Search results for: external force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4214

Search results for: external force

494 The Territorial Expression of Religious Identity: A Case Study of Catholic Communities

Authors: Margarida Franca

Abstract:

The influence of the ‘cultural turn’ movement and the consequent deconstruction of scientific thought allowed geography and other social sciences to open or deepen their studies based on the analysis of multiple identities, on singularities, on what is particular or what marks the difference between individuals. In the context of postmodernity, the geography of religion has gained a favorable scientific, thematic and methodological focus for the qualitative and subjective interpretation of various religious identities, sacred places, territories of belonging, religious communities, among others. In the context of ‘late modernity’ or ‘net modernity’, sacred places and the definition of a network of sacred territories allow believers to attain the ‘ontological security’. The integration on a religious group or a local community, particularly a religious community, allows human beings to achieve a sense of belonging, familiarity or solidarity and to overcome, in part, some of the risks or fears that society has discovered. The importance of sacred places comes not only from their inherent characteristics (eg transcendent, mystical and mythical, respect, intimacy and abnegation), but also from the possibility of adding and integrating members of the same community, creating bonds of belonging, reference and individual and collective memory. In addition, the formation of different networks of sacred places, with multiple scales and dimensions, allows the human being to identify and structure his times and spaces of daily life. Thus, each individual, due to his unique identity and life and religious paths, creates his own network of sacred places. The territorial expression of religious identity allows to draw a variable and unique geography of sacred places. Through the case study of the practicing Catholic population in the diocese of Coimbra (Portugal), the aim is to study the territorial expression of the religious identity of the different local communities of this city. Through a survey of six parishes in the city, we sought to identify which factors, qualitative or not, define the different territorial expressions on a local, national and international scale, with emphasis on the socioeconomic profile of the population, the religious path of the believers, the religious group they belong to and the external interferences, religious or not. The analysis of these factors allows us to categorize the communities of the city of Coimbra and, for each typology or category, to identify the specific elements that unite the believers to the sacred places, the networks and religious territories that structure the religious practice and experience and also the non-representational landscape that unifies and creates memory. We conclude that an apparently homogeneous group, the Catholic community, incorporates multitemporalities and multiterritorialities that are necessary to understand the history and geography of a whole country and of the Catholic communities in particular.

Keywords: geography of religion, sacred places, territoriality, Catholic Church

Procedia PDF Downloads 311
493 Evaluation of Soil Erosion Risk and Prioritization for Implementation of Management Strategies in Morocco

Authors: Lahcen Daoudi, Fatima Zahra Omdi, Abldelali Gourfi

Abstract:

In Morocco, as in most Mediterranean countries, water scarcity is a common situation because of low and unevenly distributed rainfall. The expansions of irrigated lands, as well as the growth of urban and industrial areas and tourist resorts, contribute to an increase of water demand. Therefore in the 1960s Morocco embarked on an ambitious program to increase the number of dams to boost water retention capacity. However, the decrease in the capacity of these reservoirs caused by sedimentation is a major problem; it is estimated at 75 million m3/year. Dams and reservoirs became unusable for their intended purposes due to sedimentation in large rivers that result from soil erosion. Soil erosion presents an important driving force in the process affecting the landscape. It has become one of the most serious environmental problems that raised much interest throughout the world. Monitoring soil erosion risk is an important part of soil conservation practices. The estimation of soil loss risk is the first step for a successful control of water erosion. The aim of this study is to estimate the soil loss risk and its spatial distribution in the different fields of Morocco and to prioritize areas for soil conservation interventions. The approach followed is the Revised Universal Soil Loss Equation (RUSLE) using remote sensing and GIS, which is the most popular empirically based model used globally for erosion prediction and control. This model has been tested in many agricultural watersheds in the world, particularly for large-scale basins due to the simplicity of the model formulation and easy availability of the dataset. The spatial distribution of the annual soil loss was elaborated by the combination of several factors: rainfall erosivity, soil erodability, topography, and land cover. The average annual soil loss estimated in several basins watershed of Morocco varies from 0 to 50t/ha/year. Watersheds characterized by high-erosion-vulnerability are located in the North (Rif Mountains) and more particularly in the Central part of Morocco (High Atlas Mountains). This variation of vulnerability is highly correlated to slope variation which indicates that the topography factor is the main agent of soil erosion within these basin catchments. These results could be helpful for the planning of natural resources management and for implementing sustainable long-term management strategies which are necessary for soil conservation and for increasing over the projected economic life of the dam implemented.

Keywords: soil loss, RUSLE, GIS-remote sensing, watershed, Morocco

Procedia PDF Downloads 447
492 Quantitative Evaluation of Efficiency of Surface Plasmon Excitation with Grating-Assisted Metallic Nanoantenna

Authors: Almaz R. Gazizov, Sergey S. Kharintsev, Myakzyum Kh. Salakhov

Abstract:

This work deals with background signal suppression in tip-enhanced near-field optical microscopy (TENOM). The background appears because an optical signal is detected not only from the subwavelength area beneath the tip but also from a wider diffraction-limited area of laser’s waist that might contain another substance. The background can be reduced by using a taper probe with a grating on its lateral surface where an external illumination causes surface plasmon excitation. It requires the grating with parameters perfectly matched with a given incident light for effective light coupling. This work is devoted to an analysis of the light-grating coupling and a quest of grating parameters to enhance a near-field light beneath the tip apex. The aim of this work is to find the figure of merit of plasmon excitation depending on grating period and location of grating in respect to the apex. In our consideration the metallic grating on the lateral surface of the tapered plasmonic probe is illuminated by a plane wave, the electric field is perpendicular to the sample surface. Theoretical model of efficiency of plasmon excitation and propagation toward the apex is tested by fdtd-based numerical simulation. An electric field of the incident light is enhanced on the grating by every single slit due to lightning rod effect. Hence, grating causes amplitude and phase modulation of the incident field in various ways depending on geometry and material of grating. The phase-modulating grating on the probe is a sort of metasurface that provides manipulation by spatial frequencies of the incident field. The spatial frequency-dependent electric field is found from the angular spectrum decomposition. If one of the components satisfies the phase-matching condition then one can readily calculate the figure of merit of plasmon excitation, defined as a ratio of the intensities of the surface mode and the incident light. During propagation towards the apex, surface wave undergoes losses in probe material, radiation losses, and mode compression. There is an optimal location of the grating in respect to the apex. One finds the value by matching quadratic law of mode compression and the exponential law of light extinction. Finally, performed theoretical analysis and numerical simulations of plasmon excitation demonstrate that various surface waves can be effectively excited by using the overtones of a period of the grating or by phase modulation of the incident field. The gratings with such periods are easy to fabricate. Tapered probe with the grating effectively enhances and localizes the incident field at the sample.

Keywords: angular spectrum decomposition, efficiency, grating, surface plasmon, taper nanoantenna

Procedia PDF Downloads 273
491 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings

Authors: J. N. Nackler, K. Saleh Pascha, W. Winter

Abstract:

WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.

Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate

Procedia PDF Downloads 207
490 Strategic Interventions to Combat Socio-economic Impacts of Drought in Thar - A Case Study of Nagarparkar

Authors: Anila Hayat

Abstract:

Pakistan is one of those developing countries that are least involved in emissions but has the most vulnerable environmental conditions. Pakistan is ranked 8th in most affected countries by climate change on the climate risk index 1992-2011. Pakistan is facing severe water shortages and flooding as a result of changes in rainfall patterns, specifically in the least developed areas such as Tharparkar. Nagarparkar, once an attractive tourist spot located in Tharparkar because of its tropical desert climate, is now facing severe drought conditions for the last few decades. This study investigates the present socio-economic situation of local communities, major impacts of droughts and their underlying causes and current mitigation strategies adopted by local communities. The study uses both secondary (quantitative in nature) and primary (qualitative in nature) methods to understand the impacts and explore causes on the socio-economic life of local communities of the study area. The relevant data has been collected through household surveys using structured questionnaires, focus groups and in-depth interviews of key personnel from local and international NGOs to explore the sensitivity of impacts and adaptation to droughts in the study area. This investigation is limited to four rural communities of union council Pilu of Nagarparkar district, including Bheel, BhojaBhoon, Mohd Rahan Ji Dhani and Yaqub Ji Dhani villages. The results indicate that drought has caused significant economic and social hardships for the local communities as more than 60% of the overall population is dependent on rainfall which has been disturbed by irregular rainfall patterns. The decline in Crop yields has forced the local community to migrate to nearby areas in search of livelihood opportunities. Communities have not undertaken any appropriate adaptive actions to counteract the adverse effect of drought; they are completely dependent on support from the government and external aid for survival. Respondents also reported that poverty is a major cause of their vulnerability to drought. An increase in population, limited livelihood opportunities, caste system, lack of interest from the government sector, unawareness shaped their vulnerability to drought and other social issues. Based on the findings of this study, it is recommended that the local authorities shall create awareness about drought hazards and improve the resilience of communities against drought. It is further suggested to develop, introduce and implement water harvesting practices at the community level to promote drought-resistant crops.

Keywords: migration, vulnerability, awareness, Drought

Procedia PDF Downloads 121
489 Reliability of Clinical Coding in Accurately Estimating the Actual Prevalence of Adverse Drug Event Admissions

Authors: Nisa Mohan

Abstract:

Adverse drug event (ADE) related hospital admissions are common among older people. The first step in prevention is accurately estimating the prevalence of ADE admissions. Clinical coding is an efficient method to estimate the prevalence of ADE admissions. The objective of the study is to estimate the rate of under-coding of ADE admissions in older people in New Zealand and to explore how clinical coders decide whether or not to code an admission as an ADE. There has not been any research in New Zealand to explore these areas. This study is done using a mixed-methods approach. Two common and serious ADEs in older people, namely bleeding and hypoglycaemia were selected for the study. In study 1, eight hundred medical records of people aged 65 years and above who are admitted to hospital due to bleeding and hypoglycemia during the years 2015 – 2016 were selected for quantitative retrospective medical records review. This selection was made to estimate the proportion of ADE-related bleeding and hypoglycemia admissions that are not coded as ADEs. These files were reviewed and recorded as to whether the admission was caused by an ADE. The hospital discharge data were reviewed to check whether all the ADE admissions identified in the records review were coded as ADEs, and the proportion of under-coding of ADE admissions was estimated. In study 2, thirteen clinical coders were selected to conduct qualitative semi-structured interviews using a general inductive approach. Participants were selected purposively based on their experience in clinical coding. Interview questions were designed in a way to investigate the reasons for the under-coding of ADE admissions. The records review study showed that 35% (Cl 28% - 44%) of the ADE-related bleeding admissions and 22% of the ADE-related hypoglycemia admissions were not coded as ADEs. Although the quality of clinical coding is high across New Zealand, a substantial proportion of ADE admissions were under-coded. This shows that clinical coding might under-estimate the actual prevalence of ADE related hospital admissions in New Zealand. The interviews with the clinical coders added that lack of time for searching for information to confirm an ADE admission, inadequate communication with clinicians, along with coders’ belief that an ADE is a small thing might be the potential reasons for the under-coding of the ADE admissions. This study urges the coding policymakers, auditors, and trainers to engage with the unconscious cognitive biases and short-cuts of the clinical coders. These results highlight that further work is needed on interventions to improve the clinical coding of ADE admissions, such as providing education to coders about the importance of ADEs, education to clinicians about the importance of clear and confirmed medical records entries, availing pharmacist service to improve the detection and clear documentation of ADE admissions and including a mandatory field in the discharge summary about external causes of diseases.

Keywords: adverse drug events, bleeding, clinical coders, clinical coding, hypoglycemia

Procedia PDF Downloads 117
488 Cardiac Arrest after Cardiac Surgery

Authors: Ravshan A. Ibadov, Sardor Kh. Ibragimov

Abstract:

Objective. The aim of the study was to optimize the protocol of cardiopulmonary resuscitation (CPR) after cardiovascular surgical interventions. Methods. The experience of CPR conducted on patients after cardiovascular surgical interventions in the Department of Intensive Care and Resuscitation (DIR) of the Republican Specialized Scientific-Practical Medical Center of Surgery named after Academician V. Vakhidov is presented. The key to the new approach is the rapid elimination of reversible causes of cardiac arrest, followed by either defibrillation or electrical cardioversion (depending on the situation) before external heart compression, which may damage sternotomy. Careful use of adrenaline is emphasized due to the potential recurrence of hypertension, and timely resternotomy (within 5 minutes) is performed to ensure optimal cerebral perfusion through direct massage. Out of 32 patients, cardiac arrest in the form of asystole was observed in 16 (50%), with hypoxemia as the cause, while the remaining 16 (50%) experienced ventricular fibrillation caused by arrhythmogenic reactions. The age of the patients ranged from 6 to 60 years. All patients were evaluated before the operation using the ASA and EuroSCORE scales, falling into the moderate-risk group (3-5 points). CPR was conducted for cardiac activity restoration according to the American Heart Association and European Resuscitation Council guidelines (Ley SJ. Standards for Resuscitation After Cardiac Surgery. Critical Care Nurse. 2015;35(2):30-38). The duration of CPR ranged from 8 to 50 minutes. The ARASNE II scale was used to assess the severity of patients' conditions after CPR, and the Glasgow Coma Scale was employed to evaluate patients' consciousness after the restoration of cardiac activity and sedation withdrawal. Results. In all patients, immediate chest compressions of the necessary depth (4-5 cm) at a frequency of 100-120 compressions per minute were initiated upon detection of cardiac arrest. Regardless of the type of cardiac arrest, defibrillation with a manual defibrillator was performed 3-5 minutes later, and adrenaline was administered in doses ranging from 100 to 300 mcg. Persistent ventricular fibrillation was also treated with antiarrhythmic therapy (amiodarone, lidocaine). If necessary, infusion of inotropes and vasopressors was used, and for the prevention of brain edema and the restoration of adequate neurostatus within 1-3 days, sedation, a magnesium-lidocaine mixture, mechanical intranasal cooling of the brain stem, and neuroprotective drugs were employed. A coordinated effort by the resuscitation team and proper role allocation within the team were essential for effective cardiopulmonary resuscitation (CPR). All these measures contributed to the improvement of CPR outcomes. Conclusion. Successful CPR following cardiac surgical interventions involves interdisciplinary collaboration. The application of an optimized CPR standard leads to a reduction in mortality rates and favorable neurological outcomes.

Keywords: cardiac surgery, cardiac arrest, resuscitation, critically ill patients

Procedia PDF Downloads 43
487 Gas-Phase Nondestructive and Environmentally Friendly Covalent Functionalization of Graphene Oxide Paper with Amines

Authors: Natalia Alzate-Carvajal, Diego A. Acevedo-Guzman, Victor Meza-Laguna, Mario H. Farias, Luis A. Perez-Rey, Edgar Abarca-Morales, Victor A. Garcia-Ramirez, Vladimir A. Basiuk, Elena V. Basiuk

Abstract:

Direct covalent functionalization of prefabricated free-standing graphene oxide paper (GOP) is considered as the only approach suitable for systematic tuning of thermal, mechanical and electronic characteristics of this important class of carbon nanomaterials. At the same time, the traditional liquid-phase functionalization protocols can compromise physical integrity of the paper-like material up to its total disintegration. To avoid such undesirable effects, we explored the possibility of employing an alternative, solvent-free strategy for facile and nondestructive functionalization of GOP with two representative aliphatic amines, 1-octadecylamine (ODA) and 1,12-diaminododecane (DAD), as well as with two aromatic amines, 1-aminopyrene (AP) and 1,5-diaminonaphthalene (DAN). The functionalization was performed under moderate heating at 150-180 °C in vacuum. Under such conditions, it proceeds through both amidation and epoxy ring opening reactions. Comparative characterization of pristine and amine-functionalized GOP mats was carried out by using Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy (XPS), thermogravimetric (TGA) and differential thermal analysis, scanning electron and atomic force microscopy (SEM and AFM, respectively). Besides that, we compared the stability in water, wettability, electrical conductivity and elastic (Young's) modulus of GOP mats before and after amine functionalization. The highest content of organic species was obtained in the case of GOP-ODA, followed by GOP-DAD, GOP-AP and GOP-DAN samples. The covalent functionalization increased mechanical and thermal stability of GOP, as well as its electrical conductivity. The magnitude of each effect depends on the particular chemical structure of amine employed, which allows for tuning a given GOP property. Morphological characterization by using SEM showed that, compared to pristine graphene oxide paper, amine-modified GOP mats become relatively ordered layered assemblies, in which individual GO sheets are organized in a near-parallel pattern. Financial support from the National Autonomous University of Mexico (grants DGAPA-IN101118 and IN200516) and from the National Council of Science and Technology of Mexico (CONACYT, grant 250655) is greatly appreciated. The authors also thank David A. Domínguez (CNyN of UNAM) for XPS measurements and Dr. Edgar Alvarez-Zauco (Faculty of Science of UNAM) for the opportunity to use TGA equipment.

Keywords: amines, covalent functionalization, gas-phase, graphene oxide paper

Procedia PDF Downloads 161
486 Pressure-Robust Approximation for the Rotational Fluid Flow Problems

Authors: Medine Demir, Volker John

Abstract:

Fluid equations in a rotating frame of reference have a broad class of important applications in meteorology and oceanography, especially in the large-scale flows considered in ocean and atmosphere, as well as many physical and industrial applications. The Coriolis and the centripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such applications it may be required to solve the system in complex three-dimensional geometries. In recent years, the Navier--Stokes equations in a rotating frame have been investigated in a number of papers using the classical inf-sup stable mixed methods, like Taylor-Hood pairs, to contribute to the analysis and the accurate and efficient numerical simulation. Numerical analysis reveals that these classical methods introduce a pressure-dependent contribution in the velocity error bounds that is proportional to some inverse power of the viscosity. Hence, these methods are optimally convergent but small velocity errors might not be achieved for complicated pressures and small viscosity coefficients. Several approaches have been proposed for improving the pressure-robustness of pairs of finite element spaces. In this contribution, a pressure-robust space discretization of the incompressible Navier--Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, $H^1$-conforming mixed finite element methods like Scott--Vogelius pairs. However, this approach might come with a modification of the meshes, like the use of barycentric-refined grids in case of Scott--Vogelius pairs. However, this strategy requires the finite element code to have control on the mesh generator which is not realistic in many engineering applications and might also be in conflict with the solver for the linear system. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples illustrate the theoretical results. The idea of pressure-robust method could be cast on different types of flow problems which would be considered as future studies. As another future research direction, to avoid a modification of the mesh, one may use a very simple parameter-dependent modification of the Scott-Vogelius element, the pressure-wired Stokes element, such that the inf-sup constant is independent of nearly-singular vertices.

Keywords: navier-stokes equations in a rotating frame of refence, coriolis force, pressure-robust error estimate, scott-vogelius pairs of finite element spaces

Procedia PDF Downloads 46
485 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 332
484 Language Maintenance and Literacy of Madurese in Probolinggo City

Authors: Maria Ulfa, Nur Awaliyah Putri

Abstract:

Madurese is known as Malayo-Sumbawan Austronesian language which is used by Madurese people in Madura Island, Indonesia. However, there was a massive migration of Madurese people due to Dutch colonization. The Madurese people were brought by force for cultivation system to the eastern salient north coast or called as Tapal Kuda that spread in region covers the regencies of Probolinggo, Lumajang, Jember, Situbondo, Bondowoso, and Banyuwangi, the eastern part of the Pasuruan Regency, as well as the city of Probolinggo. The city of Probolinggo has unique characteristic regarding the ethnic and language variation. Several ethnics can be found in this city, such as Madurese, Javanese, Tengger, Arabic, Mandhalungan, Osing, and Chinese. Hence, the hybrid culture happens in Probolinggo, they called the culture as Pendhalungan which is the combination of culture among Madurese and Javanese. Among those ethnics, Madurese is the strongest ethnic that still maintains their identity, such as their ethnic language. The massive growth of Madurese in Probolinggo city, East Java is interesting to be analyzed. The object of this study is to discover language ideology and literacy of Madurese to maintain their ethnic language in Probolinggo city, East Java. The researchers used the theory of language maintenance practice based on three types of practices social language, social literacy, and peripheral ritualized practices. The approach of this study was qualitative research with ethnography method. In order to collect the data, researchers used observation and interview techniques. The amount of informants were 20 families which consist of mother, father and children in 5 sub-districts in Probolinggo city and they were interviewed regarding language ideology and literacy of Madurese. In supporting the data, researchers employed the Madurese speakers outside family scope like in school, office, and market. The result of the study revealed that Madurese has been preserved heritably to young generations by ethnics of Madura in Probolinggo city. Primarily the language is being taught in the earlier age of their children as L1 and used as ethnic identity. The parents teach them with simple sentences that grammatically correct. This language literacy is applied to maintain ethnic language as their ethnicity marker since they inhabit in Javanese ethnic area. In fact, it is not the only ideology of Madurese ethnic but also the influence of economic situation like in trading communication. The usage of Madurese in the trading scope is very beneficial since people can bargain the goods cheaper and easier because most of the traders are from Madurese ethnic. In this situation, linguistic phenomena such as code mixing and code switching between Madurese and Javanese are emerged as the trading communication. From the result, it can be concluded that solidarity exists among Madurese people in many scopes.

Keywords: language literacy, language maintenance, Madurese, Probolinggo City

Procedia PDF Downloads 221
483 Preparation of β-Polyvinylidene Fluoride Film for Self-Charging Lithium-Ion Battery

Authors: Nursultan Turdakyn, Alisher Medeubayev, Didar Meiramov, Zhibek Bekezhankyzy, Desmond Adair, Gulnur Kalimuldina

Abstract:

In recent years the development of sustainable energy sources is getting extensive research interest due to the ever-growing demand for energy. As an alternative energy source to power small electronic devices, ambient energy harvesting from vibration or human body motion is considered a potential candidate. Despite the enormous progress in the field of battery research in terms of safety, lifecycle and energy density in about three decades, it has not reached the level to conveniently power wearable electronic devices such as smartwatches, bands, hearing aids, etc. For this reason, the development of self-charging power units with excellent flexibility and integrated energy harvesting and storage is crucial. Self-powering is a key idea that makes it possible for the system to operate sustainably, which is now getting more acceptance in many fields in the area of sensor networks, the internet of things (IoT) and implantable in-vivo medical devices. For solving this energy harvesting issue, the self-powering nanogenerators (NGS) were proposed and proved their high effectiveness. Usually, sustainable power is delivered through energy harvesting and storage devices by connecting them to the power management circuit; as for energy storage, the Li-ion battery (LIB) is one of the most effective technologies. Through the movement of Li ions under the driving of an externally applied voltage source, the electrochemical reactions generate the anode and cathode, storing the electrical energy as the chemical energy. In this paper, we present a simultaneous process of converting the mechanical energy into chemical energy in a way that NG and LIB are combined as an all-in-one power system. The electrospinning method was used as an initial step for the development of such a system with a β-PVDF separator. The obtained film showed promising voltage output at different stress frequencies. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis showed a high percentage of β phase of PVDF polymer material. Moreover, it was found that the addition of 1 wt.% of BTO (Barium Titanate) results in higher quality fibers. When comparing pure PVDF solution with 20 wt.% content and the one with BTO added the latter was more viscous. Hence, the sample was electrospun uniformly without any beads. Lastly, to test the sensor application of such film, a particular testing device has been developed. With this device, the force of a finger tap can be applied at different frequencies so that electrical signal generation is validated.

Keywords: electrospinning, nanogenerators, piezoelectric PVDF, self-charging li-ion batteries

Procedia PDF Downloads 150
482 Planning a European Policy for Increasing Graduate Population: The Conditions That Count

Authors: Alice Civera, Mattia Cattaneo, Michele Meoli, Stefano Paleari

Abstract:

Despite the fact that more equal access to higher education has been an objective public policy for several decades, little is known about the effectiveness of alternative means for achieving such goal. Indeed, nowadays, high level of graduate population can be observed both in countries with the high and low level of fees, or high and low level of public expenditure in higher education. This paper surveys the extant literature providing some background on the economic concepts of the higher education market, and reviews key determinants of demand and supply. A theoretical model of aggregate demand and supply of higher education is derived, with the aim to facilitate the understanding of the challenges in today’s higher education systems, as well as the opportunities for development. The model is validated on some exemplary case studies describing the different relationship between the level of public investment and levels of graduate population and helps to derive general implications. In addition, using a two-stage least squares model, we build a macroeconomic model of supply and demand for European higher education. The model allows interpreting policies shifting either the supply or the demand for higher education, and allows taking into consideration contextual conditions with the aim of comparing divergent policies under a common framework. Results show that the same policy objective (i.e., increasing graduate population) can be obtained by shifting either the demand function (i.e., by strengthening student aid) or the supply function (i.e., by directly supporting higher education institutions). Under this theoretical perspective, the level of tuition fees is irrelevant, and empirically we can observe high levels of graduate population in both countries with high (i.e., the UK) or low (i.e., Germany) levels of tuition fees. In practice, this model provides a conceptual framework to help better understanding what are the external conditions that need to be considered, when planning a policy for increasing graduate population. Extrapolating a policy from results in different countries, under this perspective, is a poor solution when contingent factors are not addressed. The second implication of this conceptual framework is that policies addressing the supply or the demand function needs to address different contingencies. In other words, a government aiming at increasing graduate population needs to implement complementary policies, designing them according to the side of the market that is interested. For example, a ‘supply-driven’ intervention, through the direct financial support of higher education institutions, needs to address the issue of institutions’ moral hazard, by creating incentives to supply higher education services in efficient conditions. By contrast, a ‘demand-driven’ policy, providing student aids, need to tackle the students’ moral hazard, by creating an incentive to responsible behavior.

Keywords: graduates, higher education, higher education policies, tuition fees

Procedia PDF Downloads 150
481 The Unique Electrical and Magnetic Properties of Thorium Di-Iodide Indicate the Arrival of Its Superconducting State

Authors: Dong Zhao

Abstract:

Even though the recent claim of room temperature superconductivity by LK-99 was confirmed an unsuccessful attempt, this work reawakened people’s century striving to get applicable superconductors with Tc of room temperature or higher and under ambient pressure. One of the efforts was focusing on exploring the thorium salts. This is because certain thorium compounds revealed an unusual property of having both high electrical conductivity and diamagnetism or the so-called “coexistence of high electrical conductivity and diamagnetism.” It is well known that this property of the coexistence of high electrical conductivity and diamagnetism is held by superconductors because of the electron pairings. Consequently, the likelihood for these thorium compounds to have superconducting properties becomes great. However, as a surprise, these thorium salts possess this property at room temperature and atmosphere pressure. This gives rise to solid evidence for these thorium compounds to be room-temperature superconductors without a need for external pressure. Among these thorium compound superconductors claimed in that work, thorium di-iodide (ThI₂) is a unique one and has received comprehensive discussion. ThI₂ was synthesized and structurally analyzed by the single crystal diffraction method in the 1960s. Its special property of coexistence of high electrical conductivity and diamagnetism was revealed. Because of this unique property, a special molecular configuration was sketched. Except for an ordinary oxidation of +2 for the thorium cation, the thorium’s oxidation state in ThI₂ is +4. According to the experimental results, ThI₂‘s actual molecular configuration was determined as an unusual one of [Th4+(e-)2](I-)2. This means that the ThI₂ salt’s cation is composed of a [Th4+(e-)2]2+ cation core. In other words, the cation of ThI₂ is constructed by combining an oxidation state +4 of the thorium atom and a pair of electrons or an electron lone pair located on the thorium atom. This combination of the thorium atom and the electron lone pair leads to an oxidation state +2 for the [Th4+(e-)2]2+ cation core. This special construction of the thorium cation is very distinctive, which is believed to be the factor that grants ThI₂ the room temperature superconductivity. Actually, the key for ThI₂ to become a room-temperature superconductor is this characteristic electron lone pair residing on the thorium atom along with the formation of a network constructed by the thorium atoms. This network specializes in a way that allows the electron lone pairs to hop over it and, thus, to generate the supercurrent. This work will discuss, in detail, the special electrical and magnetic properties of ThI₂ as well as its structural features at ambient conditions. The exploration of how the electron pairing in combination with the structurally specialized network works together to bring ThI₂ into a superconducting state. From the experimental results, strong evidence has definitely pointed out that the ThI₂ should be a superconductor, at least at room temperature and under atmosphere pressure.

Keywords: co-existence of high electrical conductivity and diamagnetism, electron lone pair, room temperature superconductor, special molecular configuration of thorium di-iodide ThI₂

Procedia PDF Downloads 46
480 Experimental and Computational Fluid Dynamic Modeling of a Progressing Cavity Pump Handling Newtonian Fluids

Authors: Deisy Becerra, Edwar Perez, Nicolas Rios, Miguel Asuaje

Abstract:

Progressing Cavity Pump (PCP) is a type of positive displacement pump that is being awarded greater importance as capable artificial lift equipment in the heavy oil field. The most commonly PCP used is driven single lobe pump that consists of a single external helical rotor turning eccentrically inside a double internal helical stator. This type of pump was analyzed by the experimental and Computational Fluid Dynamic (CFD) approach from the DCAB031 model located in a closed-loop arrangement. Experimental measurements were taken to determine the pressure rise and flow rate with a flow control valve installed at the outlet of the pump. The flowrate handled was measured by a FLOMEC-OM025 oval gear flowmeter. For each flowrate considered, the pump’s rotational speed and power input were controlled using an Invertek Optidrive E3 frequency driver. Once a steady-state operation was attained, pressure rise measurements were taken with a Sper Scientific wide range digital pressure meter. In this study, water and three Newtonian oils of different viscosities were tested at different rotational speeds. The CFD model implementation was developed on Star- CCM+ using an Overset Mesh that includes the relative motion between rotor and stator, which is one of the main contributions of the present work. The simulations are capable of providing detailed information about the pressure and velocity fields inside the device in laminar and unsteady regimens. The simulations have a good agreement with the experimental data due to Mean Squared Error (MSE) in under 21%, and the Grid Convergence Index (GCI) was calculated for the validation of the mesh, obtaining a value of 2.5%. In this case, three different rotational speeds were evaluated (200, 300, 400 rpm), and it is possible to show a directly proportional relationship between the rotational speed of the rotor and the flow rate calculated. The maximum production rates for the different speeds for water were 3.8 GPM, 4.3 GPM, and 6.1 GPM; also, for the oil tested were 1.8 GPM, 2.5 GPM, 3.8 GPM, respectively. Likewise, an inversely proportional relationship between the viscosity of the fluid and pump performance was observed, since the viscous oils showed the lowest pressure increase and the lowest volumetric flow pumped, with a degradation around of 30% of the pressure rise, between performance curves. Finally, the Productivity Index (PI) remained approximately constant for the different speeds evaluated; however, between fluids exist a diminution due to the viscosity.

Keywords: computational fluid dynamic, CFD, Newtonian fluids, overset mesh, PCP pressure rise

Procedia PDF Downloads 117
479 Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without the addition of external carbon sources. The present study investigated the feasibility of anammox hybrid reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. The experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of the heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.

Keywords: anammox, filter media, kinetics, nitrogen removal

Procedia PDF Downloads 373
478 The Surgical Trainee Perception of the Operating Room Educational Environment

Authors: Neal Rupani

Abstract:

Background: A surgical trainee has limited learning opportunities in the operating room in order to gain an ever-increasing standard of surgical skill, competency, and proficiency. These opportunities continue to decline due to numerous factors such as the European Working Time Directive and increasing requirement for service provision. It is therefore imperative to obtain the highest educational value from each educational opportunity. A measure that has yet to be validated in England on surgical trainees called the Operating Room Educational Environment Measure (OREEM) has been developed to identify and evaluate each component of the educational environment with a view to steer future change in optimising educational events in theatre. Aims: The aims of the study are to assess the reliability of the OREEM within England and to evaluate the surgical trainee’s objective perspective of the current operating room educational environment within one region within England. Methods: Using a quantitative study approach, data was collected over one month from surgical trainees within Health Education Thames Valley (Oxford) using an online questionnaire consisting of demographic data, the OREEM, a global satisfaction score. Results: 140 surgical trainees were invited to the study, with an online response of 54 participants (response rate = 38.6%). The OREEM was shown to have good internal consistency (α = 0.906, variables = 40) and unidimensionality, along with all four of its subgroups. The mean OREEM score was 79.16%. The areas highlighted for improvement predominantly focused on improving learning opportunities (average subscale score = 72.9%) and conducting pre- and post-operative teaching (average score = 70.4%). The trainee perception is most satisfactory for the level of supervision and workload (average subscale score = 82.87%). There was no differences found between gender (U = 191.5, p = 0.535) or type of hospital (U = 258.0, p = 0.099), but the learning environment was favoured towards senior trainees (U = 223.5, p = 0.017). There was strong correlation between OREEM and the global satisfaction score (r = 0.755, p<0.001). Conclusions: The OREEM was shown to be reliable in measuring the educational environment in the operating room. This can be used to identify potentially modifiable components for improvement and as an audit tool to ensure high standards are being met. The current perception of the education environment in Health Education Thames Valley is satisfactory, and modifiable internal and external factors such as reducing service provision requirements, empowering trainees to plan lists, creating a team-working ethic between all personnel, and using tools that maximise learning from each operation have been identified to improve learning in the future. There is a favourable attitude to use of such improvement tools, especially for those currently dissatisfied.

Keywords: education environment, surgery, post-graduate education, OREEM

Procedia PDF Downloads 173
477 Dual-use UAVs in Armed Conflicts: Opportunities and Risks for Cyber and Electronic Warfare

Authors: Piret Pernik

Abstract:

Based on strategic, operational, and technical analysis of the ongoing armed conflict in Ukraine, this paper will examine the opportunities and risks of using small commercial drones (dual-use unmanned aerial vehicles, UAV) for military purposes. The paper discusses the opportunities and risks in the information domain, encompassing both cyber and electromagnetic interference and attacks. The paper will draw conclusions on a possible strategic impact to the battlefield outcomes in the modern armed conflicts by the widespread use of dual-use UAVs. This article will contribute to filling the gap in the literature by examining based on empirical data cyberattacks and electromagnetic interference. Today, more than one hundred states and non-state actors possess UAVs ranging from low cost commodity models, widely are dual-use, available and affordable to anyone, to high-cost combat UAVs (UCAV) with lethal kinetic strike capabilities, which can be enhanced with Artificial Intelligence (AI) and Machine Learning (ML). Dual-use UAVs have been used by various actors for intelligence, reconnaissance, surveillance, situational awareness, geolocation, and kinetic targeting. Thus they function as force multipliers enabling kinetic and electronic warfare attacks and provide comparative and asymmetric operational and tactical advances. Some go as far as argue that automated (or semi-automated) systems can change the character of warfare, while others observe that the use of small drones has not changed the balance of power or battlefield outcomes. UAVs give considerable opportunities for commanders, for example, because they can be operated without GPS navigation, makes them less vulnerable and dependent on satellite communications. They can and have been used to conduct cyberattacks, electromagnetic interference, and kinetic attacks. However, they are highly vulnerable to those attacks themselves. So far, strategic studies, literature, and expert commentary have overlooked cybersecurity and electronic interference dimension of the use of dual use UAVs. The studies that link technical analysis of opportunities and risks with strategic battlefield outcomes is missing. It is expected that dual use commercial UAV proliferation in armed and hybrid conflicts will continue and accelerate in the future. Therefore, it is important to understand specific opportunities and risks related to the crowdsourced use of dual-use UAVs, which can have kinetic effects. Technical countermeasures to protect UAVs differ depending on a type of UAV (small, midsize, large, stealth combat), and this paper will offer a unique analysis of small UAVs both from the view of opportunities and risks for commanders and other actors in armed conflict.

Keywords: dual-use technology, cyber attacks, electromagnetic warfare, case studies of cyberattacks in armed conflicts

Procedia PDF Downloads 89
476 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator

Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov

Abstract:

The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.

Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator

Procedia PDF Downloads 365
475 DIF-JACKET: a Thermal Protective Jacket for Firefighters

Authors: Gilda Santos, Rita Marques, Francisca Marques, João Ribeiro, André Fonseca, João M. Miranda, João B. L. M. Campos, Soraia F. Neves

Abstract:

Every year, an unacceptable number of firefighters are seriously burned during firefighting operations, with some of them eventually losing their life. Although thermal protective clothing research and development has been searching solutions to minimize firefighters heat load and skin burns, currently commercially available solutions focus in solving isolated problems, for example, radiant heat or water-vapor resistance. Therefore, episodes of severe burns and heat strokes are still frequent. Taking this into account, a consortium composed by Portuguese entities has joined synergies to develop an innovative protective clothing system by following a procedure based on the application of numerical models to optimize the design and using a combinationof protective clothing components disposed in different layers. Recently, it has been shown that Phase Change Materials (PCMs) can contribute to the reduction of potential heat hazards in fire extinguish operations, and consequently, their incorporation into firefighting protective clothing has advantages. The greatest challenge is to integrate these materials without compromising garments ergonomics and, at the same time, accomplishing the International Standard of protective clothing for firefighters – laboratory test methods and performance requirements for wildland firefighting clothing. The incorporation of PCMs into the firefighter's protective jacket will result in the absorption of heat from the fire and consequently increase the time that the firefighter can be exposed to it. According to the project studies and developments, to favor a higher use of the PCM storage capacityand to take advantage of its high thermal inertia more efficiently, the PCM layer should be closer to the external heat source. Therefore, in this stage, to integrate PCMs in firefighting clothing, a mock-up of a vest specially designed to protect the torso (back, chest and abdomen) and to be worn over a fire-resistant jacketwas envisaged. Different configurations of PCMs, as well as multilayer approaches, were studied using suitable joining technologies such as bonding, ultrasound, and radiofrequency. Concerning firefighter’s protective clothing, it is important to balance heat protection and flame resistance with comfort parameters, namely, thermaland water-vapor resistances. The impact of the most promising solutions regarding thermal comfort was evaluated to refine the performance of the global solutions. Results obtained with experimental bench scale model and numerical simulation regarding the integration of PCMs in a vest designed as protective clothing for firefighters will be presented.

Keywords: firefighters, multilayer system, phase change material, thermal protective clothing

Procedia PDF Downloads 147
474 Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend

Authors: Rangrong Yoksan, Amporn Sane, Nattaporn Khanoonkon, Chanakorn Yokesahachart, Narumol Noivoil, Khanh Minh Dang

Abstract:

Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical, and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and non-toxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75, and 0:100), and fiber content (i.e. in the range of 1-25 % wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using the native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness, and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers.

Keywords: polylactic acid, thermoplastic starch, Jute fiber, composite, blend

Procedia PDF Downloads 411
473 The Effects of Total Resistance Exercises Suspension Exercises Program on Physical Performance in Healthy Individuals

Authors: P. Cavlan, B. Kırmızıgil

Abstract:

Introduction: Each exercise in suspension exercises offer the use of gravity and body weight; and is thought to develop the equilibrium, flexibility and body stability necessary for daily life activities and sports, in addition to creating the correct functional force. Suspension exercises based on body weight focus the human body as an integrated system. Total Resistance Exercises (TRX) suspension training that physiotherapists, athletic health clinics, exercise centers of hospitals and chiropractic clinics now use for rehabilitation purposes. The purpose of this study is to investigate and compare the effects of TRX suspension exercises on physical performance in healthy individuals. Method: Healthy subjects divided into two groups; the study group and the control group with 40 individuals for each, between ages 20 to 45 with similar gender distributions. Study group had 2 sessions of suspension exercises per week for 8 weeks and control group had no exercises during this period. All the participants were given explosive strength, flexibility, strength and endurance tests before and after the 8 week period. The tests used for evaluation were respectively; standing long jump test and single leg (left and right) long jump tests, sit and reach test, sit up and back extension tests. Results: In the study group a statistically significant difference was found between prior- and final-tests in all evaluations, including explosive strength, flexibility, core strength and endurance of the group performing TRX exercises. These values were higher than the control groups’ values. The final test results were found to be statistically different between the study and control groups. Study group showed development in all values. Conclusions: In this study, which was conducted with the aim of investigating and comparing the effects of TRX suspension exercises on physical performance, the results of the prior-tests of both groups were similar. There was no significant difference between the prior and the final values in the control group. It was observed that in the study group, explosive strength, flexibility, strength, and endurance development was achieved after 8 weeks. According to these results, it was shown that TRX suspension exercise program improved explosive strength, flexibility, especially core strength and endurance; therefore the physical performance. Based on the results of our study, it was determined that the physical performance, an indispensable requirement of our life, was developed by the TRX suspension system. We concluded that TRX suspension exercises can be used to improve the explosive strength and flexibility in healthy individuals, as well as developing the muscle strength and endurance of the core region. The specific investigations could be done in this area so that programs that emphasize the TRX's physical performance features could be created.

Keywords: core strength, endurance, explosive strength, flexibility, physical performance, suspension exercises

Procedia PDF Downloads 157
472 Sustainable Development and Modern Challenges of Higher Educational Institutions in the Regions of Georgia

Authors: Natia Tsiklashvili, Tamari Poladashvili

Abstract:

Education is one of the fundamental factors of economic prosperity in all respects. It is impossible to talk about the sustainable economic development of the country without substantial investments in human capital and investment into higher educational institutions. Education improves the standard of living of the population and expands the opportunities to receive more benefits, which will be equally important for both the individual and the society as a whole. There are growing initiatives among educated people such as entrepreneurship, technological development, etc. At the same time, the distribution of income between population groups is improving. The given paper discusses the scientific literature in the field of sustainable development through higher educational institutions. Scholars of economic theory emphasize a few major aspects that show the role of higher education in economic growth: a) Alongside education, human capital gradually increases which leads to increased competitiveness of the labor force, not only in the national but also in the international labor market (Neoclassical growth theory), b) The high level of education can increase the efficiency of the economy, investment in human capital, innovation, and knowledge are significant contributors to economic growth. Hence, it focuses on positive externalities and spillover effects of a knowledge-based economy which leads to economic development (endogenous growth theory), c) Education can facilitate the diffusion and transfer of knowledge. Hence, it supports macroeconomic sustainability and microeconomic conditions of individuals. While discussing the economic importance of education, we consider education as the spiritual development of the human that advances general skills, acquires a profession, and improves living conditions. Scholars agree that human capital is not only money but liquid assets, stocks, and competitive knowledge. The last one is the main lever in the context of increasing human competitiveness and high productivity. To address the local issues, the present article researched ten educational institutions across Georgia, including state and private HEIs. Qualitative research was done by analyzing in-depth interweaves of representatives from each institution, and respondents were rectors/vice-rectors/heads of quality assurance service at the institute. The result shows that there is a number of challenges that institution face in order to maintain sustainable development and be the strong links to education and the labor market. Mostly it’s contacted with bureaucracy, insufficient finances they receive, and local challenges that differ across the regions.

Keywords: higher education, higher educational institutions, sustainable development, regions, Georgia

Procedia PDF Downloads 75
471 Public Participation for an Effective Flood Risk Management: Building Social Capacities in Ribera Alta Del Ebro, Spain

Authors: Alba Ballester Ciuró, Marc Pares Franzi

Abstract:

While coming decades are likely to see a higher flood risk in Europe and greater socio-economic damages, traditional flood risk management has become inefficient. In response to that, new approaches such as capacity building and public participation have recently been incorporated in natural hazards mitigation policy (i.e. Sendai Framework for Action, Intergovernmental Panel on Climate Change reports and EU Floods Directive). By integrating capacity building and public participation, we present a research concerning the promotion of participatory social capacity building actions for flood risk mitigation at the local level. Social capacities have been defined as the resources and abilities available at individual and collective level that can be used to anticipate, respond to, cope with, recover from and adapt to external stressors. Social capacity building is understood as a process of identifying communities’ social capacities and of applying collaborative strategies to improve them. This paper presents a proposal of systematization of participatory social capacity building process for flood risk mitigation, and its implementation in a high risk of flooding area in the Ebro river basin: Ribera Alta del Ebro. To develop this process, we designed and tested a tool that allows measuring and building five types of social capacities: knowledge, motivation, networks, participation and finance. The tool implementation has allowed us to assess social capacities in the area. Upon the results of the assessment we have developed a co-decision process with stakeholders and flood risk management authorities on which participatory activities could be employed to improve social capacities for flood risk mitigation. Based on the results of this process, and focused on the weaker social capacities, we developed a set of participatory actions in the area oriented to general public and stakeholders: informative sessions on flood risk management plan and flood insurances, interpretative river descents on flood risk management (with journalists, teachers, and general public), interpretative visit to the floodplain, workshop on agricultural insurance, deliberative workshop on project funding, deliberative workshops in schools on flood risk management (playing with a flood risk model). The combination of obtaining data through a mixed-methods approach of qualitative inquiry and quantitative surveys, as well as action research through co-decision processes and pilot participatory activities, show us the significant impact of public participation on social capacity building for flood risk mitigation and contributes to the understanding of which main factors intervene in this process.

Keywords: flood risk management, public participation, risk reduction, social capacities, vulnerability assessment

Procedia PDF Downloads 198
470 Examining the European Central Bank's Marginal Attention to Human Rights Concerns during the Eurozone Crisis through the Lens of Organizational Culture

Authors: Hila Levi

Abstract:

Respect for human rights is a fundamental element of the European Union's (EU) identity and law. Surprisingly, however, the protection of human rights has been significantly restricted in the austerity programs ordered by the International Monetary Fund (IMF), the European Central Bank (ECB) and the European Commission (EC) (often labeled 'the Troika') in return for financial aid to the crisis-hit countries. This paper focuses on the role of the ECB in the crisis management. While other international financial institutions, such as the IMF or the World Bank, may opt to neglect human rights obligations, one might expect a greater respect of human rights from the ECB, which is bound by the EU Charter of Fundamental Rights. However, this paper argues that ECB officials made no significant effort to protect human rights or strike an adequate balance between competing financial and human rights needs while coping with the crisis. ECB officials were preoccupied with the need to stabilize the economy and prevent a collapse of the Eurozone, and paid only marginal attention to human rights concerns in the design and implementation of Troikas' programs. This paper explores the role of Organizational Culture (OC) in explaining this marginalization. While International Relations (IR) research on Intergovernmental Organizations (IGOs) behavior has traditionally focused on external interests of powerful member states, and on national and economic considerations, this study focuses on particular institutions' internal factors and independent processes. OC characteristics have been identified in OC literature as an important determinant of organizational behavior. This paper suggests that cultural characteristics are also vital for the examination of IGOs, and particularly for understanding the ECB's behavior during the crisis. In order to assess the OC of the ECB and the impact it had on its policies and decisions during the Eurozone crisis, the paper uses the results of numerous qualitative interviews conducted with high-ranking officials and staff members of the ECB involved in the crisis management. It further reviews primary sources of the ECB (such as ECB statutes, and the Memoranda of Understanding signed between the crisis countries and the Troika), and secondary sources (such as the report of the UN High Commissioner for Human Rights on Austerity measures and economic, social, and cultural rights). It thus analyzes the interaction between the ECBs culture and the almost complete absence of human rights considerations in the Eurozone crisis resolution scheme. This paper highlights the importance and influence of internal ideational factors on IGOs behavior. From a more practical perspective, this paper may contribute to understanding one of the obstacles in the process of human rights implementation in international organizations, and provide instruments for better protection of social and economic rights.

Keywords: European central bank, eurozone crisis, intergovernmental organizations, organizational culture

Procedia PDF Downloads 140
469 Immobilization of Horseradish Peroxidase onto Bio-Linked Magnetic Particles with Allium Cepa Peel Water Extracts

Authors: Mirjana Petronijević, Sanja Panić, Aleksandra Cvetanović, Branko Kordić, Nenad Grba

Abstract:

Enzyme peroxidases are biological catalysts and play a major role in phenolic wastewater treatments and other environmental applications. The most studied species from the peroxidases family is horseradish peroxidase (HRP). In environmental processes, HRP could be used in its free or immobilized form. Enzyme immobilization onto solid support is performed to improve the enzyme properties, prolong its lifespan and operational stability and allow its reuse in industrial applications. One of the enzyme supports of a newer generation is magnetic particles (MPs). Fe₃O₄ MPs are the most widely pursued immobilization of enzymes owing to their remarkable advantages of biocompatibility and non-toxicity. Also, MPs can be easily separated and recovered from the water by applying an external magnetic field. On the other hand, metals and metal oxides are not suitable for the covalent binding of enzymes, so it is necessary to perform their surface modification. Fe₃O₄ MPs functionalization could be performed during the process of their synthesis if it takes place in the presence of plant extracts. Extracts of plant material, such as wild plants, herbs, even waste materials of the food and agricultural industry (bark, shell, leaves, peel), are rich in various bioactive components such as polyphenols, flavonoids, sugars, etc. When the synthesis of magnetite is performed in the presence of plant extracts, bioactive components are incorporated into the surface of the magnetite, thereby affecting its functionalization. In this paper, the suitability of bio-magnetite as solid support for covalent immobilization of HRP across glutaraldehyde was examined. The activity of immobilized HRP at different pH values (4-9) and temperatures (20-80°C) and reusability were examined. Bio-MP was synthesized by co-precipitation method from Fe(II) and Fe(III) sulfate salts in the presence of water extract of the Allium cepa peel. The water extract showed 81% of antiradical potential (according to DPPH assay), which is connected with the high content of polyphenols. According to the FTIR analysis, the bio-magnetite contains oxygen functional groups (-OH, -COOH, C=O) suitable for binding to glutaraldehyde, after which the enzyme is covalently immobilized. The immobilized enzyme showed high activity at ambient temperature and pH 7 (30 U/g) and retained ≥ 80% of its activity at a wide range of pH (5-8) and temperature (20-50°C). The HRP immobilized onto bio-MPs showed remarkable stability towards temperature and pH variations compared to the free enzyme form. On the other hand, immobilized HRP showed low reusability after the first washing cycle enzyme retains 50% of its activity, while after the third washing cycle retains only 22%.

Keywords: bio-magnetite, enzyme immobilization, water extracts, environmental protection

Procedia PDF Downloads 204
468 Particle Separation Using Individually-Controlled Magnetic Soft Artificial Cilia

Authors: Yau-Luen Ng, Nathan Banka, Santosh Devasia

Abstract:

In this paper, a method based on soft artificial cilia is introduced to separate particles based on size and mass. In nature, cilia are used for fluid propulsion in the mammalian circulatory system, as well as for swimming and size-selective particle entrainment for feeding in microorganisms. Inspired by biological cilia, an array of artificial cilia was fabricated using Polydimethylsiloxane (PDMS) to simulate the actual motion. A row of four individually-controlled magnetic artificial cilia in a semi-circular channel are actuated by the magnetic fields from four permanent magnets. Each cilium is a slender rectangular cantilever approximately 13mm long made from a composite of PDMS and carbonyl iron particles. A time-varying magnetic force is achieved by periodically varying the out-of-plane distance from the permanent magnets to the cilia, resulting in large-amplitude deflections of the cilia that can be used to drive fluid motion. Previous results have shown that this system of individually-controlled magnetic cilia can generate effective mixing flows; the purpose of the present work is to apply the individual cilia control to a particle separation task. Based on the observed beating patterns of cilia arrays in nature, the experimental beating patterns were selected as a metachronal wave, in which a fixed phase lead or lag is imposed between adjacent cilia. Additionally, the beating frequency was varied. For each set of experimental parameters, the channel was filled with water and polyethylene microspheres introduced at the center of the cilia array. Two types of particles were used: large red microspheres with density 0.9971 g/cm³ and 850-1000 μm avg. diameter, and small blue microspheres with density 1.06 g/cm³ and diameter 30 μm. At low beating frequencies, all particles were propelled in the mean flow direction. However, the large particles were observed to reverse directions above about 4.8 Hz, whereas reversal of the small particle transport direction did not occur until 6 Hz. Between these two transition frequencies, the large and small particles can be separated as they move in opposite directions. The experimental results show that selecting an appropriate cilia beating pattern can lead to selective transport of neutrally-buoyant particles based on their size. Importantly, the separation threshold can be chosen dynamically by adjusting the actuation frequency. However, further study is required to determine the range of particle sizes that can be effectively separated for a given system geometry.

Keywords: magnetic cilia, particle separation, tunable separation, soft actutors

Procedia PDF Downloads 192
467 Solid Particles Transport and Deposition Prediction in a Turbulent Impinging Jet Using the Lattice Boltzmann Method and a Probabilistic Model on GPU

Authors: Ali Abdul Kadhim, Fue Lien

Abstract:

Solid particle distribution on an impingement surface has been simulated utilizing a graphical processing unit (GPU). In-house computational fluid dynamics (CFD) code has been developed to investigate a 3D turbulent impinging jet using the lattice Boltzmann method (LBM) in conjunction with large eddy simulation (LES) and the multiple relaxation time (MRT) models. This paper proposed an improvement in the LBM-cellular automata (LBM-CA) probabilistic method. In the current model, the fluid flow utilizes the D3Q19 lattice, while the particle model employs the D3Q27 lattice. The particle numbers are defined at the same regular LBM nodes, and transport of particles from one node to its neighboring nodes are determined in accordance with the particle bulk density and velocity by considering all the external forces. The previous models distribute particles at each time step without considering the local velocity and the number of particles at each node. The present model overcomes the deficiencies of the previous LBM-CA models and, therefore, can better capture the dynamic interaction between particles and the surrounding turbulent flow field. Despite the increasing popularity of LBM-MRT-CA model in simulating complex multiphase fluid flows, this approach is still expensive in term of memory size and computational time required to perform 3D simulations. To improve the throughput of each simulation, a single GeForce GTX TITAN X GPU is used in the present work. The CUDA parallel programming platform and the CuRAND library are utilized to form an efficient LBM-CA algorithm. The methodology was first validated against a benchmark test case involving particle deposition on a square cylinder confined in a duct. The flow was unsteady and laminar at Re=200 (Re is the Reynolds number), and simulations were conducted for different Stokes numbers. The present LBM solutions agree well with other results available in the open literature. The GPU code was then used to simulate the particle transport and deposition in a turbulent impinging jet at Re=10,000. The simulations were conducted for L/D=2,4 and 6, where L is the nozzle-to-surface distance and D is the jet diameter. The effect of changing the Stokes number on the particle deposition profile was studied at different L/D ratios. For comparative studies, another in-house serial CPU code was also developed, coupling LBM with the classical Lagrangian particle dispersion model. Agreement between results obtained with LBM-CA and LBM-Lagrangian models and the experimental data is generally good. The present GPU approach achieves a speedup ratio of about 350 against the serial code running on a single CPU.

Keywords: CUDA, GPU parallel programming, LES, lattice Boltzmann method, MRT, multi-phase flow, probabilistic model

Procedia PDF Downloads 195
466 Migration, Assimilation and Well-Being of Interstate Migrant Workers in Kerala: A Critical Assessment

Authors: Arun Perumbilavil Anand

Abstract:

It may no longer be just anecdotal that every twelfth person in Kerala is a migrant worker from outside the state. For the past few years, the state has been witnessing large inflow of migrants from other states of India, which emerged as a result of demographic transition and Gulf emigration. Initially, the migrants were from the neighbouring states but, at a later period, the state started getting migrants from the distant parts of the country. Currently, migrants have turned to be a decisive force in the state and their increasing numbers have already started creating turbulences in the state. Over the past years, the increasing involvement of migrants in unlawful and criminal activities have generated apprehensions on their presence in the state. Moreover, at present, the Kerala society is not just hosting the first generation migrants, but there has been an increase in the second generation migrants making the situations more complex and diverse. In such a paradigm, the study ponders into the issues of migrants concerning their assimilation and well-being in the host society. Also, the study looks into the factors that impede the assimilation process, along with the perceptions of the migrants about the host society and the people. The study also tries to bring out the differences in the levels of assimilation among the migrants along the lines of religion, caste, state of origin, gender, stay duration and education. Methodology: The study is based on the empirical findings obtained out of the primary survey conducted on migrants employed in the Kanjikode industrial area of Kerala. The samples were selected through purposive sampling and the study employed techniques like observation, questionnaire and in-depth interviews. The findings are based on interviews conducted with 100 migrants. Findings and Conclusion: The study was an attempt of its kind in addressing the issues of assimilation and integration of interstate migrants working in the Kerala. As mentioned, the study could bring out differences in the levels of assimilation along the lines of different characteristics. The study could also locate the importance, and the role played by the peer groups and neighborhoods in accelerating the process of assimilation among the migrants. As an extension, the study also looked at the assimilation and educational issues of the migrant children living in Kerala, and it found that the place of birth, age at entry and the peer group plays a pivotal role in the assimilation process. The study through its findings recommends the need for incorporating the concept of inclusive education into the state educational system by giving due emphasis to the needs of the marginalized. The study points out that owing to the existing demographic conditions, the state will inevitably have to depend on migrant labor in future. Moreover, in such a paradigm, the host community and the government should strive to create a conducive environment for the proper assimilation of the migrants and which in turn can be an impetus for the fulfilment of the needs of both the migrants and the state.

Keywords: assimilation, integration, Kerala, migrant workers, well-being

Procedia PDF Downloads 132
465 Systematic Identification of Noncoding Cancer Driver Somatic Mutations

Authors: Zohar Manber, Ran Elkon

Abstract:

Accumulation of somatic mutations (SMs) in the genome is a major driving force of cancer development. Most SMs in the tumor's genome are functionally neutral; however, some cause damage to critical processes and provide the tumor with a selective growth advantage (termed cancer driver mutations). Current research on functional significance of SMs is mainly focused on finding alterations in protein coding sequences. However, the exome comprises only 3% of the human genome, and thus, SMs in the noncoding genome significantly outnumber those that map to protein-coding regions. Although our understanding of noncoding driver SMs is very rudimentary, it is likely that disruption of regulatory elements in the genome is an important, yet largely underexplored mechanism by which somatic mutations contribute to cancer development. The expression of most human genes is controlled by multiple enhancers, and therefore, it is conceivable that regulatory SMs are distributed across different enhancers of the same target gene. Yet, to date, most statistical searches for regulatory SMs have considered each regulatory element individually, which may reduce statistical power. The first challenge in considering the cumulative activity of all the enhancers of a gene as a single unit is to map enhancers to their target promoters. Such mapping defines for each gene its set of regulating enhancers (termed "set of regulatory elements" (SRE)). Considering multiple enhancers of each gene as one unit holds great promise for enhancing the identification of driver regulatory SMs. However, the success of this approach is greatly dependent on the availability of comprehensive and accurate enhancer-promoter (E-P) maps. To date, the discovery of driver regulatory SMs has been hindered by insufficient sample sizes and statistical analyses that often considered each regulatory element separately. In this study, we analyzed more than 2,500 whole-genome sequence (WGS) samples provided by The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC) in order to identify such driver regulatory SMs. Our analyses took into account the combinatorial aspect of gene regulation by considering all the enhancers that control the same target gene as one unit, based on E-P maps from three genomics resources. The identification of candidate driver noncoding SMs is based on their recurrence. We searched for SREs of genes that are "hotspots" for SMs (that is, they accumulate SMs at a significantly elevated rate). To test the statistical significance of recurrence of SMs within a gene's SRE, we used both global and local background mutation rates. Using this approach, we detected - in seven different cancer types - numerous "hotspots" for SMs. To support the functional significance of these recurrent noncoding SMs, we further examined their association with the expression level of their target gene (using gene expression data provided by the ICGC and TCGA for samples that were also analyzed by WGS).

Keywords: cancer genomics, enhancers, noncoding genome, regulatory elements

Procedia PDF Downloads 95