Search results for: seismic prediction equations
1145 Evaluation of the Factors Affecting Violence Against Women (Case Study: Couples Referring to Family Counseling Centers in Tehran)
Authors: Hassan Manouchehri
Abstract:
The present study aimed to identify and evaluate the factors affecting violence against women. The statistical population included all couples referring to family counseling centers in Tehran due to domestic violence during the past year. A number of 305 people were selected as a statistical sample using simple random sampling and Cochran's formula in unlimited conditions. A researcher-made questionnaire including 110 items was used for data collection. The face validity and content validity of the questionnaire were confirmed by 30 experts and its reliability was obtained above 0.7 for all studied variables in a preliminary test with 30 subjects and it was acceptable. In order to analyze the data, descriptive statistical methods were used with SPSS software version 22 and inferential statistics were used for modeling structural equations in Smart PLS software version 2. Evaluating the theoretical framework and domestic and foreign studies indicated that, in general, four main factors, including cultural and social factors, economic factors, legal factors, as well as medical factors, underlie violence against women. In addition, structural equation modeling findings indicated that cultural and social factors, economic factors, legal factors, and medical factors affect violence against women.Keywords: violence against women, cultural and social factors, economic factors, legal factors, medical factors
Procedia PDF Downloads 1411144 Dynamic Response around Inclusions in Infinitely Inhomogeneous Media
Authors: Jinlai Bian, Zailin Yang, Guanxixi Jiang, Xinzhu Li
Abstract:
The problem of elastic wave propagation in inhomogeneous medium has always been a classic problem. Due to the frequent occurrence of earthquakes, many economic losses and casualties have been caused, therefore, to prevent earthquake damage to people and reduce damage, this paper studies the dynamic response around the circular inclusion in the whole space with inhomogeneous modulus, the inhomogeneity of the medium is reflected in the shear modulus of the medium with the spatial position, and the density is constant, this method can be used to solve the problem of the underground buried pipeline. Stress concentration phenomena are common in aerospace and earthquake engineering, and the dynamic stress concentration factor (DSCF) is one of the main factors leading to material damage, one of the important applications of the theory of elastic dynamics is to determine the stress concentration in the body with discontinuities such as cracks, holes, and inclusions. At present, the methods include wave function expansion method, integral transformation method, integral equation method and so on. Based on the complex function method, the Helmholtz equation with variable coefficients is standardized by using conformal transformation method and wave function expansion method, the displacement and stress fields in the whole space with circular inclusions are solved in the complex coordinate system, the unknown coefficients are solved by using boundary conditions, by comparing with the existing results, the correctness of this method is verified, based on the superiority of the complex variable function theory to the conformal transformation, this method can be extended to study the inclusion problem of arbitrary shapes. By solving the dynamic stress concentration factor around the inclusions, the influence of the inhomogeneous parameters of the medium and the wavenumber ratio of the inclusions to the matrix on the dynamic stress concentration factor is analyzed. The research results can provide some reference value for the evaluation of nondestructive testing (NDT), oil exploration, seismic monitoring, and soil-structure interaction.Keywords: circular inclusions, complex variable function, dynamic stress concentration factor (DSCF), inhomogeneous medium
Procedia PDF Downloads 1351143 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network
Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard
Abstract:
Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.Keywords: artificial neural networks, milling process, rotational speed, temperature
Procedia PDF Downloads 4051142 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI
Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi
Abstract:
This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.Keywords: catchment characteristics model, GIS, synthetic data, ungauged basin
Procedia PDF Downloads 3271141 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home
Procedia PDF Downloads 3571140 Non-Destructive Evaluation for Physical State Monitoring of an Angle Section Thin-Walled Curved Beam
Authors: Palash Dey, Sudip Talukdar
Abstract:
In this work, a cross-breed approach is presented for obtaining both the amount of the damage intensity and location of damage existing in thin-walled members. This cross-breed approach is developed based on response surface methodology (RSM) and genetic algorithm (GA). Theoretical finite element (FE) model of cracked angle section thin walled curved beam has been linked to the developed approach to carry out trial experiments to generate response surface functions (RSFs) of free, forced and heterogeneous dynamic response data. Subsequently, the error between the computed response surface functions and measured dynamic response data has been minimized using GA to find out the optimum damage parameters (amount of the damage intensity and location). A single crack of varying location and depth has been considered in this study. The presented approach has been found to reveal good accuracy in prediction of crack parameters and possess great potential in crack detection as it requires only the current response of a cracked beam.Keywords: damage parameters, finite element, genetic algorithm, response surface methodology, thin walled curved beam
Procedia PDF Downloads 2481139 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor
Authors: Ibrahim Makram Ibrahim Salib
Abstract:
Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income
Procedia PDF Downloads 741138 Identification of Potential Predictive Biomarkers for Early Diagnosis of Preeclampsia Growth Factors to microRNAs
Authors: Sadia Munir
Abstract:
Preeclampsia is the contributor to the worldwide maternal mortality of approximately 100,000 deaths a year. It complicates about 10% of all pregnancies and is the first cause of maternal admission to intensive care units. Predicting preeclampsia is a major challenge in obstetrics. More importantly, no major progress has been achieved in the treatment of preeclampsia. As placenta is the main cause of the disease, the only way to treat the disease is to extract placental and deliver the baby. In developed countries, the cost of an average case of preeclampsia is estimated at £9000. Interestingly, preeclampsia may have an impact on the health of mother or infant, beyond the pregnancy. We performed a systematic search of PubMed including the combination of terms such as preeclampsia, biomarkers, treatment, hypoxia, inflammation, oxidative stress, vascular endothelial growth factor A, activin A, inhibin A, placental growth factor, transforming growth factor β-1, Nodal, placenta, trophoblast cells, microRNAs. In this review, we have summarized current knowledge on the identification of potential biomarkers for the diagnosis of preeclampsia. Although these studies show promising data in early diagnosis of preeclampsia, the current value of these factors as biomarkers, for the precise prediction of preeclampsia, has its limitation. Therefore, future studies need to be done to support some of the very promising and interesting data to develop affordable and widely available tests for early detection and treatment of preeclampsia.Keywords: activin, biomarkers, growth factors, miroRNA
Procedia PDF Downloads 4421137 Assessment and Prediction of Vehicular Emissions in Commonwealth Avenue, Quezon City at Various Policy and Technology Scenarios Using Simple Interactive Model (SIM-Air)
Authors: Ria M. Caramoan, Analiza P. Rollon, Karl N. Vergel
Abstract:
The Simple Interactive Models for Better Air Quality (SIM-air) is an integrated approach model that allows the available information to support the integrated urban air quality management. This study utilized the vehicular air pollution information system module of SIM-air for the assessment of vehicular emissions in Commonwealth Avenue, Quezon City, Philippines. The main objective of the study is to assess and predict the contribution of different types of vehicles to the vehicular emissions in terms of PM₁₀, SOₓ, and NOₓ at different policy and technology scenarios. For the base year 2017, the results show vehicular emissions of 735.46 tons of PM₁₀, 108.90 tons of SOₓ, and 2,101.11 tons of NOₓ. Motorcycle is the major source of particulates contributing about 52% of the PM₁₀ emissions. Meanwhile, Public Utility Jeepneys contribute 27% of SOₓ emissions and private cars using gasoline contribute 39% of NOₓ emissions. Ambient air quality monitoring was also conducted in the study area for the standard parameters of PM₁₀, S0₂, and NO₂. Results show an average of 88.11 µg/Ncm, 47.41 µg/Ncm and 22.54 µg/Ncm for PM₁₀, N0₂, and SO₂, respectively, all were within the DENR National Ambient Air Quality Guideline Values. Future emissions of PM₁₀, NOₓ, and SOₓ are estimated at different scenarios. Results show that in the year 2030, PM₁₀ emissions will be increased by 186.2%. NOₓ emissions and SOₓ emissions will also be increased by 38.9% and 5.5%, without the implementation of the scenarios.Keywords: ambient air quality, emissions inventory, mobile air pollution, vehicular emissions
Procedia PDF Downloads 1371136 Adsorption of Basic Dyes Using Activated Carbon Prepared from Date Palm Fibre
Authors: Riham Hazzaa , Mohamed Hussien Abd El Megid
Abstract:
Dyes are toxic and cause severe problems to aquatic environment. The use of agricultural solid wastes is considered as low-cost and eco-friendly adsorbents for removing dyes from waste water. Date palm fibre, an abundant agricultural by-product in Egypt was used to prepare activated carbon by physical activation method. This study investigates the use of date palm fiber (DPF) and activated carbon (DPFAC) for the removal of a basic dye, methylene blue (MB) from simulated waste water. The effects of temperature, pH of solution, initial dye (concentration, adsorbent dosage and contact time were studied. The experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin, Radushkevich and Harkins–Jura isotherms. Adsorption kinetics data were modeled using the pseudo-first and pseudo-second order and Elvoich equations. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The results revealed that as the initial dye concentration , amount of adsorbent and temperature increased, the percentage of dye removal increased. The optimum pH required for maximum removal was found to be 6. The adsorption of methylene blue dye was better described by the pseudo-second-order equation. Results indicated that DPFAC and DPF could be an alternative for more costly adsorbents used for dye removal.Keywords: adsorption, basic dye, palm fiber, activated carbon
Procedia PDF Downloads 3311135 Invasive Ranges of Gorse (Ulex europaeus) in South Australia and Sri Lanka Using Species Distribution Modelling
Authors: Champika S. Kariyawasam
Abstract:
The distribution of gorse (Ulex europaeus) plants in South Australia has been modelled using 126 presence-only location data as a function of seven climate parameters. The predicted range of U. europaeus is mainly along the Mount Lofty Ranges in the Adelaide Hills and on Kangaroo Island. Annual precipitation and yearly average aridity index appeared to be the highest contributing variables to the final model formulation. The Jackknife procedure was employed to identify the contribution of different variables to gorse model outputs and response curves were used to predict changes with changing environmental variables. Based on this analysis, it was revealed that the combined effect of one or more variables could make a completely different impact to the original variables on their own to the model prediction. This work also demonstrates the need for a careful approach when selecting environmental variables for projecting correlative models to climatically distinct area. Maxent acts as a robust model when projecting the fitted species distribution model to another area with changing climatic conditions, whereas the generalized linear model, bioclim, and domain models to be less robust in this regard. These findings are important not only for predicting and managing invasive alien gorse in South Australia and Sri Lanka but also in other countries of the invasive range.Keywords: invasive species, Maxent, species distribution modelling, Ulex europaeus
Procedia PDF Downloads 1341134 Augmented ADRC for Trajectory Tracking of a Novel Hydraulic Spherical Motion Mechanism
Authors: Bin Bian, Liang Wang
Abstract:
A hydraulic spherical motion mechanism (HSMM) is proposed. Unlike traditional systems using serial or parallel mechanisms for multi-DOF rotations, the HSMM is capable of implementing continuous 2-DOF rotational motions in a single joint without the intermediate transmission mechanisms. It has some advantages of compact structure, low inertia and high stiffness. However, as HSMM is a nonlinear and multivariable system, it is very complicate to realize accuracy control. Therefore, an augmented active disturbance rejection controller (ADRC) is proposed in this paper. Compared with the traditional PD control method, three compensation items, i.e., dynamics compensation term, disturbance compensation term and nonlinear error elimination term, are added into the proposed algorithm to improve the control performance. The ADRC algorithm aims at offsetting the effects of external disturbance and realizing accurate control. Euler angles are applied to describe the orientation of rotor. Lagrange equations are utilized to establish the dynamic model of the HSMM. The stability of this algorithm is validated with detailed derivation. Simulation model is formulated in Matlab/Simulink. The results show that the proposed control algorithm has better competence of trajectory tracking in the presence of uncertainties.Keywords: hydraulic spherical motion mechanism, dynamic model, active disturbance rejection control, trajectory tracking
Procedia PDF Downloads 1051133 128-Multidetector CT for Assessment of Optimal Depth of Electrode Array Insertion in Cochlear Implant Operations
Authors: Amina Sultan, Mohamed Ghonim, Eman Oweida, Aya Abdelaziz
Abstract:
Objective: To assess the diagnostic reliability of multi-detector CT in pre and post-operative evaluation of cochlear implant candidates. Material and Methods: The study includes 40 patients (18 males and 22 females); mean age 5.6 years. They were classified into two groups: Group A (20 patients): cochlear implant device was Nucleus-22 and Group B (20 patients): the device was MED-EL. Cochlear length (CL) and cochlear height (CH) were measured pre-operatively by 128-multidetector CT. Electrode length (EL) and insertion depth angle (α) were measured post-operatively by MDCT. Results: For Group A mean CL was 9.1 mm ± 0.4 SD; mean CH was 4.1 ± 0.3 SD; mean EL was 18 ± 2.7 SD; mean α angle was 299.05 ± 37 SD. Significant statistical correlation (P < 0.05) was found between preoperative CL and post-operative EL (r²=0.6); as well as EL and α angle (r²=0.7). Group B's mean CL was 9.1 mm ± 0.3 SD; mean CH was 4.1 ± 0.4 SD; mean EL was 27 ± 2.1 SD; mean α angle was 287.6 ± 41.7 SD. Significant statistical correlation was found between CL and EL (r²= 0.6) and α angle (r²=0.5). Also, a strong correlation was found between EL and α angle (r²=0.8). Significant statistical difference was detected between the two devices as regards to the electrode length. Conclusion: Multidetector CT is a reliable tool for preoperative planning and post-operative evaluation of the outcomes of cochlear implant operations. Cochlear length is a valuable prognostic parameter for prediction of the depth of electrode array insertion which can influence criteria of device selection.Keywords: angle of insertion (α angle), cochlear implant (CI), cochlear length (CL), Multidetector Computed Tomography (MDCT)
Procedia PDF Downloads 1941132 Aerodynamics and Aeroelastics Studies of Hanger Bridge with H-Beam Profile Using Wind Tunnel
Authors: Matza Gusto Andika, Malinda Sabrina, Syarie Fatunnisa
Abstract:
Aerodynamic and aeroelastics studies on the hanger bridge profile are important to analyze the aerodynamic phenomenon and Aeroelastics stability of hanger. Wind tunnel tests were conducted on a model of H-beam profile from hanger bridge. The purpose of this study is to investigate steady aerodynamic characteristics such as lift coefficient (Cl), drag coefficient (Cd), and moment coefficient (Cm) under the different angle of attack for preliminary prediction of aeroelastics stability problems. After investigation the steady aerodynamics characteristics from the model, dynamic testing is also conducted in wind tunnel to know the aeroelastics phenomenon which occurs at the H-beam hanger bridge profile. The studies show that the torsional vortex induced vibration occur when the wind speed is 7.32 m/s until 9.19 m/s with maximum amplitude occur when the wind speed is 8.41 m/s. The result of wind tunnel testing is matching to hanger vibration where occur in the field, so wind tunnel studies has successful to model the problem. In order that the H-beam profile is not good enough for the hanger bridge and need to be modified to minimize the Aeroelastics problem. The modification can be done with structure dynamics modification or aerodynamics modification.Keywords: aerodynamics, aeroelastic, hanger bridge, h-beam profile, vortex induced vibration, wind tunnel
Procedia PDF Downloads 3501131 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times
Authors: Nagham Ismail, Djamel Ouahrani
Abstract:
Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather
Procedia PDF Downloads 751130 Polarization Effects in Cosmic-Ray Acceleration by Cyclotron Auto-Resonance
Authors: Yousef I. Salamin
Abstract:
Theoretical investigations, analytical as well as numerical, have shown that electrons can be accelerated to GeV energies by the process of cyclotron auto-resonance acceleration (CARA). In CARA, the particle would be injected along the lines of a uniform magnetic field aligned parallel to the direction of propagation of a plane-wave radiation field. Unfortunately, an accelerator based on CARA would be prohibitively too long and too expensive to build and maintain. However, the process stands a better chance of success near the polar cap of a compact object (such as a neutron star, a black hole or a magnetar) or in an environment created in the wake of a binary neutron-star or blackhole merger. Dynamics of the nuclides ₁H¹, ₂He⁴, ₂₆Fe⁵⁶, and ₂₈Ni⁶², in such astrophysical conditions, have been investigated by single-particle calculations and many-particle simulations. The investigations show that these nuclides can reach ZeV energies (1 ZeV = 10²¹ eV) due to interaction with super-intense radiation of wavelengths = 1 and 10 m and = 50 pm and magnetic fields of strengths at the mega- and giga-tesla levels. Examples employing radiation intensities in the range 10³²-10⁴² W/m² have been used. Employing a two-parameter model for representing the radiation field, CARA is analytically generalized to include any state of polarization, and the basic working equations are derived rigorously and in closed analytic form.Keywords: compact objects, cosmic-ray acceleration, cyclotron auto-resonance, polarization effects, zevatron
Procedia PDF Downloads 1231129 Nonlinear Evolution on Graphs
Authors: Benniche Omar
Abstract:
We are concerned with abstract fully nonlinear differential equations having the form y’(t)=Ay(t)+f(t,y(t)) where A is an m—dissipative operator (possibly multi—valued) defined on a subset D(A) of a Banach space X with values in X and f is a given function defined on I×X with values in X. We consider a graph K in I×X. We recall that K is said to be viable with respect to the above abstract differential equation if for each initial data in K there exists at least one trajectory starting from that initial data and remaining in K at least for a short time. The viability problem has been studied by many authors by using various techniques and frames. If K is closed, it is shown that a tangency condition, which is mainly linked to the dynamic, is crucial for viability. In the case when X is infinite dimensional, compactness and convexity assumptions are needed. In this paper, we are concerned with the notion of near viability for a given graph K with respect to y’(t)=Ay(t)+f(t,y(t)). Roughly speaking, the graph K is said to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)), if for each initial data in K there exists at least one trajectory remaining arbitrary close to K at least for short time. It is interesting to note that the near viability is equivalent to an appropriate tangency condition under mild assumptions on the dynamic. Adding natural convexity and compactness assumptions on the dynamic, we may recover the (exact) viability. Here we investigate near viability for a graph K in I×X with respect to y’(t)=Ay(t)+f(t,y(t)) where A and f are as above. We emphasis that the t—dependence on the perturbation f leads us to introduce a new tangency concept. In the base of a tangency conditions expressed in terms of that tangency concept, we formulate criteria for K to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)). As application, an abstract null—controllability theorem is given.Keywords: abstract differential equation, graph, tangency condition, viability
Procedia PDF Downloads 1441128 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion
Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri
Abstract:
In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price, and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of the sandwich panel on the maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.Keywords: finite element, honeycomb FRP sandwich panel, torsion, civil engineering
Procedia PDF Downloads 4181127 Nonlinear Triad Interactions in Magnetohydrodynamic Plasma Turbulence
Authors: Yasser Rammah, Wolf-Christian Mueller
Abstract:
Nonlinear triad interactions in incompressible three-dimensional magnetohydrodynamic (3D-MHD) turbulence are studied by analyzing data from high-resolution direct numerical simulations of decaying isotropic (5123 grid points) and forced anisotropic (10242 x256 grid points) turbulence. An accurate numerical approach toward analyzing nonlinear turbulent energy transfer function and triad interactions is presented. It involves the direct numerical examination of every wavenumber triad that is associated with the nonlinear terms in the differential equations of MHD in the inertial range of turbulence. The technique allows us to compute the spectral energy transfer and energy fluxes, as well as the spectral locality property of energy transfer function. To this end, the geometrical shape of each underlying wavenumber triad that contributes to the statistical transfer density function is examined to infer the locality of the energy transfer. Results show that the total energy transfer is local via nonlocal triad interactions in decaying macroscopically isotropic MHD turbulence. In anisotropic MHD, turbulence subject to a strong mean magnetic field the nonlinear transfer is generally weaker and exhibits a moderate increase of nonlocality in both perpendicular and parallel directions compared to the isotropic case. These results support the recent mathematical findings, which also claim the locality of nonlinear energy transfer in MHD turbulence.Keywords: magnetohydrodynamic (MHD) turbulence, transfer density function, locality function, direct numerical simulation (DNS)
Procedia PDF Downloads 3851126 Influence of Some Psychological Factors on the Learning Gains of Distance Learners in Mathematics in Ibadan, Nigeria
Authors: Adeola Adejumo, Oluwole David Adebayo, Muraina Kamilu Olanrewaju
Abstract:
The purpose of this study was to investigate the influence of some psychological factors (i.e, school climate, parental involvement and classroom interaction) on the learning gains of university undergraduates in Mathematics in Ibadan, Nigeria. Three hundred undergraduates who are on open distance learning education programme in the University of Ibadan and thirty mathematics lecturers constituted the study’s sample. Both the independent and dependent variables were measured with relevant standardized instruments and the data obtained was analyzed using multiple regression statistical method. The instruments used were school climate scale, parental involvement scale and classroom interaction scale. Three research questions were answered in the study. The result showed that there was significant relationship between the three independent variables (school climate, parental involvement and classroom interaction) on the students’ learning gain in mathematics and that the independent variables both jointly and relatively contributed significantly to the prediction of students’ learning gain in mathematics. On the strength of these findings, the need to enhance the school climate, improve the parents’ involvement in the student’s education and encourage students’ classroom interaction were stressed and advocated.Keywords: school climate, parental involvement, ODL, learning gains, mathematics
Procedia PDF Downloads 5211125 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia
Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski
Abstract:
The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils
Procedia PDF Downloads 3681124 Non Interferometric Quantitative Phase Imaging of Yeast Cells
Authors: P. Praveen Kumar, P. Vimal Prabhu, Renu John
Abstract:
In biology most microscopy specimens, in particular living cells are transparent. In cell imaging, it is hard to create an image of a cell which is transparent with a very small refractive index change with respect to the surrounding media. Various techniques like addition of staining and contrast agents, markers have been applied in the past for creating contrast. Many of the staining agents or markers are not applicable to live cell imaging as they are toxic. In this paper, we report theoretical and experimental results from quantitative phase imaging of yeast cells with a commercial bright field microscope. We reconstruct the phase of cells non-interferometrically based on the transport of intensity equations (TIE). This technique estimates the axial derivative from positive through-focus intensity measurements. This technique allows phase imaging using a regular microscope with white light illumination. We demonstrate nano-metric depth sensitivity in imaging live yeast cells using this technique. Experimental results will be shown in the paper demonstrating the capability of the technique in 3-D volume estimation of living cells. This real-time imaging technique would be highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any pre-processing of samples.Keywords: axial derivative, non-interferometric imaging, quantitative phase imaging, transport of intensity equation
Procedia PDF Downloads 3841123 CFD Studies on Forced Convection Nanofluid Flow Inside a Circular Conduit
Authors: M. Khalid, W. Rashmi, L. L. Kwan
Abstract:
This work provides an overview on the experimental and numerical simulations of various nanofluids and their flow and heat transfer behavior. It was further extended to study the effect of nanoparticle concentration, fluid flow rates and thermo-physical properties on the heat transfer enhancement of Al2O3/water nanofluid in a turbulent flow circular conduit using ANSYS FLUENT™ 14.0. Single-phase approximation (homogeneous model) and two-phase (mixture and Eulerian) models were used to simulate the nanofluid flow behavior in the 3-D horizontal pipe. The numerical results were further validated with experimental correlations reported in the literature. It was found that heat transfer of nanofluids increases with increasing particle volume concentration and Reynolds number, respectively. Results showed good agreement (~9% deviation) with the experimental correlations, especially for a single-phase model with constant properties. Among two-phase models, mixture model (~14% deviation) showed better prediction compared to Eulerian-dispersed model (~18% deviation) when temperature independent properties were used. Non-drag forces were also employed in the Eulerian two-phase model. However, the two-phase mixture model with temperature dependent nanofluid properties gave slightly closer agreement (~12% deviation).Keywords: nanofluid, CFD, heat transfer, forced convection, circular conduit
Procedia PDF Downloads 5231122 Effect of Velocity Slip on Two Phase Flow in an Eccentric Annular Region
Authors: Umadevi B., Dinesh P. A., Indira. R., Vinay C. V.
Abstract:
A mathematical model is developed to study the simultaneous effects of particle drag and slip parameter on the velocity as well as rate of flow in an annular cross sectional region bounded by two eccentric cylinders. In physiological flows this phenomena can be observed in an eccentric catheterized artery with inner cylinder wall is impermeable and outer cylinder wall is permeable. Blood is a heterogeneous fluid having liquid phase consisting of plasma in which a solid phase of suspended cells and proteins. Arterial wall gets damaged due to aging and lipid molecules get deposited between damaged tissue cells. Blood flow increases towards the damaged tissues in the artery. In this investigation blood is modeled as two phase fluid as one is a fluid phase and the other is particulate phase. The velocity of the fluid phase and rate of flow are obtained by transforming eccentric annulus to concentric annulus with the conformal mapping. The formulated governing equations are analytically solved for the velocity and rate of flow. The numerical investigations are carried out by varying eccentricity parameter, slip parameter and drag parameter. Enhancement of slip parameter signifies loss of fluid then the velocity and rate of flow will be decreased. As particulate drag parameter increases then the velocity as well as rate flow decreases. Eccentricity facilitates transport of more fluid then the velocity and rate of flow increases.Keywords: catheter, slip parameter, drag parameter, eccentricity
Procedia PDF Downloads 5231121 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model
Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh
Abstract:
Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding
Procedia PDF Downloads 71120 Oil Demand Forecasting in China: A Structural Time Series Analysis
Authors: Tehreem Fatima, Enjun Xia
Abstract:
The research investigates the relationship between total oil consumption and transport oil consumption, GDP, oil price, and oil reserve in order to forecast future oil demand in China. Annual time series data is used over the period of 1980 to 2015, and for this purpose, an oil demand function is estimated by applying structural time series model (STSM). The technique also uncovers the Underline energy demand trend (UEDT) for China oil demand and GDP, oil reserve, oil price and UEDT are considering important drivers of China oil demand. The long-run elasticity of total oil consumption with respect to GDP and price are (0.5, -0.04) respectively while GDP, oil reserve, and price remain (0.17; 0.23; -0.05) respectively. Moreover, the Estimated results of long-run elasticity of transport oil consumption with respect to GDP and price are (0.5, -0.00) respectively long-run estimates remain (0.28; 37.76;-37.8) for GDP, oil reserve, and price respectively. For both model estimated underline energy demand trend (UEDT) remains nonlinear and stochastic and with an increasing trend of (UEDT) and based on estimated equations, it is predicted that China total oil demand somewhere will be 9.9 thousand barrel per day by 2025 as compare to 9.4 thousand barrel per day in 2015, while transport oil demand predicting value is 9.0 thousand barrel per day by 2020 as compare to 8.8 thousand barrel per day in 2015.Keywords: china, forecasting, oil, structural time series model (STSM), underline energy demand trend (UEDT)
Procedia PDF Downloads 2831119 Adhesive Connections in Timber: A Comparison between Rough and Smooth Wood Bonding Surfaces
Authors: Valentina Di Maria, Anton Ianakiev
Abstract:
The use of adhesive anchors for wooden constructions is an efficient technology to connect and design timber members in new timber structures and to rehabilitate the damaged structural members of historical buildings. Due to the lack of standard regulation in this specific area of structural design, designers’ choices are still supported by test analysis that enables knowledge, and the prediction, of the structural behavior of glued in rod joints. The paper outlines an experimental research activity aimed at identifying the tensile resistance capacity of several new adhesive joint prototypes made of epoxy resin, steel bar and timber, Oak and Douglas Fir species. The development of new adhesive connectors has been carried out by using epoxy to glue stainless steel bars into pre-drilled holes, characterized by smooth and rough internal surfaces, in timber samples. The realization of a threaded contact surface using a specific drill bit has led to an improved bond between wood and epoxy. The applied changes have also reduced the cost of the joints’ production. The paper presents the results of this parametric analysis and a Finite Element analysis that enables identification and study of the internal stress distribution in the proposed adhesive anchors.Keywords: glued in rod joints, adhesive anchors, timber, epoxy, rough contact surface, threaded hole shape
Procedia PDF Downloads 5511118 Multi-Source Data Fusion for Urban Comprehensive Management
Authors: Bolin Hua
Abstract:
In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data
Procedia PDF Downloads 3931117 Analysis of Spectral Radiative Entropy Generation in a Non-Gray Participating Medium with Heat Source (Furnaces)
Authors: Asadollah Bahrami
Abstract:
In the present study, spectral radiative entropy generation is analyzed in a furnace filled with a mixture of H₂O, CO₂ and soot at radiative equilibrium. For the angular and spatial discretization of the radiative transfer equation and radiative entropy generation equations, the discrete ordinates method and the finite volume method are used, respectively. Spectral radiative properties are obtained using the correlated-k (CK) non-gray model with updated parameters based on the HITEMP2010 high-resolution database. In order to evaluate the effects of the location of the heat source, boundary condition and wall emissivity on radiative entropy generation, five cases are considered with different conditions. The spectral and total radiative entropy generation in the system are calculated for all cases and the effects of mentioned parameters on radiative entropy generation are attentively analyzed and finally, the optimum condition is especially presented. The most important results can be stated as follows: Results demonstrate that the wall emissivity has a considerable effect on the radiative entropy generation. Also, irreversible radiative transfer at the wall with lower temperatures is the main source of radiative entropy generation in the furnaces. In addition, the effect of the location of the heat source on total radiative entropy generation is less than other factors. Eventually, it can be said that characterizing the effective parameters of radiative entropy generation provides an approach to minimizing the radiative entropy generation and enhancing the furnace's performance practicality.Keywords: spectral radiative entropy generation, non-gray medium, correlated k(CK) model, heat source
Procedia PDF Downloads 1031116 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 55