study comprise essays written by students after the module reflecting on their learning on the module. A thematic analysis was conducted of the essays using the following a priori theme sets: 6 levels of the cognitive domain of Blooms taxonomy; 5 principles of Cooperative Learning; affordances of simulation environments including experiential learning; motivation and engagement; goal orientation. Preliminary findings would strongly suggest that the game facilitated students identifying the value of theory in practice, in particular for future employment; enhanced their understanding of group dynamics and their role within that; and impacted very strongly, both positively and negatively on motivation. In particular the game mechanics of MMX, which hinges on the correct identification of a target consumer group, was identified as a key determinant of extrinsic and intrinsic motivation for learners. The findings also suggest that the situation of the simulation game within a broader module which required post-game reflection was valuable in identifying key learning of marketing concepts in both the positive and the negative experiences of the game.

Keywords: simulation, marketing, serious game, cooperative learning, bloom's taxonomy

Procedia PDF Downloads 554
29545 Trajectory Optimization for Autonomous Deep Space Missions

Authors: Anne Schattel, Mitja Echim, Christof Büskens

Abstract:

Trajectory planning for deep space missions has become a recent topic of great interest. Flying to space objects like asteroids provides two main challenges. One is to find rare earth elements, the other to gain scientific knowledge of the origin of the world. Due to the enormous spatial distances such explorer missions have to be performed unmanned and autonomously. The mathematical field of optimization and optimal control can be used to realize autonomous missions while protecting recourses and making them safer. The resulting algorithms may be applied to other, earth-bound applications like e.g. deep sea navigation and autonomous driving as well. The project KaNaRiA ('Kognitionsbasierte, autonome Navigation am Beispiel des Ressourcenabbaus im All') investigates the possibilities of cognitive autonomous navigation on the example of an asteroid mining mission, including the cruise phase and approach as well as the asteroid rendezvous, landing and surface exploration. To verify and test all methods an interactive, real-time capable simulation using virtual reality is developed under KaNaRiA. This paper focuses on the specific challenge of the guidance during the cruise phase of the spacecraft, i.e. trajectory optimization and optimal control, including first solutions and results. In principle there exist two ways to solve optimal control problems (OCPs), the so called indirect and direct methods. The indirect methods are being studied since several decades and their usage needs advanced skills regarding optimal control theory. The main idea of direct approaches, also known as transcription techniques, is to transform the infinite-dimensional OCP into a finite-dimensional non-linear optimization problem (NLP) via discretization of states and controls. These direct methods are applied in this paper. The resulting high dimensional NLP with constraints can be solved efficiently by special NLP methods, e.g. sequential quadratic programming (SQP) or interior point methods (IP). The movement of the spacecraft due to gravitational influences of the sun and other planets, as well as the thrust commands, is described through ordinary differential equations (ODEs). The competitive mission aims like short flight times and low energy consumption are considered by using a multi-criteria objective function. The resulting non-linear high-dimensional optimization problems are solved by using the software package WORHP ('We Optimize Really Huge Problems'), a software routine combining SQP at an outer level and IP to solve underlying quadratic subproblems. An application-adapted model of impulsive thrusting, as well as a model of an electrically powered spacecraft propulsion system, is introduced. Different priorities and possibilities of a space mission regarding energy cost and flight time duration are investigated by choosing different weighting factors for the multi-criteria objective function. Varying mission trajectories are analyzed and compared, both aiming at different destination asteroids and using different propulsion systems. For the transcription, the robust method of full discretization is used. The results strengthen the need for trajectory optimization as a foundation for autonomous decision making during deep space missions. Simultaneously they show the enormous increase in possibilities for flight maneuvers by being able to consider different and opposite mission objectives.

Keywords: deep space navigation, guidance, multi-objective, non-linear optimization, optimal control, trajectory planning.

Procedia PDF Downloads 417
29544 Experiments on Weakly-Supervised Learning on Imperfect Data

Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler

Abstract:

Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.

Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation

Procedia PDF Downloads 203
29543 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 90
29542 Introduction of a Medicinal Plants Garden to Revitalize a Botany Curriculum for Non-Science Majors

Authors: Rosa M. Gambier, Jennifer L. Carlson

Abstract:

In order to revitalize the science curriculum for botany courses for non-science majors, we have introduced the use of the medicinal plants into a first-year botany course. We have connected the use of scientific method, scientific inquiry and active learning in the classroom with the study of Western Traditional Medical Botany. The students have researched models of Botanical medicine and have designed a sustainable medicinal plants garden using native medicinal plants from the northeast. Through the semester, the students have researched their chosen species, planted seeds in the college greenhouse, collected germination ratios, growth ratios and have successfully produced a beginners medicinal plant garden. Phase II of the project will be to tie in SCCCs community outreach goals by involving the public in the expanded development of the garden as a way of sharing learning about medicinal plants and traditional medicine outside the classroom.

Keywords: medicinal plant garden, botany curriculum, active learning, community outreach

Procedia PDF Downloads 312
29541 Musical Diversity: The Differences between Public and Private Kindergartens in China

Authors: Kunyu Yan

Abstract:

Early childhood music education plays a significant role in an individual’s growth. Music can help children understand themselves and relate to others, and make connections between family, school, and society. In recent years, with the development of early childhood education in China, an increasing number of kindergartens have been established, and many of them pay more attention to music education. This research has two main aims. One is to discover how and why music is used in both public and private kindergartens. The second aim is to make recommendations for widening the use of music in kindergartens. In order to achieve these aims, the research uses two main methods. Firstly, it considers the historical background and cultural context of early childhood education in China; and secondly, it uses an approach that compares public and private kindergartens. In this research, six kindergartens were chosen from Qingdao city in Shandong Province as case studies, including 3 public kindergartens and 3 private kindergartens. This research was based on using three types of data collection methods: observation, semi-structured interviews with teachers, and questionnaires with parents. Participant and non-participant observational methods were used and included in daily routines at the kindergartens in order to experience the situation of music education first-hand. Interviews were associated with teachers’ views of teaching and learning music, the perceptions of the music context, and their strategies of using music. Lastly, the questionnaire was designed to obtain the views of current music education from the children’s parents in the respective kindergartens. The results are shown with three main themes: (1) distinct characteristics of public kindergartens (e.g., similar equipment, low tuition fee, qualified teachers, etc); (2) distinct characteristics of private kindergartens (e.g., various tuition fees, own teaching system, trained teachers, etc); and (3) differences between public and private kindergartens (e.g., funding, requirements for teachers, parents’ demands, etc). According to the results, we can see that the main purpose of using music in China is to develop the musical ability of children, and teachers focus on musical learning, such as singing in tune and playing instruments. However, as revealed in this research, there are many other uses and functions of music in these educational settings, including music used for non-musical learning (e.g., counting, learning language, etc.) or in supporting social routines.

Keywords: differences between private and public school, early childhood education, music education, uses and functions of music

Procedia PDF Downloads 227
29540 Influence of Thermal History on the Undrained Shear Strength of the Bentonite-Sand Mixture

Authors: K. Ravi, Sabu Subhash

Abstract:

Densely compacted bentonite or bentonite–sand mixture has been identified as a suitable buffer in the deep geological repository (DGR) for the safe disposal of high-level nuclear waste (HLW) due to its favourable physicochemical and hydro-mechanical properties. The addition of sand to the bentonite enhances the thermal conductivity and compaction properties and reduces the drying shrinkage of the buffer material. The buffer material may undergo cyclic wetting and drying upon ingress of groundwater from the surrounding rock mass and from evaporation due to high temperature (50–210 °C) derived from the waste canister. The cycles of changes in temperature may result in thermal history, and the hydro-mechanical properties of the buffer material may be affected. This paper examines the influence of thermal history on the undrained shear strength of bentonite and bentonite-sand mixture. Bentonite from Rajasthan state and sand from the Assam state of India are used in this study. The undrained shear strength values are obtained by conducting unconfined compressive strength (UCS) tests on cylindrical specimens (dry densities 1.30 and 1.5 Mg/m3) of bentonite and bentonite-sand mixture consisting of 30 % bentonite+ 70 % sand. The specimens are preheated at temperatures varying from 50-150 °C for one, two and four hours in hot air oven. The results indicate that the undrained shear strength is increased by the thermal history of the buffer material. The specimens of bentonite-sand mixture exhibited more increase in strength compared to the pure bentonite specimens. This indicates that the sand content of the mixture plays a vital role in taking the thermal stresses of the bentonite buffer in DGR conditions.

Keywords: bentonite, deep geological repository, thermal history, undrained shear strength

Procedia PDF Downloads 348
29539 Vision Based People Tracking System

Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti

Abstract:

In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.

Keywords: camshift algorithm, computer vision, Kalman filter, object tracking

Procedia PDF Downloads 452
29538 Impact of Schools' Open and Semi-Open Spaces on Student's Studying Behavior

Authors: Chaithanya Pothuganti

Abstract:

Open and semi-open spaces in educational buildings like corridors, mid landings, seating spaces, lobby, courtyards are traditionally have been the places of social communion and interaction which helps in promoting the knowledge, performance, activeness, and motivation in students. Factors like availability of land, commercialization, of educational facilities, especially in e-techno and smart schools, led to closed classrooms to accommodate students thereby lack quality open and semi-open spaces. This insufficient attention towards open space design which is a means of informal learning misses an opportunity to encourage the student’s skill development, behavior and learning skills. The core objective of this paper is to find the level of impact on student learning behavior and to identify the suitable proportions and configuration of spaces that shape the schools. In order to achieve this, different types of open spaces in schools and their impact on student’s performance in various existing models are analysed using case studies to draw some design principles. The study is limited to indoor open spaces like corridors, break out spaces and courtyards. The expected outcome of the paper is to suggest better design considerations for the development of semi-open and open spaces which functions as an element for informal learnings. Its focus is to provide further thinking on designing and development of open spaces in educational buildings.

Keywords: configuration of spaces and proportions, informal learning, open spaces, schools, student’s behavior

Procedia PDF Downloads 311
29537 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components

Authors: M. Rodionov, Z. Dedovets

Abstract:

This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaning-making characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.

Keywords: learning activity, mathematics, motivation, student

Procedia PDF Downloads 421
29536 Enhancing Pedagogical Practices in Online Arabic Language Instruction: Challenges, Opportunities, and Strategies

Authors: Salah Algabli

Abstract:

As online learning takes center stage; Arabic language instructors face the imperative to adapt their practices for the digital realm. This study investigates the experiences of online Arabic instructors to unveil the pedagogical opportunities and challenges this format presents. Utilizing a transcendental phenomenological approach with 15 diverse participants, the research shines a light on the unique realities of online language teaching at the university level, specifically in the United States. The study proposes theoretical and practical solutions to maximize the benefits of online language learning while mitigating its challenges. Recommendations cater to instructors, researchers, and program coordinators, paving the way for enhancing the quality of online Arabic language education. The findings highlight the need for pedagogical approaches tailored to the online environment, ultimately shaping a future where both instructors and learners thrive in this digital landscape.

Keywords: online Arabic language learning, pedagogical opportunities and challenges, online Arabic teachers, online language instruction, digital pedagogy

Procedia PDF Downloads 67
29535 The Cultural Adaptation of a Social and Emotional Learning Program for an Intervention in Saudi Arabia’s Preschools

Authors: Malak Alqaydhi

Abstract:

A problem in the Saudi Arabia education system is that there is a lack of curriculum- based Social, emotional learning (SEL) teaching practices with the pedagogical concept of SEL yet to be practiced in the Kingdom of Saudi Arabia (KSA). Furthermore, voices of teachers and parents have not been captured regarding the use of SEL, particularly in preschools. The importance of this research is to help determine, with the input of teachers and mothers of preschoolers, the efficacy of a culturally adapted SEL program. The purpose of this research is to determine the most appropriate SEL intervention method to appropriately apply in the cultural context of the Saudi preschool classroom setting. The study will use a mixed method exploratory sequential research design, applying qualitative and quantitative approaches including semi-structured interviews with teachers and parents of preschoolers and an experimental research approach. The research will proceed in four phases beginning with a series of interviews with Saudi preschool teachers and mothers, whose voices and perceptions will help guide the second phase of selection and adaptation of a suitable SEL preschool program. The third phase will be the implementation of the intervention by the researcher in the preschool classroom environment, which will be facilitated by the researcher’s cultural proficiency and practical experience in Saudi Arabia. The fourth and final phase will be an evaluation to assess the effectiveness of the trialled SEL among the preschool student participants. The significance of this research stems from its contribution to knowledge about SEL in culturally appropriate Saudi preschools and the opportunity to support initiatives for Saudi early childhood educators to consider implementing SEL programs. The findings from the study may be useful to inform the Saudi Ministry of Education and its curriculum designers about SEL programs, which could be beneficial to trial more widely in the Saudi preschool curriculum.

Keywords: social emotional learning, preschool children, saudi Arabia, child behavior

Procedia PDF Downloads 162
29534 Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor

Authors: Cristian Crespo

Abstract:

Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group.

Keywords: conditional cash transfers, machine learning, poverty, proxy means tests, school dropout prediction, targeting

Procedia PDF Downloads 206
29533 Applying the CA Systems in Education Process

Authors: A. Javorova, M. Matusova, K. Velisek

Abstract:

The article summarizes the experience of laboratory technical subjects teaching methodologies using a number of software products. The main aim is to modernize the teaching process in accordance with the requirements of today - based on information technology. Increasing of the study attractiveness and effectiveness is due to the introduction of CA technologies in the learning process. This paper discussed the areas where individual CA system used. Environment using CA systems are briefly presented in each chapter.

Keywords: education, CA systems, simulation, technology

Procedia PDF Downloads 400
29532 Heterogeneous Intelligence Traders and Market Efficiency: New Evidence from Computational Approach in Artificial Stock Markets

Authors: Yosra Mefteh Rekik

Abstract:

A computational agent-based model of financial markets stresses interactions and dynamics among a very diverse set of traders. The growing body of research in this area relies heavily on computational tools which by-pass the restrictions of an analytical method. The main goal of this research is to understand how the stock market operates and behaves how to invest in the stock market and to study traders’ behavior within the context of the artificial stock markets populated by heterogeneous agents. All agents are characterized by adaptive learning behavior represented by the Artificial Neuron Networks. By using agent-based simulations on artificial market, we show that the existence of heterogeneous agents can explain the price dynamics in the financial market. We investigate the relation between market diversity and market efficiency. Our empirical findings demonstrate that greater market heterogeneity play key roles in market efficiency.

Keywords: agent-based modeling, artificial stock market, heterogeneous expectations, financial stylized facts, computational finance

Procedia PDF Downloads 441
29531 Climate Safe House: A Community Housing Project Tackling Catastrophic Sea Level Rise in Coastal Communities

Authors: Chris Fersterer, Col Fay, Tobias Danielmeier, Kat Achterberg, Scott Willis

Abstract:

New Zealand, an island nation, has an extensive coastline peppered with small communities of iconic buildings known as Bachs. Post WWII, these modest buildings were constructed by their owners as retreats and generally were small, low cost, often using recycled material and often they fell below current acceptable building standards. In the latter part of the 20th century, real estate prices in many of these communities remained low and these areas became permanent residences for people attracted to this affordable lifestyle choice. The Blueskin Resilient Communities Trust (BRCT) is an organisation that recognises the vulnerability of communities in low lying settlements as now being prone to increased flood threat brought about by climate change and sea level rise. Some of the inhabitants of Blueskin Bay, Otago, NZ have already found their properties to be un-insurable because of increased frequency of flood events and property values have slumped accordingly. Territorial authorities also acknowledge this increased risk and have created additional compliance measures for new buildings that are less than 2 m above tidal peaks. Community resilience becomes an additional concern where inhabitants are attracted to a lifestyle associated with a specific location and its people when this lifestyle is unable to be met in a suburban or city context. Traditional models of social housing fail to provide the sense of community connectedness and identity enjoyed by the current residents of Blueskin Bay. BRCT have partnered with the Otago Polytechnic Design School to design a new form of community housing that can react to this environmental change. It is a longitudinal project incorporating participatory approaches as a means of getting people ‘on board’, to understand complex systems and co-develop solutions. In the first period, they are seeking industry support and funding to develop a transportable and fully self-contained housing model that exploits current technologies. BRCT also hope that the building will become an educational tool to highlight climate change issues facing us today. This paper uses the Climate Safe House (CSH) as a case study for education in architectural sustainability through experiential learning offered as part of the Otago Polytechnics Bachelor of Design. Students engage with the project with research methodologies, including site surveys, resident interviews, data sourced from government agencies and physical modelling. The process involves collaboration across design disciplines including product and interior design but also includes connections with industry, both within the education institution and stakeholder industries introduced through BRCT. This project offers a rich learning environment where students become engaged through project based learning within a community of practice, including architecture, construction, energy and other related fields. The design outcomes are expressed in a series of public exhibitions and forums where community input is sought in a truly participatory process.

Keywords: community resilience, problem based learning, project based learning, case study

Procedia PDF Downloads 293
29530 Using Peer Instruction in Physics of Waves for Pre-Service Science Teacher

Authors: Sumalee Tientongdee

Abstract:

In this study, it was aimed to investigate Physics achievement of the pre-service science teacher studying in general science program at Suan Sunandha Rajabhat University, Bangkok, Thailand. The program has provided the new curriculum that focuses on 21st-century skills development. Active learning approaches are used to teach in all subjects. One of the active learning approaches Peer Instruction, or PI was used in this study to teach physics of waves as a compulsory course. It was conducted in the second semester from January to May of 2017. The concept test was given to evaluate pre-service science teachers’ understanding in concept of waves. Problem-solving assessment form was used to evaluate their problem-solving skill. The results indicated that after they had learned through Peer Instruction in physics of waves course, their concepts in physics of waves was significantly higher at 0.05 confident levels. Their problem-solving skill from the whole class was at the highest level. Based on the group interview on the opinions of using Peer Instruction in Physics class, they mostly felt that it was very useful and helping them understand more about physics, especially for female students.

Keywords: peer instruction, physics of waves, pre-service science teacher, Suan Sunandha Rajabhat university

Procedia PDF Downloads 350
29529 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 65
29528 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 156
29527 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)

Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli

Abstract:

Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.

Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence

Procedia PDF Downloads 25
29526 Factors Affecting and Impeding Teachers’ Use of Learning Management System in Kingdom of Saudi Arabia Universities

Authors: Omran Alharbi, Victor Lally

Abstract:

The advantages of the adoption of new technology such as learning management systems (LMSs) in education and teaching methods have been widely recognised. This has led a large number of universities to integrate this type of technology into their daily learning and teaching activities in order to facilitate the education process for both learners and teachers. On the other hand, in some developing countries such as Saudi Arabia, educators have seldom used this technology. As a result, this study was conducted in order to investigate the factors that impede teachers’ use of technology (LMSs) in their teaching in Saudi Arabian institutions. This study used a qualitative approach. Eight participants were invited to take part in this study, and they were asked to give their opinions about the most significant factors that prevented them from integrating technology into their daily activities. The results revealed that a lack of LMS skills, interest in and knowledge about the LMS among teachers were the most significant factors impeding them from using technology in their lessons. The participants suggested that incentive training should be provided to reduce these challenges.

Keywords: LMS, factors, KSA, teachers

Procedia PDF Downloads 133
29525 LIS Students’ Experience of Online Learning During Covid-19

Authors: Larasati Zuhro, Ida F Priyanto

Abstract:

Background: In March 2020, Indonesia started to be affected by Covid-19, and the number of victims increased slowly but surely until finally, the highest number of victims reached the highest—about 50,000 persons—for the daily cases in the middle of 2021. Like other institutions, schools and universities were suddenly closed in March 2020, and students had to change their ways of studying from face-to-face to online. This sudden changed affected students and faculty, including LIS students and faculty because they never experienced online classes in Indonesia due to the previous regulation that academic and school activities were all conducted onsite. For almost two years, school and academic activities were held online. This indeed has affected the way students learned and faculty delivered their courses. This raises the question of whether students are now ready for their new learning activities due to the covid-19 disruption. Objectives: this study was conducted to find out the impact of covid-19 pandemic on the LIS learning process and the effectiveness of online classes for students of LIS in Indonesia. Methodology: This was qualitative research conducted among LIS students at UIN Sunan Kalijaga, Yogyakarta, Indonesia. The population are students who were studying for masters’program during covid-19 pandemic. Results: The study showed that students were ready with the online classes because they are familiar with the technology. However, the Internet and technology infrastructure do not always support the process of learning. Students mention slow WIFI is one factor that causes them not being able to study optimally. They usually compensate themselves by visiting a public library, a café, or any other places to get WIFI network. Noises come from the people surrounding them while they are studying online.Some students could not concentrate well when attending the online classes as they studied at home, and their families sometimes talk to other family members, or they asked the students while they are attending the online classes. The noise also came when they studied in a café. Another issue is that the classes were held in shorter time than that in the face-to-face. Students said they still enjoyed the onsite classes instead of online, although they do not mind to have hybrid model of learning. Conclusion: Pandemic of Covid-19 has changed the way students of LIS in Indonesia learn. They have experienced a process of migrating the way they learn from onsite to online. They also adapted their learning with the condition of internet access speed, infrastructure, and the environment. They expect to have hybrid classes in the future.

Keywords: learning, LIS students, pandemic, covid-19

Procedia PDF Downloads 133
29524 Transforming Integrative Maker Education for STEM Learning

Authors: Virginia Chambers, Kamryn York, Mark Marnich

Abstract:

T.I.M.E. for STEM (Transforming Integrative Maker Education for STEM learning) focuses on improving the quality and effectiveness of STEM education for pre-service teachers through a focus on the integration of maker space pedagogy. This National Science Foundation-funded project primarily focuses on undergraduate pre-service teaching students majoring in elementary education. The study contributes to the knowledge about teaching and learning by developing, implementing, and assessing faculty development, interactive instruction, and STEM lesson plan development. This project offers a valuable opportunity to improve STEM thinking skills by formally integrating STEM concepts throughout the pre-service teacher curriculum using an interdisciplinary approach. T.I.M.E. for STEM utilizes a maker space laboratory at Point Park University in Pittsburgh, PA, USA. However, the project design is such that other institutions of higher education can replicate the program with or without a physical maker space lab as the project’s findings and “maker mindset” are employed. Utilizing qualitative research methodology, the project investigates the following research question: What do pre-service teachers (education students) and faculty members identify as areas of pedagogical growth in STEM learning and teaching in a makerspace environment? This research highlights the impact of makerspace pedagogy on improving STEM education learning outcomes through an interdisciplinary constructivist approach. The project is expected to have a multiplier effect as it impacts STEM disciplinary and higher education faculty, pre-service teachers, and teacher preparation programs at other universities that benefit from what is learned at Point Park University. Ultimately, the future elementary students of the well-prepared pre-service teachers steeped in maker pedagogy and STEM content will have the potential to develop higher-level thinking skills and improve their mathematics and scientific achievement, which are essential for the 21st century STEM workforce.

Keywords: maker education, STEM learning, teacher education, elementary education

Procedia PDF Downloads 117
29523 Focusing on Effective Translation Teaching in the Classroom: A Case Study

Authors: Zhi Huang

Abstract:

This study follows on from previous survey and focus group research exploring the effective teaching process in a translation classroom in Australian universities through case study method. The data analysis draws on social constructivist theory in translation teaching and focuses on teaching process aiming to discover how effective translation teachers conduct teaching in the classroom. The results suggest that effective teaching requires the teacher to have ability in four aspects: classroom management, classroom pedagogy, classroom communication, and teacher roles. Effective translation teachers are able to control the whole learning process, facilitate students in independent learning, guide students to be more critical about translation, giving both positive and negative feedback for students to reflect on their own, and being supportive, patient and encouraging to students for better classroom communication and learning outcomes. This study can be applied to other teachers in translation so that they can reflect on their own teaching in their education contexts and strive for being a more qualified translation teacher and achieving teaching effectiveness.

Keywords: case study, classroom observation, classroom teaching, effective translation teaching, teacher effectiveness

Procedia PDF Downloads 427
29522 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases

Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal

Abstract:

Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.

Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN

Procedia PDF Downloads 70
29521 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: big data, learning analytics, analytics, big data in education, Hadoop

Procedia PDF Downloads 432
29520 The Use of Online Multimedia Platforms to Deliver a Regional Medical Schools Finals Revision Course During the COVID-19 Pandemic

Authors: Matthew Edmunds, Andrew Hunter, Clare Littlewood, Wisha Gul, Gabriel Heppenstall-Harris, Thomas Humphries

Abstract:

Background: Revision courses for medical students undertaking their final examinations are commonplace throughout the UK. Traditionally these take the form of a series of lectures over multiple weeks or a single day of intensive lectures. The COVID-19 pandemic, however, has required medical educators to create new teaching formats to ensure they adhere to social distancing requirements. It has provided an unexpected opportunity to accelerate the development of students proficiency in the use of ‘technology-enabled communication platforms’, as mandated in the 2018 GMC Outcomes of Graduates. Recent advances in technology have made distance learning possible, whilst also providing novel and more engaging learning opportunities for students. Foundation Year 2 doctors at Aintree University Hospital developed an online series of videos to help prepare medical students in the North West and byond for their final medical school examinations. Method: Eight hour-long videos covering the key topics in medicine and surgery were posted on the Peer Learning Liverpool Youtube channel. These videos were created using new technology such as the screen and audio recording platform, Loom. Each video compromised at least 20 single best answer (SBA) questions, in keeping with the format in most medical school finals. Explanations of the answers were provided, and additional important material was covered. Students were able to ask questions by commenting on the videos, with the authors replying as soon as possible. Feedback was collated using an online Google form. Results: An average of 327 people viewed each video, with 113 students filling in the feedback form. 65.5% of respondents were within one month of their final medical school examinations. The average rating for how well prepared the students felt for their finals was 6.21/10 prior to the course and 8.01/10 after the course. A paired t-test demonstrated a mean increase of 1.80 (95% CI 1.66-1.93). Overall, 98.2% said the online format worked well or very well, and 99.1% would recommend the course to a peer. Conclusions: Based on the feedback received, the online revision course was successful both in terms of preparing students for their final examinations, and with regards to how well the online format worked. Free-text qualitative feedback highlighted advantages such as; students could learn at their own pace, revisit key concepts important to them, and practice exam style questions via the case-based format. Limitations identified included inconsistent audiovisual quality, and requests for a live online Q&A session following the conclusion of the course. This course will be relaunched later in the year with increased opportunities for students to access live feedback. The success of this online course has shown the roll that technology can play in medical education. As well as providing novel teaching modes, online learning allows students to access resources that otherwise would not be available locally, and ensure that they do not miss out on teaching that was previously provided face to face, in the current climate of social distancing.

Keywords: COVID-19 pandemic, Medical School, Online learning, Revision course

Procedia PDF Downloads 158
29519 Blue Nature-Based Tourism to Enhance Sustainable Development in Pakistan Coastal Areas

Authors: Giulia Balestracci

Abstract:

Pakistan is endowed with diversified natural capital spanning along the 1000-kilometer-long coastline, shared by the coastal provinces of Sindh and Balochistan. It includes some of the most diverse, extensive, and least disturbed reef areas in the Indian Ocean. Pakistani marine and coastal ecosystems are fundamental for the social and economic well-being of the region. They support economic activities such as fishing, shrimp farming, tourism, and shipping, which contribute to income, food security, and the livelihood of millions of people. The coastal regions of Sindh and Balochistan are rich in natural resources and diverse ecosystems, and host also rural coastal communities that have been the keepers of rich cultural legacies and pristine natural landscapes. However, significant barriers hinder tourism development, such as the daunting socio-economic challenges, including the post-COVID-19 scenario, forced migration, institutional gaps, and the ravages of climate change. Pakistan holds immense potential for the tourism sector development within the framework of a sustainable blue economy, thereby fostering greener economic growth and employment opportunities, securing financing for the protection and conservation of its coastal and marine natural assets. Based on the assessment of Pakistan’s natural and cultural coastal and maritime tourism resources, a deep study of the regulatory and institutional aspects of the tourism sector in the country accompanied by the SWOT analysis and accompanied by an in-depth interview with a member of the Pakistan National Tourism Coordination Board (NTCB). A market analysis has been developed, and Lao PDR, Thailand, and Indonesia’s ecotourism development have been analyzed under a comparative analysis length to recommend some nature-based tourism activities for the sustainable development of the coastal areas in Pakistan. Nature-based tourism represents a win-win option as it uses economic incentives for the protection and cultural uses of natural resources. This article stresses the importance of nature-based activities for blue tourism, aligning conservation with developmental goals to safeguard natural resources and cultural heritage, all while fostering economic prosperity.

Keywords: blue tourism, coastal Pakistan, nature-based tourism, sustainable blue economy, sustainable development

Procedia PDF Downloads 88